
Ecology and Evolution. 2019;9:3891–3898.	 		 	 | 	3891www.ecolevol.org

1  | INTRODUC TION

Advances in high‐throughput sequencing technologies have led to
an unprecedented wealth of genome‐scale data for evolutionary
analysis. These data offer valuable opportunities for investigating
the effects of positive selection and constraints on genomic evo‐
lution. Although a range of bioinformatics tools and resources are
readily available for using codon‐based models of evolution (Pond,
Frost, & Muse, 2005; Stern et al., 2007; Valle et al., 2014; Zhang,
Wang, Long, & Fan, 2013), the CodeML program in the PAML pack‐
age (Yang, 2007) is among the most widely used.

One method of testing for selection is to compute ω, the ratio
of nonsynonymous to synonymous substitution rates. Under the as‐
sumption of neutral evolution, ω is expected to have a value of 1.
Positive and purifying (negative) selection are indicated when ω > 1
and ω < 1, respectively (Nei & Gojobori, 1986). Several different
models have been implemented in CodeML, varying in terms of their
assumptions about how ω varies across the sequence (site models)
or across branches of the phylogeny (branch models; Yang, 2007).

Site models can be used to identify positively selected sites in a
multiple sequence alignment (Yang & Nielsen, 2002). They employ
different site‐class‐specific models, all of which assume that the ω

Received:	21	October	2018  |  Revised:	1	February	2019  |  Accepted:	11	February	2019
DOI: 10.1002/ece3.5015

O R I G I N A L R E S E A R C H

EasyCodeML: A visual tool for analysis of selection using
CodeML

Fangluan Gao1,2*  | Chengjie Chen3* | Daej A. Arab2 | Zhenguo Du1 | Yehua He3 |
Simon Y. W. Ho2

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.
© 2019 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd.

*These authors contributed equally to this work.

1Fujian Key Laboratory of Plant Virology,
Institute of Plant Virology, Fujian Agriculture
and Forestry University, Fuzhou, China
2School of Life and Environmental
Sciences, University of Sydney, Sydney, New
South Wales, Australia
3College of Horticulture, South China
Agricultural University, Guangzhou, China

Correspondence
Fangluan Gao, Fujian Key Laboratory of
Plant Virology, Institute of Plant Virology,
Fujian Agriculture and Forestry University,
Fuzhou, China.
Email: raindy@fafu.edu.cn
and
Chengjie Chen, College of Horticulture,
South China Agricultural University,
Guangzhou, China.
Email: ccj0410@gmail.com

Funding information
National Natural Science Foundation of
China, Grant/Award Number: 31772103; the
Training Program of Fujian Excellent Talents
in University; a Future Fellowship from the
Australian Research Council, Grant/Award
Number: FT160100167

Abstract
The genomic signatures of positive selection and evolutionary constraints can be
detected by analyses of nucleotide sequences. One of the most widely used pro‐
grams for this purpose is CodeML, part of the PAML package. Although a number of
bioinformatics tools have been developed to facilitate the use of CodeML, these have
various limitations. Here, we present a wrapper tool named EasyCodeML that pro‐
vides a user‐friendly graphical interface for using CodeML. EasyCodeML has a cus‐
tom running mode in which parameters can be adjusted to meet different
requirements. It also offers a preset running mode in which an evolutionary analysis
pipeline and publication‐quality tables can be exported by a single click. EasyCodeML
allows visualized, interactive tree labelling, which greatly simplifies the use of the
branch, branch‐site, and clade models of selection. The program allows comparison
of major codon‐based models for analyses of selection. EasyCodeML is a stand‐alone
package that is supported in Windows, Mac, and Linux operating systems, and is
freely available at https://github.com/BioEasy/EasyCodeML.

