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1  | INTRODUC TION

Advances in high‐throughput sequencing technologies have led to 
an unprecedented wealth of genome‐scale data for evolutionary 
analysis. These data offer valuable opportunities for investigating 
the effects of positive selection and constraints on genomic evo‐
lution. Although a range of bioinformatics tools and resources are 
readily available for using codon‐based models of evolution (Pond, 
Frost, & Muse, 2005; Stern et al., 2007; Valle et al., 2014; Zhang, 
Wang, Long, & Fan, 2013), the CodeML program in the PAML pack‐
age (Yang, 2007) is among the most widely used.

One method of testing for selection is to compute ω, the ratio 
of nonsynonymous to synonymous substitution rates. Under the as‐
sumption of neutral evolution, ω is expected to have a value of 1. 
Positive and purifying (negative) selection are indicated when ω > 1 
and ω < 1, respectively (Nei & Gojobori, 1986). Several different 
models have been implemented in CodeML, varying in terms of their 
assumptions about how ω varies across the sequence (site models) 
or across branches of the phylogeny (branch models; Yang, 2007).

Site models can be used to identify positively selected sites in a 
multiple sequence alignment (Yang & Nielsen, 2002). They employ 
different site‐class‐specific models, all of which assume that the ω 
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Abstract
The genomic signatures of positive selection and evolutionary constraints can be 
detected by analyses of nucleotide sequences. One of the most widely used pro‐
grams for this purpose is CodeML, part of the PAML package. Although a number of 
bioinformatics tools have been developed to facilitate the use of CodeML, these have 
various limitations. Here, we present a wrapper tool named EasyCodeML that pro‐
vides a user‐friendly graphical interface for using CodeML. EasyCodeML has a cus‐
tom running mode in which parameters can be adjusted to meet different 
requirements. It also offers a preset running mode in which an evolutionary analysis 
pipeline and publication‐quality tables can be exported by a single click. EasyCodeML 
allows visualized, interactive tree labelling, which greatly simplifies the use of the 
branch, branch‐site, and clade models of selection. The program allows comparison 
of major codon‐based models for analyses of selection. EasyCodeML is a stand‐alone 
package that is supported in Windows, Mac, and Linux operating systems, and is 
freely available at https://github.com/BioEasy/EasyCodeML.
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ratio is the same across branches of the phylogeny but different 
among sites in the alignment. These codon substitution models are: 
M0 (one‐ratio), M1a (nearly neutral), M2a (positive selection), M3 
(discrete), M7 (beta), M8 (beta and ω > 1) and M8a (beta and ω = 1). 
The fit of these models to the sequence data can be compared using 
likelihood‐ratio tests. Support for positive selection can be identi‐
fied if M2a provides a better fit than M1a, or if M8 provides a better 
fit than M7 or M8a (Yang, Nielsen, Goldman, & Pedersen, 2000). 
The M8–M7 comparison offers a very stringent test of positive se‐
lection (Anisimova, Bielawski, & Yang, 2001), but the M8–M8a com‐
parison has seen growing use because it yields fewer false positives 
(Swanson, Nielsen, & Yang, 2003; Wong, Yang, Goldman, & Nielsen, 
2004).

Branch models can be used to test whether there are significant 
differences in ω among branches of the tree (Yang & Nielsen, 1998, 
2002). There are three branch models in CodeML, including a free‐
ratio model allowing an independent ω for each branch in the tree, a 
one‐ratio model (M0) assuming that ω has been constant throughout 
the tree, and a two‐ratio model assuming that specific branches have 
an ω that differs from that throughout the rest of the tree (Yang, 
1998). Pairwise comparisons of these models can be performed 
using likelihood‐ratio tests (Anisimova et al., 2001).

Models with heterogeneous ω across sites and across branches 
can be combined in the form of branch‐site models. These models 
can be used to identify signals of episodic selection occurring along 
a specified branch after gene duplication (Yang & Nielsen, 2002; 
Zhang, Nielsen, & Yang, 2005). A branch‐site model that allows pos‐
itive selection along specified branches (Model A) can be compared 
against a null model (Model Anull) that allows neutral evolution and 
negative selection (Zhang et al., 2005).

Clade models allow differences in site‐specific selective con‐
straints among clades in the tree (Bielawski & Yang, 2004; Forsberg 
& Christiansen, 2003). The model C (CmC) estimates a separate ω 
ratio for each of two or more clades and is compared against a null 

model 2a_rel (M2a_rel) in which ω is fixed among clades (Weadick & 
Chang, 2012).

