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A B S T R A C T   

Background: Quality control (QC) in point-of-care (POC) testing has been greatly improved by 
automatic control processes, such as the Intelligent Quality Management (iQM®) technology 
found in GEM Premier blood gas analyzers (Werfen, Bedford, MA). The 2nd generation tech-
nology, iQM2, provides additional capabilities, notably the incorporation of IntraSpect software 
that monitors the response curves of individual tests to detect transient errors caused by micro- 
clots, micro-bubbles or any event that disturbs the sensor response during sample data acquisi-
tion. IntraSpect is a novel form of patient-based, real-time quality control (PBRTQC). 
Methods: IntraSpect pattern recognition software monitors the last 15 measurements of each 
patient-response curve. Control limits for slope coefficients have been established from theoret-
ical models and empirical data. Abnormal measurement behavior is flagged to identify transient 
errors that invalidate test results. Results from 1,013,391 patient samples were collected on 4,985 
GEM Premier 5000 cartridges and 2,765 instruments in clinical use worldwide. 
Results and conclusions: Total pre-analytic and transient errors detected by IntraSpect were 1.91% 
worldwide. iQM2 with IntraSpect technology provides a unique control function detecting 
transient errors that would otherwise go undetected with traditional QC. Together with the sta-
tistical QC technology in iQM2, pre-analytic, analytic, and transient analytic errors are detected 
much faster—seconds versus hours—than by traditional statistical QC.   

1. Introduction 

A recent survey of point-of-care (POC) clinicians asked participants to identify the “practices and wants” that would be most helpful 
for improving the quality of POC testing [1]. The responses prioritized the following activities: more manufacturer-integrated quality 
and function checks; more in-house training by in-house staff; more training from manufacturers; more supervisor oversight; and more 
explicit directions from manufacturers. The need for manufacturers to support quality assurance and training activities is clearly 
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critical for achieving high quality POC testing. 
The strategic direction for manufacturers should be to provide more integrated controls and a more complete system for monitoring 

all potential failure modes. These capabilities would reduce the need for operator training and supervision of operations. An example 
of such a quality system is Werfen’s iQM2, the second-generation Intelligent Quality Management system, for the GEM Premier 5000 
blood gas analyzer. Nichols et al. [2] recently reported an extensive validation study of iQM2. The methodology for validating 
detection time was described in the validation of the first generation iQM, approximately 15 years ago [3]. Notably, the average times 
for detecting errors for each test are much quicker as compared with traditional statistical quality control (SQC) practices. This 
improved performance has also been demonstrated in field studies in four different institutions, as reported by Toffaletti et al. [4], in 
two different institutions, as reported by Mion et al. [5], as well as the more recent study in four different institutions, as reported by 
Nichols et al. [2]. 

A major improvement in iQM2 is the IntraSpect technology that monitors the measurement response curve of each patient sample. 
In addition to the analysis of Process Control Solutions (PCSs) that infer the quality of the analytical system before and after sample 
process, IntraSpect directly detects potential problems for each patient sample within the measurement cycle. During the sample 
measurement process, IntraSpect collects a series of readings which are then inspected using pattern recognition software to identify 
unusual sensor behavior due to transient errors. Transient errors are events that happened within the sample measurement due to 
sample preparation and presentation (e.g., micro-clots, micro-bubbles, interferences). Such errors can lack a recognizable signal, 
before or after sampling, and are random in nature – making them typically undetectable by traditional QC. Micro-clots and micro- 
bubbles are particular problems for systems that utilize whole blood samples and are particularly difficult to monitor via tradi-
tional, liquid control methods [6]. 

IntraSpect is a novel form of patient based real-time QC [PBRTQC] with integrated QC for samples. PBRTQC encompasses all types 
of patient-based control techniques including delta checks for individual patients, limit checks for individual samples, cross-check 
algorithms, such as anion gap, as well as a wide variety of population statistics such as Average of Normals (AoN). The use of 
PBRTQC is recommended by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC) Committee on 
Analytical Quality [7]. This committee has stated that “PBRTQC will become the mainstay of QC in laboratories once the profession sees the 
advantages of this form of process control, and manufacturers and middleware vendors provide the onboard capability” [8]. In that context, 
iQM2 provides an example of a manufacturer’s implementation of a PBRTQC technique, along with automation of traditional SQC, and 
extensive system function checks. The application and performance of IntraSpect technology is described in this report. 

