
*For correspondence:

scott.blanchard@stjude.org (SCB);

davide.ruggero@ucsf.edu (DR)

†These authors contributed

equally to this work

Present address: ‡Department

of Structural Biology, St Jude

Children’s Research Hospital,

Memphis, United States

Competing interest: See

page 22

Funding: See page 22

Received: 28 May 2019

Accepted: 02 September 2019

Published: 03 September 2019

Reviewing editor: Nahum

Sonenberg, McGill University,

Canada

Copyright McMahon et al. This

article is distributed under the

terms of the Creative Commons

Attribution License, which

permits unrestricted use and

redistribution provided that the

original author and source are

credited.

A single H/ACA small nucleolar RNA
mediates tumor suppression downstream
of oncogenic RAS
Mary McMahon1†, Adrian Contreras1†, Mikael Holm2‡, Tamayo Uechi1,
Craig M Forester1,3, Xiaming Pang1, Cody Jackson4, Meredith E Calvert4,
Bin Chen5,6, David A Quigley7, John M Luk8, R Kate Kelley9, John D Gordan9,
Ryan M Gill10, Scott C Blanchard2‡*, Davide Ruggero1,11*

1Helen Diller Family Comprehensive Cancer Center, Department of Urology,
University of California, San Francisco, San Francisco, United States; 2Department of
Physiology and Biophysics, Weill Cornell Medicine, New York, United States;
3Division of Pediatric Allergy, Immunology & Bone Marrow Transplantation,
University of California, San Francisco, San Francisco, United States; 4Gladstone
Histology and Light Microscopy Core, Gladstone Institutes, San Francisco, United
States; 5Department of Pediatrics and Human Development, Michigan State
University, Grand Rapids, United States; 6Department of Pharmacology and
Toxicology, Michigan State University, Grand Rapids, United States; 7Helen Diller
Family Comprehensive Cancer Center and Department of Epidemiology and
Biostatistics, University of California, San Francisco, San Francisco, United States;
8Arbele Corporation, Seattle, United States; 9Helen Diller Family Comprehensive
Cancer Center, Department of Medicine, University of California, San Francisco, San
Francisco, United States; 10Department of Pathology, University of California, San
Francisco, San Francisco, United States; 11Department of Cellular and Molecular
Pharmacology, University of California, San Francisco, San Francisco, United States

Abstract Small nucleolar RNAs (snoRNAs) are a diverse group of non-coding RNAs that direct

chemical modifications at specific residues on other RNA molecules, primarily on ribosomal RNA

(rRNA). SnoRNAs are altered in several cancers; however, their role in cell homeostasis as well as in

cellular transformation remains poorly explored. Here, we show that specific subsets of snoRNAs

are differentially regulated during the earliest cellular response to oncogenic RASG12V expression.

We describe a novel function for one H/ACA snoRNA, SNORA24, which guides two pseudouridine

modifications within the small ribosomal subunit, in RAS-induced senescence in vivo. We find that in

mouse models, loss of Snora24 cooperates with RASG12V to promote the development of liver

cancer that closely resembles human steatohepatitic hepatocellular carcinoma (HCC). From a

clinical perspective, we further show that human HCCs with low SNORA24 expression display

increased lipid content and are associated with poor patient survival. We next asked whether

ribosomes lacking SNORA24-guided pseudouridine modifications on 18S rRNA have alterations in

their biophysical properties. Single-molecule Fluorescence Resonance Energy Transfer (FRET)

analyses revealed that these ribosomes exhibit perturbations in aminoacyl-transfer RNA (aa-tRNA)

selection and altered pre-translocation ribosome complex dynamics. Furthermore, we find that

HCC cells lacking SNORA24-guided pseudouridine modifications have increased translational

miscoding and stop codon readthrough frequencies. These findings highlight a role for specific

snoRNAs in safeguarding against oncogenic insult and demonstrate a functional link between H/

ACA snoRNAs regulated by RAS and the biophysical properties of ribosomes in cancer.
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Introduction
Non-coding RNAs (ncRNAs) encompass a large group of functionally diverse non-protein coding

transcripts that are emerging as important regulators of biological processes (Cech and Steitz,

2014; Esteller, 2011). Small nucleolar RNAs (snoRNAs) are abundant, often intron-encoded, short

ncRNAs classified based on specific sequence and secondary structure features (Kiss, 2002;

Matera et al., 2007). The most well-characterized functions of snoRNAs relate to their roles in ribo-

some biogenesis, wherein structurally distinct C/D and H/ACA snoRNAs directly base pair to com-

plementary regions of ribosomal RNA (rRNA) (Filipowicz and Pogacić, 2002). In doing so, C/D and

H/ACA snoRNAs modulate the chemical landscape of the ribosome by directing ribonucleoprotein

complexes to modify up to two hundred site-specific ribose methylations (2’-O-Me) and pseudouri-

dine (	) modifications, respectively (Sloan et al., 2017; Watkins and Bohnsack, 2012). Unlike nucle-

otide modifications performed by stand-alone RNA modifying enzymes, the function of the vast

majority of RNA-directed modifications such as those guided by snoRNAs, remain poorly studied.

Recent discoveries have shown that dysregulations in ribosome activity and protein synthesis are

hallmarks of many cancer types (Freed et al., 2010; Marcel et al., 2013; Pelletier et al., 2018;

Robichaud and Sonenberg, 2017; Sulima et al., 2017; Truitt and Ruggero, 2016). Emerging evi-

dence suggests that the expression and activity of snoRNAs is also altered in a variety of human dis-

eases, including cancer (Belin et al., 2009; Bellodi et al., 2013; Ferreira et al., 2012; Gong et al.,

2017; Mei et al., 2012; Ronchetti et al., 2013; Sahoo et al., 2008; Valleron et al., 2012;

Williams and Farzaneh, 2012). SnoRNA expression profiles have also been proposed as ‘predictors’

of specific cancer subtypes and clinical outcomes (Ronchetti et al., 2013; Valleron et al., 2012).

Altered snoRNA expression in a variety of human cancers open several questions as to how snoRNAs

may be regulated downstream of key oncogenic drivers in human tumors. However, it has yet to be

examined whether snoRNA dysfunction plays a direct causative role in specific stages of cancer pro-

gression. While a loss of individual snoRNAs in single-celled organisms appears to be compatible

with life (Lowe and Eddy, 1999; Ni et al., 1997), the precise biological impact of distinct snoRNA-

directed modifications within defined regions of the ribosome in cancer development remains poorly

understood.

Here, we find that specific subsets of H/ACA snoRNAs, that mediate pseudouridine modifica-

tions, are selectively regulated upon activation of oncogenic RAS. Upon oncogenic insult, primary

cells normally activate a tumor suppressive response to counteract cellular transformation, known as

oncogene-induced senescence (OIS) (Collado et al., 2007). We show that loss of only one distinct

RAS-induced snoRNA, SNORA24 (or H/ACA snoRNA 24), leads to the bypass of OIS in a liver model

of RAS-induced senescence in vivo. SNORA24, which mediates two distinct pseudouridine modifica-

tions in the small, 40S subunit of the ribosome is also decreased in human hepatocellular carcinoma

(HCC). We further show that loss of Snora24 cooperates with RASG12V to promote the development

of liver cancer in vivo resembling a subtype of HCC characterized by lipid deposition, with similar

features, as described in human steatohepatitic HCC (SH-HCC) (Salomao et al., 2010). Changes in

the biophysical properties of ribosomes in cancer cells arising from loss of specific snoRNAs has not

previously been tested. Employing single-molecule Fluorescence Resonance Energy Transfer

(smFRET) imaging, we demonstrate that ribosomes isolated from human HCC cells specifically lack-

ing SNORA24-guided pseudouridine modifications within the small ribosomal subunit, differ in the

efficiency of aminoacyl-transfer RNA (aa-tRNA) selection, consistent with downstream reductions in

translation accuracy, and in the dynamic properties of the pre-translocation ribosome complex.

These findings reveal an important function for specific snoRNAs in RAS-mediated oncogenic activity

and provide evidence that ribosomes lacking site-specific rRNA modifications exhibit physical altera-

tions in the translation machinery.
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Results

Subsets of H/ACA snoRNAs are differentially regulated upon oncogenic
insult
To investigate the role of H/ACA snoRNAs during the earliest cellular response to oncogene activa-

tion, we interrogated the expression of ~90 H/ACA snoRNAs in primary human skin fibroblasts using

a snoRNA quantitative PCR (qPCR) array, in the context of oncogene-induced senescence (OIS) by

expression of RASG12V (Pylayeva-Gupta et al., 2011). While the levels of the vast majority of H/ACA

snoRNAs appeared unchanged following RASG12V expression in primary fibroblasts, we observed a

dynamic change in the expression of 28 H/ACA snoRNAs compared to control cells (Figure 1A and

Figure 1—source data 1) (for example SNORA23, SNORA24, SNORA26, SNORA48, and

SNORA67). The majority of these H/ACA snoRNAs were predominately upregulated (FDR < 0.1),

with the exception of 3 snoRNAs that were downregulated (SNORA36C, SNORA53, and

SNORA70B) downstream of oncogenic RAS. The increase in H/ACA snoRNA levels upon RASG12V

expression is not associated with elevated global protein production. On the contrary, we observe a

pronounced decrease in overall protein synthesis as a consequence of RAS-induced senescence

detected by monitoring O-propargyl-puromycin (OPP) incorporation into newly synthesized proteins

(Figure 1B and Figure 1—figure supplement 1A, top panel). This change in global protein synthesis

is consistent with the cell cycle arrest that occurs upon induction of senescence. We next investi-

gated whether changes in the expression of specific H/ACA snoRNAs is selective to RAS activation

or whether it is similarly induced upon other oncogenic signals. Interestingly, downregulation of the

tumor suppressor PTEN (Figure 1—figure supplement 1A, bottom panel), a known oncogenic

event that also promotes OIS in primary cells, had no obvious effect on the expression of selective

RAS-induced H/ACA snoRNAs in primary fibroblasts (Figure 1—figure supplement 1B and

highlighted in Figure 1A). These findings suggest that distinct oncogenic lesions alter a unique

snoRNA expression pattern during OIS.