K E Y W O R D S

CodeML, codon‐based models, likelihood‐ratio test, molecular evolution, positive selection

www.ecolevol.org
mailto:
https://orcid.org/0000-0001-9031-9944
mailto:
https://orcid.org/0000-0002-0361-2307
http://creativecommons.org/licenses/by/4.0/
mailto:raindy@fafu.edu.cn
mailto:ccj0410@gmail.com
https://github.com/BioEasy/EasyCodeML

3892  |     GAO et Al.

ratio is the same across branches of the phylogeny but different
among sites in the alignment. These codon substitution models are:
M0 (one‐ratio), M1a (nearly neutral), M2a (positive selection), M3
(discrete), M7 (beta), M8 (beta and ω > 1) and M8a (beta and ω = 1).
The fit of these models to the sequence data can be compared using
likelihood‐ratio tests. Support for positive selection can be identi‐
fied if M2a provides a better fit than M1a, or if M8 provides a better
fit than M7 or M8a (Yang, Nielsen, Goldman, & Pedersen, 2000).
The M8–M7 comparison offers a very stringent test of positive se‐
lection (Anisimova, Bielawski, & Yang, 2001), but the M8–M8a com‐
parison has seen growing use because it yields fewer false positives
(Swanson, Nielsen, & Yang, 2003; Wong, Yang, Goldman, & Nielsen,
2004).

Branch models can be used to test whether there are significant
differences in ω among branches of the tree (Yang & Nielsen, 1998,
2002). There are three branch models in CodeML, including a free‐
ratio model allowing an independent ω for each branch in the tree, a
one‐ratio model (M0) assuming that ω has been constant throughout
the tree, and a two‐ratio model assuming that specific branches have
an ω that differs from that throughout the rest of the tree (Yang,
1998). Pairwise comparisons of these models can be performed
using likelihood‐ratio tests (Anisimova et al., 2001).

Models with heterogeneous ω across sites and across branches
can be combined in the form of branch‐site models. These models
can be used to identify signals of episodic selection occurring along
a specified branch after gene duplication (Yang & Nielsen, 2002;
Zhang, Nielsen, & Yang, 2005). A branch‐site model that allows pos‐
itive selection along specified branches (Model A) can be compared
against a null model (Model Anull) that allows neutral evolution and
negative selection (Zhang et al., 2005).

Clade models allow differences in site‐specific selective con‐
straints among clades in the tree (Bielawski & Yang, 2004; Forsberg
& Christiansen, 2003). The model C (CmC) estimates a separate ω
ratio for each of two or more clades and is compared against a null

model 2a_rel (M2a_rel) in which ω is fixed among clades (Weadick &
Chang, 2012).

If a likelihood‐ratio test yields a significant result for any of
the pairwise comparisons of codon models, the Bayes empirical
Bayes (BEB) method (Yang, Wong, & Nielsen, 2005) can then be
used to identify amino acid residues that have potentially evolved
under selection. The standard threshold for identifying amino acid
sites under selection is a posterior probability of 0.95 (Scheffler &
Seoighe, 2005).

The use of CodeML is controlled by variables listed in a control
file, in which numerical optimization parameters can be modified to
perform evolutionary analysis using a chosen codon model. The con‐
trol file can be daunting for new users of CodeML. For this reason,
several computer programs have been developed with the purpose
of providing a more user‐friendly interface for CodeML (Table 1).
However, these programs have various limitations, such as complex
configuration procedures or a reduced set of codon models. For ex‐
ample, two recently released packages, IDEA (Interactive Display for
Evolutionary Analyses; Egan et al., 2008) and IMPACT_S (Integrated
Multiprogram Platform to Analyze and Combine Tests of Selection;
Maldonado, et al., 2014), provide a graphical user interface but only
implement three pairs of site models (M0 vs. M3, M1a vs. M2a and
M7 vs. M8). Xu and Yang (2013) developed a graphical user inter‐
face for PAML named pamlX, but the complex parameter settings for
CodeML still remained challenging for users. Notably, the foreground
and background branches of the phylogeny must be specified (Yang
& Nielsen, 2002). None of the available tools allows user‐friendly la‐
belling of branches or nodes in the tree by one click (Table 1).

Here, we describe EasyCodeML, a program that provides a
user‐friendly interface for setting up complex analyses of selection
in CodeML. In addition to a custom mode in which all parameters
can be adjusted to meet the requirements of the user, EasyCodeML
offers a preset mode that allows the construction of a pipeline from
input to output (Supporting information Figure S1).