2. Methods and materials 

2.1 The GEM Premier 5000 system (Werfen, Bedford, MA) is a critical care analyzer that utilizes whole blood to perform tests for 
blood pH, pCO2, pO2, Na+, K+, Cl− , Ca++, glucose, lactate, total bilirubin, hematocrit, total hemoglobin, oxy-hemoglobin, deoxy- 
hemoglobin, oxygen saturation, carboxy-hemoglobin, and met-hemoglobin. The main components of the GEM Premier 5000 system 
are a multi-use disposable cartridge (GEM PAK), iQM2 active process control technology, and GEMweb® Plus Custom Connectivity, an 
automated web-based information management system. The GEM PAK includes all the required analytical components (sensors, so-
lutions, sampler, optical cell, waste bag). iQM2 provides continuous QC monitoring before, during, and after sample measurement, 
analyzes five PCSs to monitor all the critical decision concentrations, and provides automatic error detection and correction of the 

Fig. 1. Description of measurement cycle for GEM Premier 5000 operation and identification of various system checks, IntraSpect monitor, and 
sensor checks. 
The figure summarizes iQM2 Quality Control processes for each sample - before, during, and after - each sample measurement process on the GEM 
Premier 5000 system. Before - system and sensor functionality checks; During – system fluidic checks in aspiration and InstraSpect; After-sensor 
pattern checks to ensure sensor recovery after sample washing step and ready for next sample. Corrective action is automatically triggered when 
a sensor recovery after sample is detected by the iQM2 pattern recognition. 
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system, complete with documentation of corrective actions. 
2.2 Automated SQC was one of the breakthroughs with iQM. Analytic errors could be detected very quickly, as described in an 

early validation study [3], due to the unique application of SQC. Electronic drift limits, imposed on the sensors for various PCSs, 
correspond to statistical control limits that can be translated as individual control rules. Error detection capabilities can then be 
determined from theoretical power curves that describe the probabilities of rejection, as a function of the size of errors occurring. The 
size of the systematic error that is medically important can be calculated from the allowable total error for a test (e.g., CLIA criteria for 
acceptable performance) and the precision observed for the methods, which also determine the Sigma-metric (SM) for the test. The 
SMs for the GEM Premier 5000 with iQM2 are documented in the recent validation report by Nichols et al. [2]. The critical systematic 
error (ΔSEcrit) is related to the Sigma-metric by the equation SM = ΔSEcrit + 1.65. Given an SM of 6, it follows that the medically 
important SE is 4.35 times the observed SD. The probability of detecting medically important errors (Ped, probability of error 
detection) follows the methodology described originally by Westgard et al. [3]. Those probabilities can then be converted into average 
run lengths (ARL) to characterize the expected time for detection of medically important errors (ARLed = 1/Ped). Given the frequency 
of PCS analysis, ARLed can then be used to estimate the average time for detection of medically important errors. Obviously, the best 
QC performance will be obtained with the PCS tested most frequently, which is PCS B, analyzed every 2 min. For iQM2, Nichols et al. 
[2] have characterized the average detection times (ADT) using this approach as 2 min for most analytes, except sodium and glucose 
which require five and 21 min, respectively. 

2.3 The iQM2 Total Quality Process begins with the installation of the GEM PAK on a GEM Premier 5000 system, first validating 
performance using the five PCSs, then monitoring patient sample analysis, using specific quality checks. These include mechanical, 
electronic, and fluidic checks, temperature checks, and sensor/CO-Ox checks using the PCSs to monitor change, along with pattern 
recognition to identify errors and interferences. IntraSpect technology provides real-time monitoring of each patient sample during the 
measurement cycle to provide additional information about the quality of measurement during the analysis of each patient sample. 
The process for employing all these checks is illustrated in Fig. 1. 

2.4 IntraSpect technology utilizes 15 readings during the last 15 s of patient sample measurements, to monitor the response of the 
sensor output. Pattern recognition software analyzes the readings for sensor response prior to reporting the patient result. The sample 
response, in millivolts readings, is fitted to a regression model. The regression equation characterizes the observed sample output and 
is used to estimate the value of the quantity and to identify abnormal sensor response. The behavior of measurement response curves 
for normal patient samples was characterized and established from historical clinical sample data collected from GEM Premier systems 
in the field. Unusual sensor responses are identified by the response shape and coefficients outside of acceptable limits. 

Fig. 2 illustrates the expected response of a potassium sensor. The three lower responses represent the stable signals usually 
observed during the measurement process. The top response curve provides an example of a sample where the signal was disturbed by 
a factor significantly affecting its behavior – in this case due to a fluidic blockage during the sample aspiration, potentially caused by a 
blood clot in the sample. The affected sample reported an elevated potassium of 6.8 mmol/L when a value of approximately 4.0 mmol/ 
L was expected. The expected value is based on the initial sensor output response and a retrospective sample analysis run in that same 
system. 