If a likelihood‐ratio test yields a significant result for any of 
the pairwise comparisons of codon models, the Bayes empirical 
Bayes (BEB) method (Yang, Wong, & Nielsen, 2005) can then be 
used to identify amino acid residues that have potentially evolved 
under selection. The standard threshold for identifying amino acid 
sites under selection is a posterior probability of 0.95 (Scheffler & 
Seoighe, 2005).

The use of CodeML is controlled by variables listed in a control 
file, in which numerical optimization parameters can be modified to 
perform evolutionary analysis using a chosen codon model. The con‐
trol file can be daunting for new users of CodeML. For this reason, 
several computer programs have been developed with the purpose 
of providing a more user‐friendly interface for CodeML (Table 1). 
However, these programs have various limitations, such as complex 
configuration procedures or a reduced set of codon models. For ex‐
ample, two recently released packages, IDEA (Interactive Display for 
Evolutionary Analyses; Egan et al., 2008) and IMPACT_S (Integrated 
Multiprogram Platform to Analyze and Combine Tests of Selection; 
Maldonado, et al., 2014), provide a graphical user interface but only 
implement three pairs of site models (M0 vs. M3, M1a vs. M2a and 
M7 vs. M8). Xu and Yang (2013) developed a graphical user inter‐
face for PAML named pamlX, but the complex parameter settings for 
CodeML still remained challenging for users. Notably, the foreground 
and background branches of the phylogeny must be specified (Yang 
& Nielsen, 2002). None of the available tools allows user‐friendly la‐
belling of branches or nodes in the tree by one click (Table 1).

Here, we describe EasyCodeML, a program that provides a 
user‐friendly interface for setting up complex analyses of selection 
in CodeML. In addition to a custom mode in which all parameters 
can be adjusted to meet the requirements of the user, EasyCodeML 
offers a preset mode that allows the construction of a pipeline from 
input to output (Supporting information Figure S1).

TA B L E  1   Comparison of features in EasyCodeML and other tools

Key features IDEA pamlX IMPACT_S LMAPb  BlastPhyMec  EasyCodeML

Supported codon models

Branch model × ✓ × ✓ ✓ ✓

Branch‐site model × ✓ × ✓ ✓ ✓

Site model ✓a  ✓ ✓a  ✓ ✓ ✓

Clade model × ✓ × ✓ ✓ ✓

LRT automatically performed × × ✓ ✓ ✓ ✓

Visual labelling of tree by one click × × × × × ✓

Customizing control files × ✓ ✓ ✓ × ✓

Exporting preformatted table × × × ✓ ✓ ✓

Multithreading × × × ✓ ✓ ✓

Drag‐and‐drop functionality × ✓ × × × ✓

aOnly a few codon‐based models available. bMaldonado et al, 2016, https://doi.org/10.1186/s12859‐016‐1204‐5. cSchott et al, 2016, http://dx.doi.
org/10.1101/059881.

https://doi.org/10.1186/s12859-016-1204-5
http://dx.doi.org/10.1101/059881
http://dx.doi.org/10.1101/059881
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2  | IMPLEMENTATION

EasyCodeML provides two different running modes. The first is the 
preset mode (Figure 1a), in which all key parameters of the nested 
models are built‐in and which has pipelines for the selection anal‐
yses (Table 2). The nested models include the site models (M0 vs. 
M3, M1a vs. M2a, and M7 vs. M8), branch models (M0 vs. two‐ratio 
model), branch‐site models (Model Anull vs. Model A), and clade mod‐
els (M2a_rel vs. CmC). The default settings in the control files for 
these pairs of nested models are given in Supporting information 
Tables S1–S4.

The second running mode is the custom mode for experienced 
users (Figure 1b). As with pamlX, the parameters for any codon‐
based model can be modified to meet different requirements. 
Notably, a utility named “control file viewer” is integrated in the cus‐
tom running mode in EasyCodeML. This includes all of the described 
codon‐based models, with preoptimized parameters.

When using the models involving heterogeneous ω among 
branches, it can be a challenging task to label branches or nodes in 
the phylogenetic tree. Performing this task using a text editor is dif‐
ficult and prone to error. EasyCodeML provides a graphical interface 
that allows the labelling of branches and nodes to be done in a visu‐
alized, interactive way (Figure 2).

In the preset mode in EasyCodeML, likelihood‐ratio tests 
between nested models are performed automatically. The re‐
sults are displayed on the screen at the completion of a CodeML 
analysis (Figure 1a). In the custom mode, likelihood‐ratio tests 

can also be conducted using the calculator in the utility menu 
of EasyCodeML (Figure 3a). We have developed a fully func‐
tional export module in the preset mode that produces a publica‐
tion‐quality table containing the results of the CodeML analysis 
(Table 3).