TA B L E 1   Comparison of features in EasyCodeML and other tools

Key features IDEA pamlX IMPACT_S LMAPb  BlastPhyMec  EasyCodeML

Supported codon models

Branch model × ✓ × ✓ ✓ ✓

Branch‐site model × ✓ × ✓ ✓ ✓

Site model ✓a  ✓ ✓a  ✓ ✓ ✓

Clade model × ✓ × ✓ ✓ ✓

LRT automatically performed × × ✓ ✓ ✓ ✓

Visual labelling of tree by one click × × × × × ✓

Customizing control files × ✓ ✓ ✓ × ✓

Exporting preformatted table × × × ✓ ✓ ✓

Multithreading × × × ✓ ✓ ✓

Drag‐and‐drop functionality × ✓ × × × ✓

aOnly a few codon‐based models available. bMaldonado et al, 2016, https://doi.org/10.1186/s12859‐016‐1204‐5. cSchott et al, 2016, http://dx.doi.
org/10.1101/059881.

https://doi.org/10.1186/s12859-016-1204-5
http://dx.doi.org/10.1101/059881
http://dx.doi.org/10.1101/059881

     |  3893GAO et Al.

2  | IMPLEMENTATION

EasyCodeML provides two different running modes. The first is the
preset mode (Figure 1a), in which all key parameters of the nested
models are built‐in and which has pipelines for the selection anal‐
yses (Table 2). The nested models include the site models (M0 vs.
M3, M1a vs. M2a, and M7 vs. M8), branch models (M0 vs. two‐ratio
model), branch‐site models (Model Anull vs. Model A), and clade mod‐
els (M2a_rel vs. CmC). The default settings in the control files for
these pairs of nested models are given in Supporting information
Tables S1–S4.

The second running mode is the custom mode for experienced
users (Figure 1b). As with pamlX, the parameters for any codon‐
based model can be modified to meet different requirements.
Notably, a utility named “control file viewer” is integrated in the cus‐
tom running mode in EasyCodeML. This includes all of the described
codon‐based models, with preoptimized parameters.

When using the models involving heterogeneous ω among
branches, it can be a challenging task to label branches or nodes in
the phylogenetic tree. Performing this task using a text editor is dif‐
ficult and prone to error. EasyCodeML provides a graphical interface
that allows the labelling of branches and nodes to be done in a visu‐
alized, interactive way (Figure 2).

In the preset mode in EasyCodeML, likelihood‐ratio tests
between nested models are performed automatically. The re‐
sults are displayed on the screen at the completion of a CodeML
analysis (Figure 1a). In the custom mode, likelihood‐ratio tests

can also be conducted using the calculator in the utility menu
of EasyCodeML (Figure 3a). We have developed a fully func‐
tional export module in the preset mode that produces a publica‐
tion‐quality table containing the results of the CodeML analysis
(Table 3).

Numerous file conversions are often required to prepare input
data for CodeML. To improve the efficiency and ease of data ex‐
change among multiple formats, we have incorporated a file‐for‐
mat convertor into EasyCodeML. Named Seqformat convertor,
this utility can convert CLUSTAL, FASTA, MEGA, NEXUS, and
PHYLIP formats into PAML format (Figure 3b). A command‐line
version of Seqformat convertor is also provided in EasyCodeML,
making it possible to convert sequence formats in batch mode
(Figure 3c).

We have developed a “check” module that is available for
both of the running modes in EasyCodeML. The user is noti‐
fied if there are discrepancies between the taxon labels in the
input files (Figure S2a). This helps to satisfy the requirement of
CodeML that the input sequence data and tree file have matching
taxon labels.

In addition to the main functions outlined above, EasyCodeML
supports parallel computation (multithreading), which is espe‐
cially helpful when multiple comparisons among codon mod‐
els are being performed. EasyCodeML also has drag‐and‐drop
functionality for ease of use. A comparison of the features of
EasyCodeML and other relevant tools or programs is provided in
Table 1.

F I G U R E 1   Screenshot of the main interface of EasyCodeML under the (a) preset and (b) custom running modes. In the preset mode, all
key parameters of the nested models are built‐in and there is a pipeline from data input to the output of results. In the custom mode, the
parameters of any codon‐based model can be modified to meet the requirements of the user

3894  |     GAO et Al.