To extend the broader implications of our findings to human cancer etiology, we analyzed H/

ACA snoRNA expression in ~300 human cancers using previously published microarray gene

eLife digest Ribosomes are cellular machines responsible for translating the genetic code into

proteins. Research has shown that changes in ribosome activity can contribute to healthy cells

becoming cancerous. Ribosomes consist of proteins and other molecules known as ribosomal RNAs

(or rRNAs for short). Before they can become part of a ribosome, another type of molecule called

snoRNAs must modify new rRNAs. Indeed, many of the modifications that allow rRNAs to accurately

translate genetic information into proteins are introduced by snoRNAs. As such, it is possible that

changes to snoRNAs could contribute to the creation of cancerous cells by affecting how ribosomes

operate.

To explore this possibility, McMahon, Contreras et al. examined snoRNAs in healthy cells grown

in the laboratory that have been given pro-cancer signals, in cancer from mice, and in samples from

human cancer patients. The investigation revealed that the activation of growth signals – a hallmark

of many cancers – affects the abundance of some snoRNAs and changes the pattern of rRNA

modifications they make on ribosomes. Reducing the levels of one such snoRNA called SNORA24

led mice to develop fatty liver cancer when combined with cancer-promoting growth signals.

Analyzing why reducing the levels of SNORA24 led to liver cancer, McMahon, Contreras et al. found

that ribosomes lacking rRNA modifications introduced by SNORA24 made more mistakes when

producing proteins coded for by certain genes.

These results contribute to the view of ribosomes as a key hub for the transformation of healthy

cells into cancer cells. Increasing the error rate of ribosomes could be a key driver in further changes

that drive cancer development. This study also highlights the role of snoRNAs in responding to

growth signals, particularly in cancer. These findings identify snoRNAs as new potential diagnostic

factors and treatment targets.

DOI: https://doi.org/10.7554/eLife.48847.002
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Figure 1. RAS-induced H/ACA snoRNAs are required for oncogene-induced senescence in vivo. (A) Volcano plot displays Log2 fold change in H/ACA

snoRNA levels 5 days following HRASG12V expression in primary human skin fibroblasts measured by snoRNA qPCR array from three independent

experiments. SnoRNAs in red exhibit statistically significant fold change in expression in HRASG12V expressing cells compared to controls (p<0.05,

unpaired Student’s t-test or FDR < 0.1). SnoRNAs highlighted with labels were independently validated as shown in Figure 1—figure supplement 1B.

(B) Graph illustrates mean ± SD mean fluorescent intensity (MFI) of the amount of de novo protein synthesis in primary human fibroblasts 5 days

following expression of HRASG12V compared to control treated cells by measuring OPP incorporation into newly synthesized protein from three

independent experiments. Statistical analysis was performed using an unpaired Student’s t-test, p=0.0001. (C) Analysis of SNORA24 levels in HCC

specimens compared to adjacent non-tumor tissue of 91 HCC patients (GSE25097) (paired Student’s t-test, p<1.35�10�9) (left panel) and Kaplan-Meier

curve showing overall survival of HCC patients with high or low SNORA24 levels (mean ± 1 SD of SNORA24 levels) (right panel). Statistical significance

was calculated using the log-rank test, with p=0.03. (D) Representative image for NRAS, p21, and SA-b-Gal staining in liver sections or resected liver

lobes (SA-b-gal wholemount staining) 6 days following delivery of NRASG12V and treated with control LNA (LNA-ctrl) or LNA targeting Snora24 (LNA-

24). Graph shows mean ± SD mean intensity of SA-b-gal staining in liver from mice treated with LNA-ctrl (n = 3 mice) or LNA-24 (n = 3 mice) 6 days

following NRASG12V expression. Statistical analysis was performed using an unpaired Student’s t-test, p=0.005.

DOI: https://doi.org/10.7554/eLife.48847.003

The following source data and figure supplements are available for figure 1:

Source data 1. H/ACA snoRNA levels upon oncogenic HRAS expression.

DOI: https://doi.org/10.7554/eLife.48847.010

Figure supplement 1. Select RAS-induced snoRNAs are not altered upon PTEN reduction.

DOI: https://doi.org/10.7554/eLife.48847.004

Figure supplement 2. Altered expression of distinct H/ACA snoRNAs in human cancers.

Figure 1 continued on next page
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expression datasets (Hao et al., 2011; Jima et al., 2010; Kabbout et al., 2013; Skrzypczak et al.,

2010; Zhang et al., 2012) designed to capture small RNA species, such as snoRNAs, that are often

excluded during RNA sequencing library preparation. By assessing the average expression level of

individual H/ACA snoRNAs in cancer specimens and matched control samples from five major tumor

types (lymphoma [Jima et al., 2010], pancreatic [Zhang et al., 2012], colon [Skrzypczak et al.,

2010], lung [Kabbout et al., 2013], and liver [Hao et al., 2011]), we identified H/ACA snoRNAs dis-

playing changes in expression greater than ± 20% (p<10�5) in tumor samples compared to control

samples (Figure 1—figure supplement 2 and Figure 1—figure supplement 2—source data 1). In

the case of liver cancer, we observed an upregulation of 4 snoRNAs (SNORA14B, SNORA17,

SNORA72, and SNORA81) and decreased expression of 2 H/ACA snoRNAs (SNORA24 and

SNORA67) (p<10�5) in 91 primary HCC specimens compared to matched adjacent non-tumor

hepatic tissue (Figure 1C, left panel, Figure 1—figure supplement 3, and Figure 1—figure supple-

ment 2—source data 1). Interestingly, two H/ACA snoRNAs, SNORA24 and SNORA67, identified in

our expression analysis upon RASG12V-induced senescence (Figure 1A and Figure 1—figure supple-

ment 1B), were significantly decreased in HCC specimens compared to matched adjacent non-

tumor tissue (p<1.35�10�9 and p<4.6�10�7, respectively). These findings suggest that SNORA24

and SNORA67 may act as tumor suppressors downstream of the early steps of oncogenic activation

and may therefore be lost or downregulated during tumor progression. We next probed the clinical

significance of altered H/ACA snoRNA expression in the same liver cancer microarray gene expres-

sion dataset, where survival data was available from 91 patients (Hao et al., 2011; Kan et al., 2013).

After separating HCC patients into high or low snoRNA expression using mean ±1 standard devia-

tion (SD) of snoRNA levels as a cutoff point, Kaplan-Meier curve analysis indicated that low levels of

SNORA24 were associated with worse overall survival compared to patients with high SNORA24

expression (p=0.03, log-rank test) (Figure 1C, right panel). Interestingly, other snoRNAs assessed

(including SNORA17, SNORA67, and SNORA72) did not demonstrate evidence for an association

between expression levels and patient survival (Figure 1—figure supplement 3A–C, right panels).

Importantly, we confirmed that SNORA24 was decreased in an independent patient cohort consist-

ing of primary matched tumor and adjacent non-tumor tissue from 13 HCC patients

(Supplementary file 1, samples 1–13) using qPCR (Figure 1—figure supplement 4A). Similar to our

observations from microarray gene expression analysis, SNORA24 was dramatically decreased in all

HCC tumor specimens compared to non-tumor adjacent tissue by qPCR (p<0.0001) (Figure 1—fig-

ure supplement 4A). In the same matched tumor and adjacent non-tumor tissue, we detected no

change in the expression of the SNORA24 host gene, SNHG8 (Small Nucleolar RNA Host Gene 8)

(Figure 1—figure supplement 4B). Together, these findings suggest that SNORA24 may exert a

tumor suppressor role in HCC.

Role for Snora24 in the initiation and maintenance of RAS-driven HCC
As SNORA24 was significantly decreased in HCC and low SNORA24 levels were associated with

poor patient survival, we next sought to assess the tumor suppressor activity of Snora24 in liver can-

cer development in vivo. To this end, we employed a previously described mouse model of onco-

genic RAS-induced senescence (Carlson et al., 2005; Kang et al., 2011) whereby hydrodynamic tail

vein injection allows stable delivery of oncogenic RAS to hepatocytes using the sleeping beauty (SB)

transposase system (Figure 1—figure supplement 5A). This model permits mosaic expression of

RASG12V in the mouse liver (SB(+)NRASG12V mice) which activates an anti-tumor program (OIS) to

Figure 1 continued

DOI: https://doi.org/10.7554/eLife.48847.005

Figure supplement 2—source data 1. H/ACA snoRNA levels in human cancer.

DOI: https://doi.org/10.7554/eLife.48847.006

Figure supplement 3. Association between H/ACA snoRNA levels and patient survival in HCC.

DOI: https://doi.org/10.7554/eLife.48847.007

Figure supplement 4. SNORA24 is reduced in primary human HCC specimens.

DOI: https://doi.org/10.7554/eLife.48847.008

Figure supplement 5. Loss of Snora24 cooperates with RAS to promote the development of HCC resembling human SH-HCC.