Numerous file conversions are often required to prepare input 
data for CodeML. To improve the efficiency and ease of data ex‐
change among multiple formats, we have incorporated a file‐for‐
mat convertor into EasyCodeML. Named Seqformat convertor, 
this utility can convert CLUSTAL, FASTA, MEGA, NEXUS, and 
PHYLIP formats into PAML format (Figure 3b). A command‐line 
version of Seqformat convertor is also provided in EasyCodeML, 
making it possible to convert sequence formats in batch mode 
(Figure 3c).

We have developed a “check” module that is available for 
both of the running modes in EasyCodeML. The user is noti‐
fied if there are discrepancies between the taxon labels in the 
input files (Figure S2a). This helps to satisfy the requirement of 
CodeML that the input sequence data and tree file have matching 
taxon labels.

In addition to the main functions outlined above, EasyCodeML 
supports parallel computation (multithreading), which is espe‐
cially helpful when multiple comparisons among codon mod‐
els are being performed. EasyCodeML also has drag‐and‐drop 
functionality for ease of use. A comparison of the features of 
EasyCodeML and other relevant tools or programs is provided in 
Table 1.

F I G U R E  1   Screenshot of the main interface of EasyCodeML under the (a) preset and (b) custom running modes. In the preset mode, all 
key parameters of the nested models are built‐in and there is a pipeline from data input to the output of results. In the custom mode, the 
parameters of any codon‐based model can be modified to meet the requirements of the user
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3  | WORKED E X AMPLE

3.1 | Preset running mode in EasyCodeML

To demonstrate the use of the clade models in the preset running 
mode in EasyCodeML, we present an analysis of the ECP‐EDN gene 
family in primates. The analyses are based on data from a study by 
Bielawski and Yang (2003), which investigated the role of positive 
selection in the evolution of this gene family.

3.1.1 | Step 1: Loading data and 
configuring parameters

EasyCodeML has two different running modes, preset and custom. 
In this case, we choose the preset mode (Figure 1a). We either drag‐
and‐drop a folder into EasyCodeML or click on the button “…”to se‐
lect a local folder as the working directory. The required inputs for 
analysing selection are the aligned sequences in PAML format and 
a tree file in Newick format. We can also drag‐and‐drop these two 
files into the text box. Four different model approaches are available 

in the preset mode. Here, we select “Clade Model” to test for posi‐
tive selection in the ECP‐EDN gene family (Figure 1a).

After the sequence and tree files have been selected, press 
the “Check” button to check the consistency of the taxon labels 
between the tree and sequence files. The clade models require 
the nodes of the tree to be labelled in order to indicate the clades 
that will be assigned independent ω parameters, so we press the 
“Label” button. We then click on the entire EDN clade to be se‐
lected in the tree as the foreground lineage. The dollar symbol 
“$”with an integer will be shown above the EDN clade (Figure 2a). 
In EasyCodeML, the symbols “#”(Figure 2b) and “$”(Figure 2a) are 
used for the branch or branch‐site models and for the clade model, 
respectively.

We use other default settings for the parameters, including the 
“Num of Threads” and “Clean data” options. Multithreading will only 
take effect in the analysis using the site model. If the “Clean data” 
option is enabled, all sites with ambiguity characters and alignment 
gaps will be removed from the sequence alignment prior to analysis.

3.1.2 | Step 2: CodeML analysis

Before starting the CodeML analysis, we need to click on the “Save 
Current Profile” button to enable all parameters for the current 
analysis. The button “Run CodeML” then starts the CodeML analy‐
sis. At the conclusion of the analysis, the log‐likelihood (lnL) values 
and the number of parameters (np) will be automatically retrieved. 
A likelihood‐ratio test is performed for the nested models and all 
results are automatically organized and displayed on the screen 
(Figure 1a).

3.1.3 | Step 3: Summarizing and interpreting results

A publication‐quality table that contains all of the relevant infor‐
mation from the CodeML analyses can be generated using the 
“Export” button. Microsoft Excel can be launched to view the 
saved results file by clicking on “View”. A clear rejection of the null 
model indicates that divergent selection was detected between the 
foreground (the entire EDN clade) and background branches (the 
entire ECP clade). Note that the selection analysis presented here 
is merely instructional. If there are suboptimal peaks in the likeli‐
hood surface, we can load and edit the control file in the custom 
running mode in EasyCodeML, and then run the program several 
times to find the globally optimal likelihood score using different 
initial values of ω.