3  | WORKED E X AMPLE

3.1 | Preset running mode in EasyCodeML

To demonstrate the use of the clade models in the preset running
mode in EasyCodeML, we present an analysis of the ECP‐EDN gene
family in primates. The analyses are based on data from a study by
Bielawski and Yang (2003), which investigated the role of positive
selection in the evolution of this gene family.

3.1.1 | Step 1: Loading data and
configuring parameters

EasyCodeML has two different running modes, preset and custom.
In this case, we choose the preset mode (Figure 1a). We either drag‐
and‐drop a folder into EasyCodeML or click on the button “…”to se‐
lect a local folder as the working directory. The required inputs for
analysing selection are the aligned sequences in PAML format and
a tree file in Newick format. We can also drag‐and‐drop these two
files into the text box. Four different model approaches are available

in the preset mode. Here, we select “Clade Model” to test for posi‐
tive selection in the ECP‐EDN gene family (Figure 1a).

After the sequence and tree files have been selected, press
the “Check” button to check the consistency of the taxon labels
between the tree and sequence files. The clade models require
the nodes of the tree to be labelled in order to indicate the clades
that will be assigned independent ω parameters, so we press the
“Label” button. We then click on the entire EDN clade to be se‐
lected in the tree as the foreground lineage. The dollar symbol
“$”with an integer will be shown above the EDN clade (Figure 2a).
In EasyCodeML, the symbols “#”(Figure 2b) and “$”(Figure 2a) are
used for the branch or branch‐site models and for the clade model,
respectively.

We use other default settings for the parameters, including the
“Num of Threads” and “Clean data” options. Multithreading will only
take effect in the analysis using the site model. If the “Clean data”
option is enabled, all sites with ambiguity characters and alignment
gaps will be removed from the sequence alignment prior to analysis.

3.1.2 | Step 2: CodeML analysis

Before starting the CodeML analysis, we need to click on the “Save
Current Profile” button to enable all parameters for the current
analysis. The button “Run CodeML” then starts the CodeML analy‐
sis. At the conclusion of the analysis, the log‐likelihood (lnL) values
and the number of parameters (np) will be automatically retrieved.
A likelihood‐ratio test is performed for the nested models and all
results are automatically organized and displayed on the screen
(Figure 1a).

3.1.3 | Step 3: Summarizing and interpreting results

A publication‐quality table that contains all of the relevant infor‐
mation from the CodeML analyses can be generated using the
“Export” button. Microsoft Excel can be launched to view the
saved results file by clicking on “View”. A clear rejection of the null
model indicates that divergent selection was detected between the
foreground (the entire EDN clade) and background branches (the
entire ECP clade). Note that the selection analysis presented here
is merely instructional. If there are suboptimal peaks in the likeli‐
hood surface, we can load and edit the control file in the custom
running mode in EasyCodeML, and then run the program several
times to find the globally optimal likelihood score using different
initial values of ω.

3.2 | Custom running mode in EasyCodeML

We briefly illustrate the use of the custom running mode in
EasyCodeML by analysing a data set from Padhi, Verghese, and Otta
(2009). We compare the M8 and M8a models to test for sites under
positive selection in the outer membrane protein C (ompC) of strains
of Enterobacter aerogenes, although this particular model comparison
is also available in the preset running mode of EasyCodeML.

TA B L E 2   Codon‐based models available in EasyCodeML

Codon‐based
models

Running mode
Nested models (null
vs. alternative)Preset Custom

Site models

M0 (one‐ratio) ✓ ✓ M3 versus M0 a 

M1 (nearly
neutral)

✓ ✓ M1a versus M2a

M2a (positive
selection)

✓ ✓ M7 versus M8

M3 (discrete) ✓ ✓ M8a versus M8

M7 (beta) ✓ ✓

M8 (beta and
ω > 1)

✓ ✓

M8a (beta and
ω = 1)

✓ ✓

Branch model

One‐ratio
model (M0)

✓ ✓ M0 versus BM

Two‐ratio model
(BM)

✓ ✓ M0 versus FM

Free‐ratio
model (FM)

× ✓

Branch‐site models

Model Anull ✓ ✓ Model Anull versus
Model A

Model A ✓ ✓

Clade models

M2a_rel ✓ ✓ M2a_rel versus CmC

CmC ✓ ✓

aThe M0–M3 comparison does not allow detection of positive selection.

     |  3895GAO et Al.