DOI: https://doi.org/10.7554/eLife.48847.009

McMahon et al. eLife 2019;8:e48847. DOI: https://doi.org/10.7554/eLife.48847 5 of 26

Research article Cancer Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.48847.005
https://doi.org/10.7554/eLife.48847.006
https://doi.org/10.7554/eLife.48847.007
https://doi.org/10.7554/eLife.48847.008
https://doi.org/10.7554/eLife.48847.009
https://doi.org/10.7554/eLife.48847


halt tumor development (Kang et al., 2011). We confirmed that RASG12V promoted senescence in

vivo after 6 days in SB(+)NRASG12V mice livers by measuring two well-characterized markers of

senescence, senescence-associated (SA) b-galactosidase (Bandyopadhyay et al., 2005) and a cell

cycle inhibitor p21 (Brown et al., 1997), both of which are activated downstream of mitogenic sig-

nals to halt pre-malignant cells (Collado et al., 2005; Kuilman et al., 2010) (Figure 1D, top row). To

test whether Snora24 was implicated in OIS in SB(+)NRASG12V mice, we used tail vein injection of

locked nucleic acid (LNA) to target Snora24 (LNA-24) for degradation. In so doing, we observed a

specific reduction in Snora24 levels in the mouse liver employing LNA-24 compared to a non-target-

ing scrambled sequence LNA (LNA-ctrl) (Figure 1—figure supplement 5B), with no observed

impact on the levels of the corresponding snoRNA host gene, Snhg8 (Figure 1—figure supplement

5C). Treatment with LNA-ctrl or LNA-24 had no obvious effects on hepatic tissue architecture or

function (data not shown). Strikingly, we observed a bypass of OIS upon Snora24 reduction in this

model, as evident by reduced p21 expression and a lack of b-galactosidase staining in liver tissue

from LNA-24 treated SB(+)NRASG12V mice compared to LNA-ctrl treated SB(+)NRASG12V mice

(Figure 1D, right panel, p<0.005, n = 3 mice per condition). Importantly, LNA-24 decreased pseu-

douridine modifications on 18S rRNA at positions U609 and U863 (Figure 1—figure supplement

5D), without impacting modifications at other sites on 18S rRNA (U105) or 28S rRNA (U1731) that

not guided by SNORA24 (Figure 1—figure supplement 5E).

Having identified that cancer-associated changes in Snora24 lead to bypass of OIS in the context

of oncogenic RAS expression in vivo, we next sought to determine whether reduction of this single

H/ACA snoRNA was sufficient to promote tumor development in this model. To do this, we analyzed

the liver phenotype of SB(+)NRASG12V mice treated with either LNA-ctrl or LNA-24 for four months.

In contrast to LNA-ctrl treated SB(+)NRASG12V mice, which have normal livers and do not show any

signs of HCC (Figure 2A, bottom left panel, representative image from n = 8 mice), we found that a

reduction in Snora24 cooperates with RASG12V to promote the development of liver cancer in all

LNA-24 treated SB(+)NRASG12V mice examined (Figure 2A, bottom right panel, representative

image from n = 8 mice). Pathological analysis of liver specimens revealed the presence of HCC in

LNA-24 treated SB(+)NRASG12V mice, with evidence of dramatic lipid accumulation and swollen hep-

atocytes suggestive of hepatocyte balloons, the pathology of which resembles human steatohepa-

titic HCC (SH-HCC) (Figure 2B). Interestingly, SH-HCC is a subtype of liver cancer characterized by

increased fat accumulation, the etiology and genetic makeup of which is poorly understood

(Salomao et al., 2010). The presence of lipids in liver tumors derived from LNA-24 treated SB(+)

NRASG12V mice was confirmed by Oil Red O (ORO) staining (Figure 2C and Figure 2—figure sup-

plement 1, n = 3 mice, p=0.0107). Taken together, these findings indicate that loss of Snora24

cooperates with oncogenic RAS to promote the development of HCC in vivo. These data also indi-

cate that cancer-associated changes in SNORA24, identified in HCC patient expression data

(Figure 1C), may play a direct role in HCC pathogenesis.

To investigate the importance of Snora24 in established HCC, we turned to a genetically engi-

neered mouse model of liver cancer driven by the expression of oncogenic KrasG12D in the mouse

liver using albumin-cre (Alb-cre;KrasG12D). In this genetically engineered mouse model, oncogenic

RAS is ubiquitously expressed in the fetal liver and therefore these animals develop HCC within 8

months of age (O’Dell et al., 2012; Xu et al., 2019). In line with human HCC patient expression

data (Figure 1C and Figure 1—figure supplement 4A), we found that in established liver tumors

derived from Alb-cre;KrasG12D mice, Snora24 was significantly decreased in tumor tissue compared

to liver tissue from wild-type mice (Figure 2D, n = 3 mice per condition). To test the tumor suppres-

sive activity of Snora24 in a more aggressive liver cancer, we orthotopically injected primary tumor

cells derived from Alb-cre;KrasG12D liver tumor (Xu et al., 2019), following CRISPR-Cas9 gene edit-

ing of the Snora24 loci using two distinct single guide RNA (sgRNA) targeting Snora24 (sgRNA-24)

(Figure 2—figure supplement 2A), into the livers of wild-type mice. sgRNA-24 KrasG12D HCC cells

exhibit reduced Snora24 expression (Figure 2E, right panel) with no obvious impact on the levels of

the corresponding host gene (Figure 2—figure supplement 2B). Following orthotopic injection of

control (Ctrl) KrasG12D HCC cells or sgRNA-24 KrasG12D HCC cells into the subcapsular region of the

median liver lobe of wild-type mice, we monitored survival over a period of 4 weeks and found that

Snora24 reduction, decreased the overall survival of mice compared to controls (p=0.017)

(Figure 2E, left panel n = 4 mice per arm). Snora24 reduction in this mouse model of liver cancer sig-

nificantly decreased Snora24-guided pseudouridine modifications on 18S rRNA (Figure 2—figure
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supplement 2C) as shown using SCARLET (Site-specific Cleavage And Radioactive-labeling followed

by Ligation-assisted Extraction and Thin-layer chromatography) (Li et al., 2015; Liu and Pan, 2015).

These findings reveal a previously uncharacterized role for Snora24 in the maintenance of RAS-driven

HCC in vivo.
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Figure 2. Snora24 plays a role in the initiation and maintenance of RAS-driven hepatocellular carcinoma. (A) Representative images of explanted livers

from control (SB(-)NRASG12V) or SB(+)NRASG12V mice treated with either LNA-ctrl or LNA-24. (B) H and E staining of a liver section from SB(+)NRASG12V

mouse treated with LNA-24. Black arrows highlight the presence of fat droplets. (C) Graph shows mean ± SD percentage Oil Red O (ORO) positive area

in liver tumor nodules and adjacent non-tumor tissue from n = 3 SB(+)NRASG12V mice treated with LNA-24. For each mouse liver section, the amount of

ORO positive stain per total area from at least four distinct tumor and non-tumor regions (as determined by H and E staining) was measured (see

Materials and methods and Figure 2—figure supplement 1). Statistical analysis was performed using a paired Student’s t-test, p=0.0107). (D)

Quantitative PCR (qPCR) analysis of Snora24 levels in wild-type liver or age- and sex-matched liver tumors from Alb-cre;KrasG12D mice. Graph shows

mean ± SD Snora24 expression normalized to the levels of Rn7sk from n = 3 mice per condition. Statistical analysis was performed using an unpaired

Student’s t-test, p<0.02. (E) Kaplan-Meier curves showing survival in male C57BL/6 wild-type mice following intrahepatic orthotopic injection of Ctrl

KrasG12D HCC cells (black line, n = 4 mice) and sgRNA-24 KrasG12D HCC cells (gray dashed line, n = 4 mice), p=0.017, log-rank test (left panel). qPCR

analysis of Snora24 in Ctrl KrasG12D and sgRNA-24 KrasG12D HCC cells (right panel). Graph shows mean relative expression ± SD normalized to the

levels of Rn7sk from three independent experiments. Statistical analysis was performed using an unpaired Student’s t-test, *p < 0.05. (F) Representative

image of ORO staining in HCC from a patient with high SNORA24 (bottom) or low SNORA24 (top) expression. Quantification of ORO stain in tissue

sections from HCC patients dichotomized into high or low by identifying samples with SNORA24 expression greater than ±one SD from the mean

(n = 17 HCC specimens). Graph shows mean ± SD percentage Oil Red O (ORO) positive area present in HCC tissue specimens from patients with high

or low SNORA24 expression and statistical analysis was performed using an unpaired Student’s t-test, p=0.0453.

DOI: https://doi.org/10.7554/eLife.48847.011

The following figure supplements are available for figure 2:

Figure supplement 1. Increased lipid content in tumor regions of LNA-24; SB(+)NRASG12V mice.

DOI: https://doi.org/10.7554/eLife.48847.012

Figure supplement 2. Reduction of Snora24-guided modifications in mouse KrasG12D liver cancer cells using CRISPR-Cas9 gene editing.

DOI: https://doi.org/10.7554/eLife.48847.013

Figure supplement 3. Reduction of SNORA24 in HuH-7 cells using CRISPR-Cas9 gene editing.