3.2 | Custom running mode in EasyCodeML

We briefly illustrate the use of the custom running mode in 
EasyCodeML by analysing a data set from Padhi, Verghese, and Otta 
(2009). We compare the M8 and M8a models to test for sites under 
positive selection in the outer membrane protein C (ompC) of strains 
of Enterobacter aerogenes, although this particular model comparison 
is also available in the preset running mode of EasyCodeML.

TA B L E  2   Codon‐based models available in EasyCodeML

Codon‐based 
models

Running mode
Nested models (null 
vs. alternative)Preset Custom

Site models

M0 (one‐ratio) ✓ ✓ M3 versus M0 a 

M1 (nearly 
neutral)

✓ ✓ M1a versus M2a

M2a (positive 
selection)

✓ ✓ M7 versus M8

M3 (discrete) ✓ ✓ M8a versus M8

M7 (beta) ✓ ✓

M8 (beta and 
ω > 1)

✓ ✓

M8a (beta and 
ω = 1)

✓ ✓

Branch model

One‐ratio 
model (M0)

✓ ✓ M0 versus BM

Two‐ratio model 
(BM)

✓ ✓ M0 versus FM

Free‐ratio 
model (FM)

× ✓

Branch‐site models

Model Anull ✓ ✓ Model Anull versus 
Model A

Model A ✓ ✓

Clade models

M2a_rel ✓ ✓ M2a_rel versus CmC

CmC ✓ ✓

aThe M0–M3 comparison does not allow detection of positive selection. 
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3.2.1 | Step 1: Loading data and 
configuring parameters

We switch current running mode to the custom mode and spec‐
ify a local folder as the working directory using drag‐and‐drop, as 
described above for the preset mode. The “Load” button can be 
used to load a codon model available from a control file viewer 
(Supporting information Figure S2b). This will bring up a dialogue 
box from which we choose the M8a model. We can further modify 
the various parameter values to meet different requirements. Tree 
labelling is necessary when examining the branch‐related models 
(branch models, branch‐site models, and clade models), but not with 
the site models. Therefore, default values are used for all param‐
eters except for leaving “Clean data” unchecked (Figure 1b). We 
need to save the current profile using “Save Current Profile” after 

checking whether the taxon labels match between the tree and se‐
quence files.

3.2.2 | Step 2: CodeML analysis

Clicking “Run CodeML” will start the analysis. In order to perform the 
subsequent likelihood‐ratio test, we will need to run both models. 
Therefore, we need to repeat the procedure for the M8 model.

We navigate to the working directory and locate the main result 
files (mlc) of the model M8 and M8a. After noting the log‐likelihood 
(lnL) values and the number of parameters (np) in these mlc files, we 
enter them in the LRT calculator from the “Tools” menu and run a like‐
lihood‐ratio test. Based on the lnL and np values of the null model (M8, 
lnL	=	−1878.7,	np	=	14)	and	the	alternative	model	(M8a,	lnL	=	−1,892.5,	
np = 13), the test yields a p‐value below 0.05 (Figure 3a).

F I G U R E  2   Labelling branches in a 
tree for the branch‐related models can 
be done in a simple and intuitive way for 
the (a) clade models and (b) branch and 
branch‐site models
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F I G U R E  3   Two utilities available in EasyCodeML: (a) the LRT calculator, and Seqformat convertor in (b) a user‐friendly GUI or (c) 
command line. Seqformat convertor can convert between diverse types of sequence data formats
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3.2.3 | Step 3: Identifying sites under selection

In the comparison of models M8 and M8a, the BEB analysis under 
model M8 is used to identify codons under positive selection. Thus, 
we find a block called “Bayes Empirical Bayes (BEB) analysis” in the 
mlc file (Supporting information Figure S3). This block lists the amino 
acids that have a BEB score higher than 0.5. Sites potentially under 
positive selection are suggested by BEB values higher than 0.95, 
which are indicated by asterisks. In this data set, we identified nine 
codons as being under positive selection with posterior probability 
>0.95, matching the results of Padhi et al. (2009).

4  | CONCLUSIONS

We have developed EasyCodeML, an interactive visual tool for anal‐
yses of selection that incorporates the major codon‐based models 
in CodeML. EasyCodeML includes a feature that allows  interactive 
labelling of the tree in branch‐ or clade‐specific  analyses. We hope 
that the program proves to be a useful tool for studies of molecular 
evolution, by broadening the user base of CodeML and improving its 
usability. EasyCodeML is an ongoing project and we welcome bug 
reports, feedback, and suggestions.
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