3.2.1 | Step 1: Loading data and
configuring parameters

We switch current running mode to the custom mode and spec‐
ify a local folder as the working directory using drag‐and‐drop, as
described above for the preset mode. The “Load” button can be
used to load a codon model available from a control file viewer
(Supporting information Figure S2b). This will bring up a dialogue
box from which we choose the M8a model. We can further modify
the various parameter values to meet different requirements. Tree
labelling is necessary when examining the branch‐related models
(branch models, branch‐site models, and clade models), but not with
the site models. Therefore, default values are used for all param‐
eters except for leaving “Clean data” unchecked (Figure 1b). We
need to save the current profile using “Save Current Profile” after

checking whether the taxon labels match between the tree and se‐
quence files.

3.2.2 | Step 2: CodeML analysis

Clicking “Run CodeML” will start the analysis. In order to perform the
subsequent likelihood‐ratio test, we will need to run both models.
Therefore, we need to repeat the procedure for the M8 model.

We navigate to the working directory and locate the main result
files (mlc) of the model M8 and M8a. After noting the log‐likelihood
(lnL) values and the number of parameters (np) in these mlc files, we
enter them in the LRT calculator from the “Tools” menu and run a like‐
lihood‐ratio test. Based on the lnL and np values of the null model (M8,
lnL	=	−1878.7,	np	=	14)	and	the	alternative	model	(M8a,	lnL	=	−1,892.5,	
np = 13), the test yields a p‐value below 0.05 (Figure 3a).

F I G U R E 2   Labelling branches in a
tree for the branch‐related models can
be done in a simple and intuitive way for
the (a) clade models and (b) branch and
branch‐site models

3896  |     GAO et Al.

F I G U R E 3   Two utilities available in EasyCodeML: (a) the LRT calculator, and Seqformat convertor in (b) a user‐friendly GUI or (c)
command line. Seqformat convertor can convert between diverse types of sequence data formats

     |  3897GAO et Al.

3.2.3 | Step 3: Identifying sites under selection

In the comparison of models M8 and M8a, the BEB analysis under
model M8 is used to identify codons under positive selection. Thus,
we find a block called “Bayes Empirical Bayes (BEB) analysis” in the
mlc file (Supporting information Figure S3). This block lists the amino
acids that have a BEB score higher than 0.5. Sites potentially under
positive selection are suggested by BEB values higher than 0.95,
which are indicated by asterisks. In this data set, we identified nine
codons as being under positive selection with posterior probability
>0.95, matching the results of Padhi et al. (2009).

4  | CONCLUSIONS

We have developed EasyCodeML, an interactive visual tool for anal‐
yses of selection that incorporates the major codon‐based models
in CodeML. EasyCodeML includes a feature that allows interactive
labelling of the tree in branch‐ or clade‐specific analyses. We hope
that the program proves to be a useful tool for studies of molecular
evolution, by broadening the user base of CodeML and improving its
usability. EasyCodeML is an ongoing project and we welcome bug
reports, feedback, and suggestions.

ACKNOWLEDG MENTS

F. G. was funded by the Natural Science Foundation of China
(Grant No. 31772103) and the Training Program of Fujian Excellent
Talents in University. S.Y.W.H. was funded by a Future Fellowship
(FT160100167) from the Australian Research Council. The funders
had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript. We thank Mr Zhenxi Chen
(Tropical Crops Genetic Resources Institute, Chinese Academy of
Tropical Agricultural Sciences), Dr Han Li (Southwest University), Dr
Lin Zhang (Nanjing Normal University), and Dr Qing Chen (Sichuan
Agricultural University) for constructive feedback on EasyCodeML.
We also thank Prof. Ziheng Yang (University College London) for
writing the program CODEML, on which our work is based.

CONFLIC T OF INTERE S T

None declared.

AUTHOR CONTRIBUTIONS

F. Gao and C. Chen conceived the idea, developed the program, and
led the writing of the manuscript. D. A. Arab, Z. Du, Y. He, and S.Y.W.
Ho contributed to the manuscript.