DOI: https://doi.org/10.7554/eLife.48847.014
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Low SNORA24 levels in HCC is associated with higher lipid content
Given that loss of Snora24 cooperates with oncogenic RAS to promote the development of liver can-

cer resembling human SH-HCC (Figure 2A–C), we sought to explore the clinical relationship

between SNORA24 expression and lipid content in human HCC. To do this, we took advantage of

available primary tissue specimens from 62 HCC patients (Supplementary file 1). SNORA24 expres-

sion was determined by qPCR and HCC specimens were stratified into high or low SNORA24 using

SNORA24 levels greater than ±1 SD from the mean as a cut-off. Strikingly, we found that tumors

with low SNORA24 levels had higher lipid content compared to tumors with high SNORA24 levels

using ORO staining (Figure 2F, p=0.0453, n = 17). These findings confirm a significant correlation

between SNORA24 levels and lipid content in HCC. We also found that SNORA24 reduction by

CRISPR-Cas9 gene editing in an established, well-differentiated human HCC cell line, HuH-7, (HuH-7

sgRNA-24) (Figure 2—figure supplement 3A), also enhanced lipid droplet formation compared to

isogenic control (ctrl) HuH-7 cells (HuH-7 sgRNA-ctrl) (Figure 2—figure supplement 3B). Altogether,

these findings highlight a previously unidentified connection between SNORA24 and a particular

feature of lipid accumulation associated with human SH-HCC.

SNORA24-guided rRNA modifications influence biophysical properties
of ribosomes
The impact of SNORA24 and SNORA24-directed rRNA modifications on ribosome activity and

global protein production remains unknown. SNORA24 guides two pseudouridine modifications on

the 18S rRNA component of the small (40S) ribosomal subunit (Boccaletto et al., 2018), one at posi-

tion uridine (U) 609 (U609) within helix 18 (h18) and one at U863 at the base of expansion segment 6

(ES6) (Figure 3A, highlighted in red). While the ES6 modification is distal to known functional centers

of the ribosome, the h18 modification is located within the functionally important, so-called ‘530

loop’ region of the shoulder domain (Figure 3A, highlighted in pale green). The shoulder domain

closes towards the body of the small ribosomal subunit during the process of aminoacyl-tRNA (aa-

tRNA) selection, bringing residue G530 (G626 in human rRNA) into direct contact with the messen-

ger RNA (mRNA) codon-tRNA anticodon pair such that it directly contributes to mRNA decoding

(Demeshkina et al., 2012; Fislage et al., 2018; Loveland et al., 2016; Ogle et al., 2001;

Ogle et al., 2002). We therefore next sought to investigate the role of these SNORA24-guided

modifications in modulating ribosome function in HCC. To address this question, we employed a

human HCC cell line, HuH-7, with a stable reduction in SNORA24 (HuH-7 sgRNA-24) (Figure 2—fig-

ure supplement 3A) and quantified SNORA24-mediated pseudouridylation in h18 and ES6 using

SCARLET (Li et al., 2015; Liu and Pan, 2015). As expected, SCARLET revealed the amount of uri-

dine (U) and pseudouridine (	) present at both residue 609 and 863 on 18S rRNA and confirmed

diminished pseudouridine levels at both sites in HuH-7 sgRNA-24 cells compared to isogenic HuH-7

sgRNA-ctrl cells (>90% reduction) (Figure 3B and Figure 3—figure supplement 1). Interestingly, we

did not detect any significant change in global protein production in cells lacking SNORA24-guided

modifications as measured by OPP incorporation into newly synthesized protein (Figure 3C). Fur-

thermore, we saw no detectable difference in the abundance of ribosome subunits or the abundance

and distribution of polysome in HuH-7 sgRNA-24 cells compared to isogenic HuH-7 sgRNA-ctrl cells

by sucrose gradient fractionation trace (Figure 3D). These results indicate that SNORA24 and

SNORA24-guided rRNA modifications are likely dispensable for ribosome biogenesis and global

protein production in HCC and instead may harbor specific functions during translation.

To gain mechanistic insights into how 	609 and 	863 influence ribosome activity, we harnessed

the power of smFRET imaging to capture the functional dynamics of ribosomes on mRNA

(Ferguson et al., 2015; Juette et al., 2016). Ribosome transit along mRNA is a highly coordinated,

multistep process involving the selection of the correct aa-tRNA in the ribosomal aminoacyl (A) site

for each codon, peptide bond formation, and the translocation of the ribosome, codon-by-codon

along the mRNA. We first imaged aa-tRNA selection or the process by which aa-tRNAs are decoded

at the ribosomal A site to extend the nascent polypeptide by one amino acid using an established in

vitro smFRET assay (Blanchard et al., 2004; Ferguson et al., 2015; Geggier et al., 2010). Briefly,

translation initiation complexes (80S ICs) carrying Cy3-labeled Met-tRNAfMet in the peptidyl (P) site

and displaying a UUC codon (encoding Phenylalanine (Phe)) in the ribosomal A site were formed

from isolated ribosomal subunits purified from HuH-7 sgRNA-ctrl or sgRNA-24 cells (Figure 4A). The
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80S ICs were immobilized in a passivated microfluidic flow cell and imaged as described previously

(Juette et al., 2016). Ternary complex, consisting of LD655-labeled Phe-tRNAPhe, eukaryotic transla-

tion elongation factor 1A (eEF1A), and GTP, was then injected into the flow cell and the process of

aa-tRNA selection was followed via the time-evolution of the FRET signal between the P-site tRNA

and the aa-tRNA decoded at the A site, at a time resolution of 15 milliseconds (ms).

Ribosomes purified from both HuH-7 sgRNA-ctrl and sgRNA-24 cells, proceeded through the aa-

tRNA selection mechanism, as expected (Ferguson et al., 2015; Geggier et al., 2010), via a step-

wise progression through states of increasing FRET efficiency (Figure 4B). These FRET states corre-

spond to initial Phe-tRNAPhe binding or codon recognition events (FRET ~0.2), from which aa-tRNAs

can either rapidly dissociate or proceed to the GTPase-activated state (FRET ~0.4). GTP hydrolysis

within the GTPase-activated state enables eEF1A to dissociate and allows aa-tRNAs to transition

A

U

Ψ

U863

18S rRNA

SNORA24-guided 

modifications

U609

18S rRNA

B

sgRNA-ctrl sgRNA-24

0

10000

20000

30000

40000

N
o

rm
a

liz
e

d
 M

F
I 

Global Protein SynthesisC

A
b

s
 2

6
0

Sedimentation

sgRNA-ctrl

sgRNA-24
40S

60S

80S

Polysomes

D

sg
R
N
A
-c

tr
l

sg
R
N
A
-2

4

sg
R
N
A
-c

tr
l

sg
R
N
A
-2

4

U863 (ES6)

U609 (h18)

Head

Shoulder

Decoding center

Body

A P E

mRNA

530 loop

n.s

Figure 3. Loss of SNORA24-guided pseudouridine modifications does not impact global protein production in HCC cells. (A) SNORA24 target

residues U609 and U863 are highlighted (in red) on the structure of the mammalian 40S ribosomal subunit (Protein Data Bank (PDB) ID: 5LZS

[Shao et al., 2016] and visualized with PyMOL). 18S rRNA is in gray, the mRNA in the decoding center is highlighted in blue, and the ‘530 loop’ is

highlighted in pale green. (B) Representative thin layer chromatography (TLC) of site-specific amounts of pseudouridine (	) or uridine (U) present at

position U609 and U863 on 18S rRNA using SCARLET in HuH-7 sgRNA-ctrl or sgRNA-24 cells. (C) Graph illustrates mean ± SD mean fluorescent

intensity (MFI) of the amount of de novo protein synthesis in HuH-7 sgRNA-24 cells compared to HuH-7 sgRNA-ctrl cells by measuring OPP

incorporation into newly synthesized protein from three independent experiments. Statistical analysis was performed using an unpaired Student’s t-test,

n.s = non significant. (D) Representative polysome profiles of HuH-7 sgRNA-ctrl (black line) and sgRNA-24 (gray line) cells. Lower molecular weight

(MW) complexes (40S and 60S) are on the left side of the x axis and higher MW complexes (polysomes) are on the right side.

DOI: https://doi.org/10.7554/eLife.48847.015

The following figure supplement is available for figure 3:

Figure supplement 1. Loss of SNORA24-guided modifications in HuH-7 cells with reduced SNORA24.

DOI: https://doi.org/10.7554/eLife.48847.016
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Figure 4. Ribosomes lacking SNORA24-guided modifications display alterations in aa-tRNA selection and pre-translocation complex dynamics.

(A) Schematic representation of the reaction assayed in the smFRET experiments. Ternary complex consisting of eEF1A, GTP, and fluorescently labeled

aa-tRNA (either LD655-tRNAPhe or LD650-tRNALys) binds to ribosomes, carrying Cy3 labeled Met-tRNAfMet in the P site and displaying a cognate codon

(UUC or AAA) in the A site, bringing the two dyes close enough for FRET. After binding, the ternary complex either dissociates or codon recognition,

GTP hydrolysis, and subsequent dissociation of eEF1A takes place followed by accommodation of the CCA end of the tRNA into the peptidyl

transferase center and subsequent peptide bond formation. These conformational changes within the decoding ribosome complex lead to a stepwise

Figure 4 continued on next page
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into a fully accommodated state, where Phe-tRNAPhe in the A site undergoes peptide bond forma-

tion (FRET ~0.7) (Figure 4B). We estimated the rate of peptide bond formation in this system and

calculated the catalytic efficiency (kcat/KM) of tRNA selection (Figure 4C and D). In doing so, we

found that ribosomes purified from HuH-7 sgRNA-24 cells were ~50% more efficient in aa-tRNA

selection of tRNAPhe compared to ribosomes isolated from sgRNA-ctrl cells (p<10�6, Welch’s t-test)

(kcat/KM of 50 ± 7 mM�1 s�1 vs. 71 ± 4 mM�1 s�1, respectively) (Figure 4D). We further assessed ribo-

somes displaying a different codon, AAA (encoding Lysine (Lys)), in the A site reacting with ternary

complex containing a cognate LD650 labeled Lys-tRNALys using the same assay. In this context, we

found that ribosomes lacking 	609 and 	863 were also more efficient in selection of tRNALys, how-

ever, the magnitude of the change was smaller than that observed for tRNAPhe. Specifically, ribo-

somes from HuH-7 sgRNA-24 cells were ~30% more efficient in selection of tRNALys compared to

their wild-type counterparts (p<10�6, Welch’s t-test) (kcat/KM of 27 ± 5 mM�1 s�1 vs. 36 ± 5 mM�1

s�1) (Figure 4D) as opposed to the ~50% differences observed in the case of tRNAPhe. These find-

ings indicate that SNORA24-directed rRNA pseudouridylation acts to regulate decoding on actively

translating ribosomes.