As shown in Fig. 2, the coefficients that, in this case, represent the slope of the signal, are close to zero for normal response curves. 

Fig. 2. IntraSpect example response curves for K+ sensor. 
Example of a sample affected by a transient event and detected by iQM2. The sensor signal is clearly a different pattern and flagged by IntraSpect 
(blue), as compared to sample signals of unaffected samples (red, grey and orange). . (For interpretation of the references to colour in this figure 
legend, the reader is referred to the Web version of this article.) 

J.O. Westgard and J. Cervera                                                                                                                                                                                       



Practical Laboratory Medicine 30 (2022) e00273

4

Once the nature of the responses for different sensors was determined, a library of coefficients was developed from several thousand 
samples of known concentrations. This library was then used to optimize the limits for the IntraSpect coefficients for each sensor. 
During this process, samples were manipulated to cover the reported range of the system for each measured analyte, as well as several 
known clinical conditions and other known preanalytical conditions (e.g., microbubbles, blood clots, interfering substances). The 
coefficients were tested and optimized, using data collected in several clinical locations, during the last steps of system development. 

Fig. 3 shows the IntraSpect limits for potassium, where most of the coefficient values (slope) are close to zero, and the limits show 
only minor changes with the analyte concentration. This illustrates the model of “constant” limits that also applies to sodium, chloride, 
and calcium, though with some empirical modifications, based on the particular analyte, as shown in Fig. 4, parts A, B, and C, 
respectively. 

Fig. 4, part D shows the IntraSpect limits for glucose, where the limits vary with the measured glucose concentration. This “pro-
portional” model applies to sensors with a diffusion component and also applies to lactate (part E). The curvature of the signal is related 
to the sample concentration. In addition, for glucose and lactate, the signals of these sensors are expected to increase during the 
sampling process until reaching a plateau (a flat area of the curve) that occurs when an equilibrium between the analyte concentration 
and the diffusion characteristics of the outer membrane has been achieved (besides other factors). There is no (expected) scenario 
where the sensor should show a significant decrease in signal during the sampling process. In fact, that event would indicate clear 
misconduct of the sensor performance, with potential for significantly impacting the analytical result. 

Part F of Fig. 4 illustrates the IntraSpect limits for pO2. As expected on a sensor governed by a diffusion process, the signal is 
evolving during the data collection time and, therefore, a curved-based equation is used. These limits are influenced by the effects of 
the concentration of the measured analyte, with respect to the concentration of the same analyte in the PCS before the sample was run 
(in the case of pO2, 180 mmHg on PCS B). Therefore, the signal generated by samples with lower pO2 than PCS B, will create a 
downward-trend curve generating a coefficient lower than zero, while the opposite is expected for samples with pO2 higher than PCS B. 
In addition, more extreme coefficient values are expected at more extreme concentrations, leading to non-linear limits, as shown in 
Fig. 4. For completeness, Fig. 4 also provides the IntraSpect limits for pH (part G) and pCO2 (part H). 

Once the control limits were established for the different sensors, the performance of iQM2 with IntraSpect technology was assessed 
from data collected on 4,985 GEM PAKs and 2,765 systems in clinical use worldwide. The control limits were generally less than half of 
the CLIA-allowable total error for the individual test, and data outside these limits showed that the errors exceeded the CLIA limits in 
70% of the cases, as demonstrated by Mansouri et al. [9]. This assessment considered the errors detected on 1,013,391 patient samples 
tested in multiple settings. 

3. Results and discussion 

Table 1 summarizes the categories of errors, the errors detected by iQM2, and the prevalence of those errors. Total pre-analytic and 
transient errors detected by IntraSpect were 1.91% worldwide. Of the total errors observed, approximately half were transient errors 
detected by IntraSpect (0.80%). 

These errors correlated strongly with the detection of micro-clots caused by improper mixing and/or improper anticoagulant. 
Interferences due to benzalkonium chloride, thiopental, and optical problems from turbidity were observed to be smaller, but still 
significant, given the 1,013,391 total patient samples in this study. 

The prevalence of the errors for the different tests is shown in Table 2. Chloride was highest at 0.39%, followed by pCO2 at 0.15% 
and ionized calcium at 0.14%. Due to the numerous factors that could trigger an IntraSpect error detection, such as fluidic and 
chemical factors, sensor membrane physical properties, or sample properties, the cause of these differences in error prevalence among 
the sensors are difficult to distinguish. 