DATA ACCE SSIBILIT Y

The stand‐alone package and user manual of EasyCodeML are
hosted on GitHub: https://github.com/BioEasy/EasyCodeML.TA

B
LE

 3
 

Ex
am

pl
e

of
 a

 p
ub

lic
at

io
n‐

qu
al

ity
 ta

bl
e

cr
ea

te
d

by
 th

e
ex

po
rt

 m
od

ul
e

in
 E

as
yC

od
eM

L,
 b

as
ed

 o
n

a
co

m
pa

ris
on

 o
f s

ite
 m

od
el

s
fo

r t
he

 E
C

P‐
ED

N
 g

en
e

fa
m

ily
 fr

om
 p

rim
at

es

Si
te

 m
od

el

M
od

el
np

Ln
 L

Es
tim

at
es

 o
f p

ar
am

et
er

s
M

od
el

s c
om

pa
re

d
LR

T
p‐

va
lu

e
Po

si
tiv

el
y

se
le

ct
ed

 s
ite

s

M
3

15
−1
,8
76
.5
12
70
0

p:
0.

94
71

8
0.

04
80

9
0.

00
47

3
M

0
ve

rs
us

 M
3

0.
00

E+
00

[]

ω
:

0.
07

36
5

8.
33

20
8

87
.6

03
45

M
0

11
−1
,9
15
.0
94
84
2

ω
0:

0.
30

40
9

N
ot

 a
llo

w
ed

M
2a

14
−1
,8
77
.9
41
79
9

p:
0.

81
87

4
0.

15
48

3
0.

02
64

2
M

1a
 v

er
su

s
M

2a
4.
68
E−
07

[]

ω
:

0.
00

00
0

1.
00

00
0

25
.6

43
46

M
1a

12
−1
,8
92
.5
15
96
6

p:
0.

82
89

8
0.

17
10

2
N

ot
 a

llo
w

ed

ω
:

0.
00

00
0

1.
00

00
0

M
8

14
−1
,8
78
.7
35
19
2

p 0 =
 0

.9
66

80
p

=
0.

03
13

4
q

=
0.

16
65

2
M

7
ve

rs
us

 M
8

9.
00
E−
09

14
 L

 0
.6

03
, 1

33
 G

 0
.9

61
* , 2

28
 S

 0
.9

72
* , 2

30
 F

 0
.9

96
**

,
23

1
V

 0
.9

93
**

, 2
32

 S
 0

.5
67

, 2
33

 K
 0

.8
81

, 2
35

 D

0.
95

3* , 2
36

 G
 0

.9
96

**
, 2

37
 G

 0
.9

73
* , 2

38
 R

 0
.9

99
**

,
23

9
Y

0.
92

4,
 2

79
 N

 0
.8

77
, 3

54
 K

 0
.9

97
**

(p
1 =

 0
.0

33
20

)
ω

 =
 1

9.
65

76
7

M
7

12
−1
,8
97
.2
50
79
8

p
=

0.
00

50
0

q
=

0.
00

63
7

N
ot

 a
llo

w
ed

N
ot

e.
 []

, n
o

da
ta

 a
va

ila
bl

e.

https://github.com/BioEasy/EasyCodeML

3898  |     GAO et Al.

ORCID

Fangluan Gao https://orcid.org/0000‐0001‐9031‐9944

Simon Y. W. Ho https://orcid.org/0000‐0002‐0361‐2307

R E FE R E N C E S

Anisimova, M., Bielawski, J. P., & Yang, Z. (2001). Accuracy and power
of the likelihood ratio test in detecting adaptive molecular evolu‐
tion. Molecular Biology and Evolution, 18, 1585–1592. https://doi.
org/10.1093/oxfordjournals.molbev.a003945

Bielawski, J. P., & Yang, Z. (2003). Maximum likelihood methods for de‐
tecting adaptive evolution after gene duplication. Journal of Structural
and Functional Genomics, 3, 201–212.