Ribosomes undergo large-scale conformational rearrangements during the elongation phase of

translation (Voorhees and Ramakrishnan, 2013). For example, in pre-translocation ribosome com-

plexes, deacylated tRNA within the P site and peptidyl-tRNA within the A site rapidly and dynami-

cally exchange between so-called ‘classical’ and ‘hybrid’ states of tRNA binding (Ferguson et al.,

2015). Classical (C: A/A, P/P) and hybrid states (H1: A/P, P/E; H2: A/A, P/E) can be distinguished by

smFRET imaging based on their distinct FRET efficiency values (Ferguson et al., 2015) (Figure 4E

and F). To assess the potential impacts of SNORA24-guided modifications on ribosome dynamics,

we imaged pre-translocation complexes generated in the tRNA selection experiments described

Figure 4 continued

increase in FRET until stable accommodation of the tRNA occurs. (B) Representative smFRET trace of ribosome purified from HuH-7 sgRNA-ctrl cells

displaying a UUC codon reacting with LD655-tRNAPhe containing ternary complex. Non-productive events are characterized by rapid fluctuations in

FRET values between 0.2 ± 0.075 and 0.46 ± 0.075, followed by dissociation of the ternary complex and loss of FRET. Productive events are

characterized by a stepwise progression from 0.2 ± 0.075, through several intermediate FRET values to a final FRET of 0.72 ± 0.075. The red line

represents a hidden Markov-model idealization of the smFRET trace. (C) Cumulative distributions for ribosomes purified from HuH-7 sgRNA-ctrl (red

line) and sgRNA-24 (blue line) cells displaying a UUC codon reacting with LD655-tRNAPhe containing ternary complex. Distributions were constructed

from all recorded individual smFRET traces by estimating the number of productive events that occurred at each movie frame. The solid lines represent

exponential functions fitted to the data. The error bars represent SEM for each data point. For simplicity, data from every tenth movie frame is shown.

(D) Graph shows catalytic efficiency (kcat/KM) for LD655-tRNAPhe or LD650-tRNALys containing ternary complexes reacting on ribosomes purified from

either HuH-7 sgRNA-ctrl or sgRNA-24 cells and displaying the respective cognate codons, UUC or AAA, in the A site. The error bars represent SEM for

the estimated kcat/KM values. Statistical analysis was performed using Welch’s t-test, p<10�6. (E) Schematic representation of the dynamics of ribosome

pre-translocation complexes. Each ribosome can occupy three distinct conformational states, the classical state; with both tRNAs in classical binding

conformations with their anticodon stems and CCA ends occupying corresponding binding sites on the small and large ribosomal subunits. The first

hybrid state; with both tRNAs in hybrid binding conformations with their anticodon stems and CCA ends occupying different binding sites on the small

and large subunits, and the second hybrid state where the A-site tRNA is in a classical binding conformation while the P-site tRNA is in a hybrid binding

conformation. (F) Representative smFRET trace of a pre-translocation complex containing P-site bound tRNAfMet and A-site bound Met-Phe-tRNAPhe.

The highest FRET state corresponds to the classical state, the middle FRET state corresponds to the first hybrid state, and the lowest FRET state

corresponds to the second hybrid state. The solid red line represents a hidden Markov-model idealization of the smFRET trace. (G) Histograms of FRET

values attained by pre-translocation complexes from HuH-7 sgRNA-ctrl (red bars) and sgRNA-24 (blue bars) cells containing P-site bound tRNAfMet and

A-site bound Met-Phe-tRNAPhe. The solid lines represent fits of three gaussian functions (gray lines) to the data and their sum (black line). The error

bars represent SEM for the mean count in each histogram bin. Statistical analysis was performed using Welch’s t-test, p<10�6. (H) Graph shows

mean ± SD normalized luminescence from CellTiter-Glo Luminescent Cell Viability Assay 48 hrs post-treatment of HuH-7 sgRNA-ctrl (black bars) or

sgRNA-24 (gray bars) cells with increasing concentrations of Anisomycin from three independent experiments. Statistical analysis was performed using

an unpaired Student’s t-test, *p<0.05.

DOI: https://doi.org/10.7554/eLife.48847.017

The following figure supplements are available for figure 4:

Figure supplement 1. Loss of SNORA24-guided modifications does not impact the dynamics of pre-translocation complexes containing A-site bound

Met-Lys-tRNALys.

DOI: https://doi.org/10.7554/eLife.48847.018

Figure supplement 2. Effects of specific ribosome targeting drugs on the growth of HCC cells lacking SNORA24-guided rRNA modifications.

DOI: https://doi.org/10.7554/eLife.48847.019
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above bearing Met-Phe-tRNAPhe in the A site. These analyses revealed that ribosomes lacking

SNORA24-guided modifications exhibit a modest preference for classical tRNA configurations com-

pared to control ribosomes (15 ± 1% vs. 20 ± 1% Classical, p<10�6, Welch’s t-test) (Figure 4G). In

the case of ribosomes bearing Met-Lys-tRNALys in the A site, we instead observed little to no change

in tRNA configurations between the two types of ribosomes (Figure 4—figure supplement 1).

These findings indicate that pseudouridine modifications at rRNA residues 609 and 863 have the

capacity to alter the dynamic properties of pre-translocation ribosome complexes in a way that likely

depends on the tRNA species in the P and A sites. Taken together, these smFRET data provide com-

pelling evidence that ribosomes lacking these two specific pseudouridine modifications exhibit func-

tionally relevant physical distinctions in regard to dynamic structural features within the pre-

translocation complex, that appear to depend on the mRNA coding sequence.

The observed impacts on aa-tRNA selection and pre-translocation complex dynamics lead us to

investigate the sensitivity of HuH-7 sgRNA-ctrl or sgRNA-24 cells to ribosome-targeting drugs

(Figure 4H and Figure 4—figure supplement 2). In doing so, we found that HCC cells lacking

SNORA24 displayed a specific and increased tolerance to Anisomycin (ANS), a drug that binds to

the ribosomal A site (Hansen et al., 2003) and inhibits peptidyl transfer (Figure 4H). This result is in

perfect agreement with our smFRET observations that loss of SNORA24-guided modifications

increase the efficiency of aa-tRNA selection, which would be expected to reduce the time window

during each elongation cycle that the ribosome is sensitive to ANS. Collectively, these investigations

provide compelling evidence that snoRNA-mediated changes in the chemical composition of mam-

malian ribosomes, have the potential to affect tRNA selection, ribosome dynamics, and sensitivity of

cancer cells to specific translation inhibitors.

SNORA24-guided modifications within the small ribosomal subunit
function to enhance translational accuracy
Given that reduced SNORA24 expression had no observed impact on overall protein production

(Figure 3C and D), we predicted that the differences in aa-tRNA selection and conformational

dynamics observed by smFRET in ribosomes lacking SNORA24-guided pseudouridine modifications

may impact the accuracy of translation, in a codon-specific manner. To examine to what extent

SNORA24-guided modifications impact decoding accuracy or translation fidelity in HCC cells, we

employed established luciferase reporter systems, consisting of the Renilla luciferase (Rluc) gene

fused to the Firefly luciferase (Fluc) gene, to monitor both amino acid misincorporation

(Kramer et al., 2010) and stop codon readthrough (Jack et al., 2011).

We first evaluated decoding accuracy in HCC cells using two luciferase reporters, in which one of

two codons in Fluc, either codon 245 (CAC, His) or codon 529 (AAA, Lys), had been mutated to

near-cognate codons (CGC and AAU, respectively) (Figure 5A, top panel). These mutations are

known to reduce Fluc activity (Kramer et al., 2010). Misreading of these codons can therefore lead

to the incorporation of the original amino acid, to restore Fluc activity, enabling comparative esti-

mates of miscoding error. For both codons tested, we found that HCC cells with reduced SNORA24

expression display a 10–20% increased level of amino acid misincorporation compared to control

cells (Figure 5A, bottom panel). We also tested the ability of cells lacking SNORA24-guided pseu-

douridine modifications to terminate translation at stop codons using a similar luciferase reporter

system in which a stop codon is placed between Rluc and Fluc (Figure 5B, top panel). Interestingly,

in the presence of paromomycin, an antibiotic known to induce translation error and stop codon

readthrough (Kramer et al., 2010), we observe a SNORA24-dependent increase (~15%) in UGA

stop codon readthrough (Figure 5B, bottom panel). By contrast, we detected no difference in UAG

stop codon readthrough in the same cells (Figure 5B, bottom panel). These findings suggest that

	609 and 	863 within the small ribosomal subunit function to enhance translational accuracy and

that reduced expression and activity of SNORA24 in HCC may lead to errors in the translation of

specific mRNAs.