Fig. 3. Distribution of slope coefficients for K+ sensor along with empirical control limits. 
Representation of IntraSpect coefficients values against the analyte concentration and the associated thresholds (dotted lines) for flagging transient 
errors. Samples within the dotted lines are acceptable and outside are flagged or suppressed. 
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When IntraSpect detects an error for a given analyte, the result for that particular analyte only is suppressed by the system. In 
combination with IntraSpect during-sample-measurement error detection, the totality of iQM2 processes is able to detect errors where 
the sensor response was affected before, during or after the sample [2,4,6]. 

The idea of using patient samples for QC has a long history. Beginning with Hoffman and Waid in the 1960s [10], a method of QC 
using the “average of normals” has been recommended. In the 1970s, the application of patient data was extended to red cell indices 
and “Bull’s algorithm” [11] which has been widely implemented, possibly representing the most successful application of 
patient-based QC. In the 1990s, Westgard et al. [12] described how Average of Normals (AoN) could be designed to complement 
traditional SQC and utilized to measure run length. In the 2000s, interest in patient data QC was kept alive by Parvin [13] and 
Kazmierczak [14], but laboratories seemed occupied by the trend towards using risk management to design quality control plans. 
Then, since 2015, a wide variety of studies have been published on the performance of patient-based real-time QC by Bietenbeck [15], 
Fleming and Katayev [16], Ng et al. [17], Bietenbeck et al. [18], Liu et al. [19], van Rossum and van den Broek [20], and van Rossum 
and Kemperman [22]. Many of these investigators make up the IFCC PBRTQC group, recommending increased use of patient data for 
QC. 

The IFCC group accepts that there will be a different design and validation models for the various applications of PBRTQC. The 
particular patient-based technique employed in IntraSpect makes use of the measurement response curve of an individual patient 
sample, in contrast to the focus on population statistics in most PBRTQC applications. As such, the IntraSpect application functions as a 
simple SQC model, where control limits are established based on the variation observed in measuring normal samples. Control limits 
are applied to monitor the shape of the response curve for each individual sample measured. Validation of performance, therefore, 
follows the principles applied for traditional SQC procedures but also relies on empirical observations of field data. There typically are 
sets of trial or training data used to establish control limits to minimize false rejections and maximize error detection. In the case of 

Fig. 4. Distribution of slope coefficients for various tests monitored by IntraSpect. Part (A) shows IntraSpect limits for Na+; (B) Cl− ; (C) Ca++; (D) 
glucose; (E) lactate; (F) pO2; (G) pH; and pCO2. 
IntraSpect coefficients values against the sample concentration for all tested sensors. Figures A to C show examples of constant coefficients. 
Figures D to H show the sensors where coefficients value (or sensor response) are variable to the concentration of measured analyte. 

Table 1 
Types of errors detected, corrected, and documented in 1,013,391 patient samples, analyzed with 4985 GEM PAKS by 2765 GEM Premier 5000 
instruments.  

Preanalytical category Type of error detected by iQM2 Worldwide Error Detection Prevalence (%) 

Improper mixing anticoagulant Micro-clots 0.79 
Inadequate sample preparation and/or 

patient-specific 
treatment 

Benzalkonium chloride 0.09 
Thiopental 0.02 

CO-Ox interferences 0.21 
Transient errors IntraSpect 0.80 
Total 1.91  

Table 2 
Distribution of transient errors by analyte as detected by IntraSpect.   

Distribution of errors among analytes 

pH pCO2 pO2 Na+ K+ Cl− Ca++ Glu Lac 

Results affected (%) 0.02 0.15 0.03 0.10 0.05 0.39 0.14 0.06 0.07  
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PBRTQC procedures, it is particularly critical to observe the actual rejection rates in practice to optimize performance [21]. 
While pre-analytical and transient errors are observed in approximately 1.9% of patient samples globally, they are still very sig-

nificant when the volume of blood gas testing is considered. It is estimated that approximately 430 million POC blood gas tests will be 
performed globally, corresponding to 8.17 million patient samples with pre-analytic and transient errors. While these errors would be 
detected by iQM2 with IntraSpect, they would likely go undetected by traditional QC procedures. Detection of that small percentage of 
pre-analytic and transient errors still represents a significant improvement in the quality of blood gas testing and demonstrates the 
usefulness of the new IntraSpect technology in iQM2. 

4. Conclusions 

Transient errors caused by micro-clots, air bubbles, interferences, or any other event capable of disturbing sensor response, can be 
detected by monitoring the response curves of each individual patient sample. Studies demonstrate that such transient errors occur in 
0.5–1.0% of patient blood gas samples and are likely undetected when using liquid control solutions and traditional quality control 
(QC). As recommended by the International Federation of Clinical Chemistry and Laboratory Medicine, the addition of patient data QC 
procedures can complement statistical QC and improve detection of clinically important errors. 
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