Bielawski, J. P., & Yang, Z. (2004). A maximum likelihood method for
detecting functional divergence at individual codon sites, with ap‐
plication to gene family evolution. Journal of Molecular Evolution, 59,
121–132. https://doi.org/10.1007/s00239‐004‐2597‐8

Egan, A., Mahurkar, A., Crabtree, J., Badger, J. H., Carlton, J. M., & Silva, J.
C. (2008). IDEA: Interactive Display for Evolutionary Analyses. BMC
Bioinformatics, 9, 524. https://doi.org/10.1186/1471‐2105‐9‐524

Forsberg, R., & Christiansen, F. B. (2003). A codon‐based model of host‐
specific selection in parasites, with an application to the influenza
A virus. Molecular Biology and Evolution, 20, 1252–1259. https://doi.
org/10.1093/molbev/msg149

Maldonado, E., Sunagar, K., Almeida, D., Vasconcelos, V., & Antunes,
A. (2014). IMPACT_S: Integrated multiprogram platform to analyze
and combine tests of selection. PLoS ONE, 9, e96243. https://doi.
org/10.1371/journal.pone.0096243

Maldonado, E.Almeida, D., Escalona, T., Khan, I., Vasconcelos, V., & Antunes,
A. (2016). LMAP: Lightweight multigene analyses in PAML. BMC
Bioinformatics, 17, 354. https://doi.org/10.1186/s12859‐016‐1204‐5

Nei, M., & Gojobori, T. (1986). Simple methods for estimating the num‐
bers of synonymous and nonsynonymous nucleotide substitutions.
Molecular Biology and Evolution, 3, 418–426.

Padhi, A., Verghese, B., & Otta, S. K. (2009). Detecting the form of se‐
lection in the outer membrane protein C of Enterobacter aerogenes
strains and Salmonella species. Microbiological Research, 164, 282–
289. https://doi.org/10.1016/j.micres.2006.12.002

Pond, S. L. K., Frost, S. D. W., & Muse, S. V. (2005). HyPhy: Hypothesis
testing using phylogenies. Bioinformatics, 21, 676–679. https://doi.
org/10.1093/bioinformatics/bti079

Scheffler, K., & Seoighe, C. (2005). A Bayesian model comparison ap‐
proach to inferring positive selection. Molecular Biology and Evolution,
22, 2531–2540.

Stern, A., Doron‐Faigenboim, A., Erez, E., Martz, E., Bacharach, E., &
Pupko, T. (2007). Selecton 2007: Advanced models for detecting
positive and purifying selection using a Bayesian inference approach.
Nucleic Acids Research, 35, W506–W511. https://doi.org/10.1093/
nar/gkm382

Swanson, W. J., Nielsen, R., & Yang, Q. (2003). Pervasive adaptive evo‐
lution in mammalian fertilization proteins. Molecular Biology and
Evolution, 20, 18–20. https://doi.org/10.1093/oxfordjournals.mol‐
bev.a004233

Valle, M., Schabauer, H., Pacher, C., Stockinger, H., Stamatakis,
A., Robinson‐Rechavi, M., & Salamin, N. (2014). Optimization

strategies for fast detection of positive selection on phylogenetic
trees. Bioinformatics, 30, 1129–1137. https://doi.org/10.1093/
bioinformatics/btt760

Weadick, C. J., & Chang, B. S. (2012). An improved likelihood ratio test for
detecting site‐specific functional divergence among clades of pro‐
tein‐coding genes. Molecular Biology and Evolution, 29, 1297–1300.
https://doi.org/10.1093/molbev/msr311

Wong, W. S., Yang, Z., Goldman, N., & Nielsen, R. (2004). Accuracy
and power of statistical methods for detecting adaptive evolu‐
tion in protein coding sequences and for identifying positively se‐
lected sites. Genetics, 168, 1041–1051. https://doi.org/10.1534/
genetics.104.031153

Xu, B., & Yang, Z. (2013). pamlX: A graphical user interface for PAML.
Molecular Biology and Evolution, 30, 2723–2724. https://doi.
org/10.1093/molbev/mst179

Yang, Z. (1998). Likelihood ratio tests for detecting positive selection
and application to primate lysozyme evolution. Molecular Biology and
Evolution, 15, 568–573. https://doi.org/10.1093/oxfordjournals.mol‐
bev.a025957

Yang, Z. (2007). PAML 4: Phylogenetic analysis by maximum likeli‐
hood. Molecular Biology and Evolution, 24, 1586–1591. https://doi.
org/10.1093/molbev/msm088