Discussion
Ribosome dysfunction and alterations in translation are linked to cancer development

(Pelletier et al., 2018; Silvera et al., 2010; Sulima et al., 2017; Truitt and Ruggero, 2016). The

function of the vast majority of conserved RNA modifications within the ribosome (Decatur and
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Fournier, 2002), in this context remain largely unexplored. For decades, snoRNAs have been

thought to exert minor functions, largely due to findings that in unicellular organisms, depletion of

individual snoRNAs yield little to no growth defect. In this respect, the biological influence of

snoRNA-directed rRNA modifications in mammalian physiology, and in disease states has been

poorly understood (Williams and Farzaneh, 2012). We provide evidence that one H/ACA snoRNA

plays a direct role in specific steps of cancer development. Our studies reveal that SNORA24 is

implicated in a tumor suppressor program in vivo to halt cellular transformation and with compelling

human and mouse data supports a role for SNORA24 dysfunction in tumor initiation and in mainte-

nance of RAS-driven cancer. Interestingly, in the context of HCC, SNORA24 appears dispensable for

overall protein synthesis, suggesting that cancer-associated changes in SNORA24 may have more

selective functions, for example towards controlling translation of specific mRNAs. This is supported

by the apparent codon specificity in aa-tRNA selection and pre-translocation complex dynamics

observed by smFRET analysis of ribosomes from cancer cells lacking SNORA24-dependent pseu-

douridine modifications. One intriguing possibility is that SNORA24-guided modifications directly

impinge on the production of proteins involved in, for example, lipid metabolism and signaling, due

to the strong association between SNORA24 and tumor lipid deposition identified in this study. It is

interesting to note a previous link between distinct C/D snoRNAs and response to metabolic stress

(Jinn et al., 2015; Michel et al., 2011). Although the roles of C/D snoRNAs in modulating ribosome

activity or translation in this context was not examined, it will be important to determine whether
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Figure 5. SNORA24-guided modifications impact translation accuracy. (A) Diagram of luciferase reporters used to monitor amino acid

misincorporation. Point mutations in Fluc at either His 245 or Lys 529 to near-cognate codons are highlighted (top panel). Amino acid misincorporation

(%) of the indicated luciferase reporters (CGC codon or AAU codon) in HuH-7 sgRNA-ctrl cells (black) and HuH-7 sgRNA-24 cells (gray) are shown

(bottom panel). On the box and whisker plots, the center line is the medium amino acid misincorporation (%), box limits are minimum and maximum

values, and whiskers are S.D. from four independent experiments. Statistical analysis was performed using an unpaired Student’s t-test, p<0.01. (B)

Diagram of luciferase reporters used to monitor stop codon readthrough (top panel). Stop codon readthrough (%) of the indicated luciferase reporters

(UAG stop codon or UGA stop codon) in the presence of 1 mg/ml paromomycin in HuH-7 sgRNA-ctrl cells (black) and HuH-7 sgRNA-24 cells (gray) are

shown (bottom panel). On the box and whisker plots, the center line is the medium stop codon readthrough (%), box limits are minimum and maximum

values, and whiskers are S.D. from five independent experiments. Statistical analysis was performed using an unpaired Student’s t-test, p<0.01 and n.

s = non significant.

DOI: https://doi.org/10.7554/eLife.48847.020
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dysfunction of specific snoRNAs and site-specific ribosome modifications are implicated in human

lipid metabolic disorders and/or in the progression of chronic liver disease to HCC.

Our studies employing smFRET imaging represent, to our knowledge, the first report of biophysi-

cal changes in ribosomes from cancer cells lacking specific rRNA nucleotide modifications. 	609 is

located in a highly structured element (the so-called ‘530 loop’ in bacteria), a region of rRNA directly

implicated in codon-anticodon pair recognition in the ribosomal A site. Previous studies implicate

this region as contributing to the process of domain closure, a large-scale movement within the small

subunit that aids mRNA codon-tRNA anticodon pairing required for accurate decoding at the A site

(Fislage et al., 2018; Loveland et al., 2016; Ogle et al., 2001; Ogle et al., 2002). Our data demon-

strating that loss of 	609 and 	863 enhances the efficiency of aa-tRNA accommodation, imply that

SNORA24-guided modifications, and 	609 in particular, may function to alter domain closure

strength. In contrast to 	609, 	863 is located in an rRNA expansion segment (ES) that is distal to

the decoding center of the ribosome. Interestingly, a recent study has established a connection

between ribosome expansion segments and translation fidelity (Fujii et al., 2018). Thus, it seems

plausible that the functional alterations observed in ribosomes lacking 	609 and 	863 may arise

from both direct and indirect mechanisms that alter how the small subunit of the ribosome recog-

nizes and responds to aa-tRNA binding at the A site. In purified ribosomes lacking SNORA24-guided

modifications, the observed differences in aa-tRNA selection of tRNAPhe compared to tRNALys can

have several plausible explanations. For instance, studies have shown that the efficiency of aa-tRNA

selection varies depending on the tRNA species and the codon in the A site (Pavlov and Ehrenberg,

2018; Zhang et al., 2016). These and other observations indicate that the stability of intermediates

in the decoding process are affected by even small differences in interaction energy between the

ribosome and the tRNA substrate. As noted above, decoding intermediates also exhibit conforma-

tional changes in the small subunit proximal to the sites of SNORA24-guided modifications. We

therefore speculate that pseudouridylation of U609 and U863 may fine tune decoding in a manner

that results in small, but significant codon-dependent effects on tRNA selection efficiency. In addi-

tion, it seems likely that factors such as tRNA abundance, codon-anticodon base pair interactions,

and codon context, that are known to influence ribosome elongation rate and translation efficiency

(Gardin et al., 2014; Goodarzi et al., 2016; Pop et al., 2014; Quax et al., 2015; Riba et al., 2019),

may lead to gene-specific alterations in translational control in cancer cells with altered SNORA24

expression.

Our findings that a distinct snoRNA impacts translational accuracy is in line with observations in

other organisms, demonstrating that clusters of snoRNA-directed modifications close to the decod-

ing center influence translational fidelity (Baudin-Baillieu et al., 2009). However, unlike single-celled

organisms that can tolerate relatively high levels of translation errors, minor defects in translation

accuracy arising from snoRNA dysfunction in mammals may yield more severe cellular consequences

in certain contexts, for example in response to oncogenic stress. For instance, alterations in aa-tRNA

selection efficiency or fidelity during translation elongation may lead to changes in the abundance of

specific proteins beneficial to cancer cell survival. Differences in translation fidelity may also alter

stop codon readthrough during translation termination, as well as the rate at which ribosomes trans-

locate through a given mRNA open reading frame due to impacts on translocation (Alejo and Blan-

chard, 2017). Elucidating the structural-functional roles of modified residues within the ribosome

will undoubtedly aid in the development of a new generation of cancer therapeutics focused on tar-

geting ribosomes with differential modification patterns in cancer and will shed significant new light

on the role of ancient RNA modifications in directing ribosome activity and cellular integrity.

Materials and methods

Key resources table

Reagent
type (species)
or resource

Designation

Source or reference Identifiers Additional information

Genetic reagent
(Mus musculus)

Wild-type
C57BL/6J

The Jackson
Laboratory

#000664; RRID:
IMSR_JAX:000664

Continued on next page
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Continued

Reagent
type (species)
or resource

Designation

Source or reference Identifiers Additional information

Genetic reagent
(Mus musculus)

KrasG12D PMID:15093544 MGI:2429948

Genetic reagent
(Mus musculus)

Alb-cre PMID:9867845 MGI:2176228

Cell line
(Homo sapiens)

Primary
human
skin fibroblasts

Coriell Cell
Repositories

Cat. # GM00730;
RRID:CVCL_L944

Cell line
(Homo sapiens)

HuH-7 Japanese Collection
of Research
Bioresources Cell Bank

Cat. # JCRB0403;
RRID:CVCL_0336

Cell line
(Homo sapiens)

293T American Type
Culture Collection

Cat. # CRL-3216;
RRID:CVCL_0063

Cell line
(Mus musculus)

KrasG12D

HCC cell line
PMID:30643286 Laboratory of

Davide Ruggero
(UCSF)

Antibody RAS (rabbit
polyclonal)

Cell Signaling
Technology

Cat. #3965;
RRID:AB_2180216

(1:1000)

Antibody PTEN (rabbit
monoclonal)

Cell Signaling
Technology

Cat. #9188;
RRID:AB_2253290

(1:1000)

Antibody b-actin (mouse
monoclonal)

Sigma-Aldrich Cat. # A5316;
RRID:AB_476743

(1:10,000)

Antibody p21 (mouse
monoclonal)

BD Biosciences Cat. # 556431
(clone SXM30);
RRID:AB_396415

(1:50)

Antibody NRAS (mouse
monoclonal)

Santa Cruz
Biotechnology

Cat. # sc-31 (clone F155);
RRID:AB_628041

(1:50)

Recombinant
DNA reagent

NRASG12V Addgene, PMID:19147555 Plasmid #20205;
RRID:Addgene_20205

(pT/Caggs-NRASV12)

Recombinant
DNA reagent

SB13 Addgene, PMID:19147555 Plasmid #20207;
RRID:Addgene_20207

(PT2/C-Luc//PGK-SB13)

Recombinant
DNA reagent

HRASG12V Addgene Plasmid #9051;
RRID:
Addgene_9051

(pBABE puro H-
Ras V12)

Recombinant
DNA reagent

PTEN shRNA PMID:29720449 (pLKO.1-PTEN-shRNA)
Laboratory of
Davide Ruggero (UCSF)

Recombinant
DNA reagent

Rluc-Fluc control PMID:30576652 (pCMV-WT:
CMV promoter, Rluc-Fluc)
Laboratory of
Maria Barna (Stanford
University)

Recombinant
DNA reagent

CGC codon 245 Other (pCMV-245 CGC:
CMV promoter, Rluc-Fluc)
Laboratory of
Maria Barna (Stanford
University)