Yang, Z., & Nielsen, R. (1998). Synonymous and nonsynonymous rate
variation in nuclear genes of mammals. Journal of Molecular Evolution,
46, 409–418. https://doi.org/10.1007/PL00006320

Yang, Z., & Nielsen, R. (2002). Codon‐substitution models for de‐
tecting molecular adaptation at individual sites along specific lin‐
eages. Molecular Biology and Evolution, 19, 908–917. https://doi.
org/10.1093/oxfordjournals.molbev.a004148

Yang, Z., Nielsen, R., Goldman, N., & Pedersen, A. M. (2000). Codon‐sub‐
stitution models for heterogeneous selection pressure at amino acid
sites. Genetics, 155, 431–449.

Yang, Z., Wong, W. S., & Nielsen, R. (2005). Bayes empirical Bayes infer‐
ence of amino acid sites under positive selection. Molecular Biology
and Evolution, 22, 1107–1118. https://doi.org/10.1093/molbev/
msi097

Zhang, C., Wang, J., Long, M., & Fan, C. (2013). gKaKs: The pipeline
for genome‐level Ka/Ks calculation. Bioinformatics, 29, 645–646.
https://doi.org/10.1093/bioinformatics/btt009

Zhang, J., Nielsen, R., & Yang, Z. (2005). Evaluation of an improved
branch‐site likelihood method for detecting positive selection at
the molecular level. Molecular Biology and Evolution, 22, 2472–2479.
https://doi.org/10.1093/molbev/msi237

SUPPORTING INFORMATION

Additional supporting information may be found online in the
Supporting Information section at the end of the article.

How to cite this article: Gao F, Chen C, Arab DA, Du Z, He Y,
Ho SYW. EasyCodeML: A visual tool for analysis of selection
using CodeML. Ecol Evol. 2019;9:3891–3898. https://doi.
org/10.1002/ece3.5015

https://orcid.org/0000-0001-9031-9944
https://orcid.org/0000-0001-9031-9944
https://orcid.org/0000-0002-0361-2307
https://orcid.org/0000-0002-0361-2307
https://doi.org/10.1093/oxfordjournals.molbev.a003945
https://doi.org/10.1093/oxfordjournals.molbev.a003945
https://doi.org/10.1007/s00239-004-2597-8
https://doi.org/10.1186/1471-2105-9-524
https://doi.org/10.1093/molbev/msg149
https://doi.org/10.1093/molbev/msg149
https://doi.org/10.1371/journal.pone.0096243
https://doi.org/10.1371/journal.pone.0096243
https://doi.org/10.1186/s12859-016-1204-5
https://doi.org/10.1016/j.micres.2006.12.002
https://doi.org/10.1093/bioinformatics/bti079
https://doi.org/10.1093/bioinformatics/bti079
https://doi.org/10.1093/nar/gkm382
https://doi.org/10.1093/nar/gkm382
https://doi.org/10.1093/oxfordjournals.molbev.a004233
https://doi.org/10.1093/oxfordjournals.molbev.a004233
https://doi.org/10.1093/bioinformatics/btt760
https://doi.org/10.1093/bioinformatics/btt760
https://doi.org/10.1093/molbev/msr311
https://doi.org/10.1534/genetics.104.031153
https://doi.org/10.1534/genetics.104.031153
https://doi.org/10.1093/molbev/mst179
https://doi.org/10.1093/molbev/mst179
https://doi.org/10.1093/oxfordjournals.molbev.a025957
https://doi.org/10.1093/oxfordjournals.molbev.a025957
https://doi.org/10.1093/molbev/msm088
https://doi.org/10.1093/molbev/msm088
https://doi.org/10.1007/PL00006320
https://doi.org/10.1093/oxfordjournals.molbev.a004148
https://doi.org/10.1093/oxfordjournals.molbev.a004148
https://doi.org/10.1093/molbev/msi097
https://doi.org/10.1093/molbev/msi097
https://doi.org/10.1093/bioinformatics/btt009
https://doi.org/10.1093/molbev/msi237
https://doi.org/10.1002/ece3.5015
https://doi.org/10.1002/ece3.5015