Recombinant
DNA reagent

AAU codon 529 This paper Generated by
site-directed
mutagenesis of
plasmid pCMV-WT at
codon 529 from AAA
to AAT (pCMV-529 AAU)

Continued on next page
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Continued

Reagent
type (species)
or resource

Designation

Source or reference Identifiers Additional information

Recombinant
DNA reagent

Readthrough
control

PMID:22099312 (pJD175f
(pHDL-SV40-control))
Laboratory of
Jonathan Dinman
(University of Maryland)

Recombinant
DNA reagent

UAG stop codon Other (pJD1644
(pHDL-SV40-UAG))
Laboratory of J
onathan Dinman
(University of Maryland)

Recombinant
DNA reagent

UGA stop codon Other (pJD1645 (pHDL-
SV40-UGA))
Laboratory
of Jonathan
Dinman (University
of Maryland)

Sequence-
based reagent

Oligonucleotides
for qPCR analysis

This paper Supplementary file 2

Sequence-
based reagent

Synthetic mRNA
Met-Phe

Dharmacon CAACCUAAAACU
UACACACCCUUAGAGGGAC
AAUCGAUGUUCAAAGUC
UUCAAAGUCAUC

Sequence-
based reagent

Synthetic mRNA
Met-Lys

Dharmacon CAACCUAAAACUUAC
ACACCCUUAGAGGGACAAUC
GAUGAAAUUCGU
CUUCAAAGUCAUC

Commercial
assay or kit

Dual-Luciferase
Reporter Assay System

Promega Cat. # E1910

Commercial
assay or kit

Senescence
Detection Kit

Calbiochem-
Millipore

Cat. # QIA117

Commercial
assay or kit

CellTiter-Glo
Luminescent Cell
Viability Assay

Promega Cat. # G7570

Chemical
compound, drug

Anisomycin Sigma-Aldrich Cat. # A9789

Chemical
compound, drug

Paromomycin Sigma-Aldrich Cat. # P9297

Chemical
compound, drug

Cycloheximide Sigma-Aldrich Cat. # C7698

Chemical
compound, drug

O-propargyl-
puromycin

Medchem
Source LLP

Cat. # JA-1024

Chemical
compound, drug

Cy3-Maleimide GE Healthcare Cat. # PA23031

Chemical
compound, drug

LD655-NHS Lumidyne
Technologies

Cat. # 08

Chemical
compound, drug

LD650-NHS Lumidyne
Technologies

Cat. # 99

Software,
algorithm

PyMOL Schrödinger,
NY, USA

https://www.
pymol.org/2/

Software,
algorithm

ImageJ National Institute of
Health, USA

https://imagej.
nih.gov/ij/

Software,
algorithm

GraphPad Prism six
software

GraphPad https://www.
graphpad.com/

Software,
algorithm

Spartan Other Available at:
https://www.scottcbla
nchardlab.com/software
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Animal studies
Expression of NRASG12V in mouse liver was performed as previously described (Kang et al., 2011),

with minor modifications. Briefly, C57BL/6 wild-type mice 8–12 weeks old were injected with a 5:1

molar ratio of transposon (NRASG12V) to transposase (SB13) encoding plasmids (35 mg total DNA) by

hydrodynamic tail vein injection. As a control, mice were injected with the transposase (SB13) encod-

ing plasmid (35 mg total DNA) by hydrodynamic tail vein injection (SB(-)NRASG12V). Plasmid DNA

were prepared using a Qiagen Endo Free Maxi Kit. DNA was suspended in Normal Saline solution

and administrated at a final volume of 10% of the animal’s body weight. Mice treated with locked

nucleic acid (LNA-ctrl or LNA-24) (Exiqon, MA, USA) were tail vein injected with 20 mg/kg LNA three

days prior to hydrodynamic delivery of NRASG12V (SB(+)NRASG12V) or control (SB(-)NRASG12V) and

received LNA treatment every 10 days for the duration of the study. The LNA sequences were as fol-

lows: LNA-ctr 5’-AACACGTCTATACGC-3’ and LNA-24 5’-GCTCTTCCATGGCTAG-3’. For determi-

nation of senescence, mouse livers were harvested 6 days after NRASG12V administration.

Orthotopic injections of Alb-cre;KrasG12D mice liver tumor cells into the subcapsular region of the

median liver lobe of C57BL/6 wild-type mice were performed as previously described (Xu et al.,

2019). All mice were maintained under specific pathogen-free conditions. Experiments were per-

formed in compliance with guidelines approved by the Institutional Animal Care and Use Committee

(IACUC) with assistance from the Laboratory Animal Resource Center (LARC) of UCSF.

Cell culture and reagents
Primary human skin fibroblast (GM00730) were obtained from Coriell Cell Repositories (Coriell Insti-

tution for Medical Research, NJ, USA) and maintained in (Dulbecco’s Modified Eagle Medium

(DMEM) supplemented with 10% Fetal Bovine Serum and Penicillin/Streptomycin (DMEM, 10% FBS,

P/S). HuH-7 are an established cell line obtained from the Japanese Collection of Research Biore-

sources Cell Bank (JCRB0403) of the National Institutes of Biomedical Innovation, Health and Nutri-

tion, Japan and maintained in DMEM, 10% FBS, P/S. Generation of mouse liver cancer cell lines

(from Alb-cre;KrasG12D mice) was previously described (Xu et al., 2019) and maintained in DMEM,

10% FBS, P/S. 293 T cells were obtained from ATCC and maintained in DMEM, 10% FBS, P/S. All

cell lines used in this study were found to be negative of mycoplasma contamination using a MycoA-

lert mycoplasma detection kit (Lonza, Allendale, NJ, USA). Retroviral and lentiviral particles were

produced in 293 T cells by transfection with the appropriate expression and packaging plasmids

using PolyFect Transfection Reagent (Qiagen) and filtering cultured supernatants through a 0.45 mM

filter. Early passage primary skin fibroblasts (P9) were infected with PTEN shRNA or HRASG12V

expression constructs followed by selection with puromycin (2 mg/ml). Retroviral vectors were

obtained from Addgene (pBabe puro HRASG12V (#9051)). Lentiviral vector harboring a shRNA tar-

geting PTEN (pLKO.1 backbone) was previously described (Nguyen et al., 2018). All chemicals used

in this study were purchased from Sigma-Aldrich unless otherwise stated.

Gene editing using Cas9-guide RNA ribonucleoprotein (RNP) complexes
All sgRNAs targeting mouse or human SNORA24 were designed using the Zhang Lab design tool

(crispr.mit.edu). Chemically modified synthetic sgRNAs were purchased from Synthego (Menlo Park,

CA, USA) and Cas9-NLS purified protein was from the QB3 MacroLab (UC Berkeley, CA, USA). Cas9

RNP was prepared immediately prior to nucleofection by incubating Cas9 protein with sgRNA at

1:1.3 molar ratio in 20 mM HEPES (pH 7.5), 150 mM KCl, 1 mM MgCl2, 10% glycerol and 1 mM

TCEP at 37˚C for 10 min. Cells were dissociated using trypsin, pelleted by centrifugation, and

washed once with D-PBS. Nucleofection of human HuH-7 cells and mouse KrasG12D tumor cell line

was performed using Amaxa Cell Line Nucleofector Kit V (Lonza, Allendale, NJ, USA) and program

H-022 on an Amaxa Nucleofector II system. Each nucleofection reaction consisted of ~4�105 cells in

50 ml of nucleofection reagent mixed with two distinct 10 ml RNP mixtures containing different

sgRNA (to allow specific deletion within the SNORA24 gene locus [sgRNA-24]). Cas9 alone or a set

of non-targeting control sgRNA (sgRNA-ctrl) were used in a separate RNP reaction. Two days follow-

ing nucleofection, gene editing was confirmed by extracting genomic DNA (gDNA) from cells using

Quick Extraction (Lucigen Corporation, WI, USA), performing PCR of the SNORA24 loci using gene

specific primer, and sequencing the PCR product. The following sgRNA sequences were use;

SNORA24 human sgRNA #1 5’-GGATATGCTCTTCCATGGCT-3’, SNORA24 human sgRNA #2 5’-
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CAAAGCTGTCACCATTTAAT-3’, non-targeting sgRNA #1 5’-AACGACTAGTTAGGCGTGTA-3’,

non-targeting sgRNA #2 5’-CGCCAAACGTGCCCTGACGG-3’, Snora24 mouse sgRNA #1 5’-TC

TTTGGGACCTGCCGCCTG-3’, Snora24 mouse sgRNA #2 5’-CACTTGCTCAAGTCAGAATC-3’.

Polysome fractionation
HuH-7 sgRNA-ctrl and sgRNA-24 cells were incubated with 100 mg/ml cycloheximide (Sigma) in the

growth media for 5 min at 37˚C and 5% CO2. Cells were washed once in ice-cold PBS containing 100

mg/ml cycloheximide. Cells were then scraped in 5 ml of ice-cold PBS containing 100 mg/ml cyclohex-

imide and pelleted. Cell pellets were lysed in buffer containing 10 mM Tris-HCl (pH 8), 150 mM

NaCl, 1.5 mM MgCl2, 1% Triton X-100, 20 mM DTT, 150 mg/ml cycloheximide, and 640 U/ml Rnasin

for 30 min on ice. Lysates were centrifuged at 10,000 x g for 5 min at 4˚C. The supernatant (~300 ul)

were adjusted by OD260 (to OD260 of ~15) and loaded onto a 10–50% sucrose gradient before cen-

trifugation at 37,500 rpm for 2.5 hrs at 4˚C in a Beckman L8-70M ultracentrifuge. Samples were sepa-

rated on an ISCO gradient fractionation system to evaluate polysome profiles.

Western blot analysis
Western blot analysis was performed on samples lysed in RIPA buffer (50 mM Tris pH 8, 150 mM

NaCl, 0.2% Na deoxycholate, 0.5% TritonX-100) with the addition of PhosSTOP and Complete Mini

proteasome inhibitors (Roche) using standard procedures with commercial antibodies for RAS (Cell

Signaling Technology), PTEN (Cell Signaling Technology) and b-actin (Sigma).

Immunohistochemistry
Immunohistochemistry analysis was performed on OCT embedded frozen tissue using standard pro-

tocols and the following primary antibodies: NRAS (Santa Cruz Biotechnology) and p21 (BD

Biosciences).

Senescence determination
Cellular senescence was assayed 15 days after retroviral expression of HRASG12V in primary human

skin fibroblasts using a senescence detection kit (Calbiochem) according to manufacturer’s instruc-

tions. Cells were imaged using a Nikon TE2000E inverted microscope. Determination of senescence

in liver sections or whole liver lobes was carried out as described previously (Kang et al., 2011).

ORO staining and quantification in human HCC specimens and mouse
liver tissue
OCT embedded frozen tissue was prepared using standard protocols and following equilibrated at

room temperature for 10 min, sections were fixed in formalin for 5 min. Following wash in tap water,

slides were stained in ORO working solution for 10 min at room temperature. ORO stock and work-

ing solution were prepared as previously described (Mehlem et al., 2013). Slides were washed in

tap water for 10 min and counterstained with Mayer’s hematoxylin by submerging the slides in

hematoxylin for 3 min. Slides were rinsed under running tap water for ~10 min and mounted with

AquaSlip from AMTS Inc (Lodi, CA, USA). Hematoxylin and Eosin (H and E) stained frozen sections

were imaged on an Aperio Versa slide scanner (Leica Biosystems), equipped with a HC PL Fluotar

10X/.32 objective. ORO stained frozen sections were imaged on an Axio Scan.Z1 slide scanner (Carl

Zeiss Microscopy), equipped with a Plan-Apochromat 10x/0.45 objective. ORO quantification was

performed by selecting four regions of interest (ROIs) from each H and E. scn image file and

extracted as a TIFF at 1000 � 1000 pxl (551 � 551 microns; scale = 551 nm/pxl) in Aperio Image-

Scope v.12.3.2 software. The analogous region from the ORO stained serial adjacent section. czi

image file (scale = 442 nm/pxl) was extracted in Zen, converted to TIFF and downsampled to yield

the same spatial scaling for analysis. The two resulting TIFF files were spatially registered using

ImageJ TrackEM2. An ORO RGB image was used as input to tune the threshold parameters in the

Zen Pro Image Analysis software module for quantifying lipid droplets. Three classes were created;

ORO (Oil Red O positive), All (all tissue), and White (empty) with the following colormetric parame-

ters: ORO: R 94–158, G 2–98, B – 109; All: R 90, G 10–177, B 19–182; White: R 191–220, G 177–210,

B 181–224. The percentage (%) ORO positive stained area per total area examined from four differ-

ent ROIs of each tissue section was calculated and summed. For each condition tested, the
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mean ± SD ORO positive area (%) was plotted, with the Y-axis label representing ‘ORO positive area

(%)”. For mouse tissue sections (n = 3 mice), ROIs were identified within the H and E images that

could be classified as abnormal or normal tissue under the guidance of a pathologist. Abnormal or

normal tissue ROIs (fixed area of 7400 pixels) were applied to the analogous region within the regis-

tered ORO image (as shown in Figure 2—figure supplement 1). For human HCC specimens, patient

samples were dichotomized into high or low SNORA24 expression by identifying samples with

SNORA24 expression more extreme than ±1 SD from the mean (n = 17 HCC specimens) and ORO

staining and quantification was performed as described above.

Measurement of protein synthesis by OPP incorporation
OP-Puro (Medchem Source LLP, WA, USA) was reconstituted in PBS, adjusted to pH 6.5, and stored

in aliquots at �20˚C. Cells were treated with 30 mM OP-Puro or PBS (mock to subtract background

signal during analysis). Two hours following OP-Puro addition to the media, cells were dissociated

using trypsin, pelleted by centrifugation, washed in PBS, and fixed in paraformaldehyde (PFA) in PBS

for 15 min on ice. After washing in cold PBS, samples were permeabilized in the dark using PBS with

3% FBS and 0.1% saponin. Click-iT reaction (Invitrogen) was performed according to manufacturer’s

instructions with cycloaddition conjugation to Alexa555 for 30 min at room temperature with light

protection. Data was acquired using a BD LSRII and analyzed with FlowJo to calculate the fluores-

cence intensity of each sample. For quantification, the relative rates of protein synthesis depicted by

OP-Puro signals were calculated as mean fluorescence intensity (MFI), subtracting the auto-fluores-

cence background from mock (PBS control). Normalized MFI for each cell sample was plotted with

SD of the mean.

Patient samples
Liver tissue specimens were obtained from patients undergoing treatment for HCC at the University

of California, San Francisco (San Francisco, CA, USA). A summary of patient demographics and stag-

ing is presented in Supplementary file 1.

Microarray gene expression data analysis for H/ACA snoRNAs
Microarray gene expression was obtained from the NCBI GEO database, accession GSE25097

(HCC), accession GSE22898 (Diffuse large B-cell lymphoma), accession GSE20916 (Colorectal can-

cer), accession GSE28735 (Pancreatic ductal adenocarcinoma), and accession GSE43458 (Lung ade-

nocarcinoma). Expression data from probes corresponding to H/ACA snoRNAs were extracted,

analyzed for fold change in expression in tumor and control samples, and statistical significance was

calculated using paired or unpaired Student’s t-test as indicated.

HCC patient survival analysis
Microarray gene expression and clinical data were obtained from the NCBI GEO database, accession

GSE25097 (Hao et al., 2011; Kan et al., 2013). Calculations were performed in R (R Development

Core Team, 2008). Patient samples were dichotomized into high or low by identifying samples with

SNORA24 expression more extreme than ±one SD from the mean (n = 24). Kaplan-Meier survival

curves were fit, and statistical significance was calculated using the log-rank test, with p<0.05 used

as a threshold for statistical significance. Similar analyses were performed for SNORA14B, SNORA17,

SNORA67, SNORA72, and SNORA81.

Single-molecule FRET microscopy
All smFRET experiments were conducted at 37˚ C in human polymix buffer (50 mM Tris pH 7.5, 5

mM MgCl2, 50 mM NH4Cl, 2 mM spermidine, 5 mM putrescine) containing a mixture of triplet-state

quenchers (1 mM Trolox, 1 mM 4-nitrobenzyl alcohol (NBA), 1 mM cyclooctatetraene (COT)) and an

enzymatic oxygen scavenging system (2 mM 3,4-Dihydroxybenzoic acid (PCA), 0.02 Units/ml protoca-

techuate 3,4-dioxygenase (PCD)). Ribosomes from HuH-7 sgRNA-ctrl or sgRNA-24 cells were pre-

pared using the protocol described in Flis et al. (2018). Elongation factor eEF1A and fluorescence

labeled tRNAs were prepared as in Flis et al. (2018). Pre-formed 80S initiation complexes made

with ribosomes from either HuH-7 sgRNA-ctrl or sgRNA-24 cells, containing Cy3-labeled Met-tRNAf-

Met in the P site and displaying either a UUC or AAA codon in the A site, were surface-immobilized
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on passivated quartz coverslips (Blanchard et al., 2004) in a home-built total internal reflection-

based fluorescence microscope (Juette et al., 2016). To initiate tRNA selection, 10 nM ternary com-

plex, consisting of eEF1A, GTP and either Phe-tRNAPhe labeled with LD655 or Lys-tRNALys labeled

with LD650 was stop flow delivered to the immobilized ribosomes. Imaging of the pre-translocation

complexes was carried out by washing ternary complex from the flow cell with polymix buffer 30 s

after injection. smFRET data were recorded at a time resolution of 15 ms at ~0.25 kW/cm2 laser (532

nm) illumination. Donor and acceptor fluorescence intensities were extracted from the recorded

movies and FRET efficiency traces were calculated. FRET traces were selected for further analysis

according to the following criteria: a single catastrophic photobleaching event, at least 8:1 signal/

background-noise ratio and 6:1 signal/signal-noise ratio, less than four donor-fluorophore blinking

events and a correlation coefficient between donor and acceptor <0.5.

smFRET traces were analyzed using hidden Markov model idealization methods as implemented

in the SPARTAN software package (Juette et al., 2016). The idealization model for tRNA selection

traces included four separate FRET values accounting for unbound, initial binding, GTPase activa-

tion, and accommodated states during tRNA selection (Ferguson et al., 2015; Geggier et al.,

2010) with FRET values of 0.0 ± 0.05, 0.2 ± 0.075, 0.46 ± 0.075 and 0.72 ± 0.075. The idealization

model for the pre-translocation state included three FRET states with FRET values of 0.22 ± 0.075,

0.42 ± 0.075 and 0.72 ± 0.075 (0.61 ± 0.05 in case of LD650 labeled tRNALys containing ribosomes)

accounting for the hybrid 1, hybrid two and classical tRNA binding states (Pellegrino et al., 2019).

To generate cumulative distributions for estimation of apparent reaction rates during tRNA selection

the number of traces that had achieved the 0.72 FRET state prior to each movie frame were

summed. An exponential function containing two exponential terms and a term accounting for the

initial delay due to the stop flow delivery dead time was then fit to the data. All distributions con-

tained two phases, a fast phase accounting for >85% of events and a slower phase accounting for

the remainder. In all cases the reaction rate of the dominant, fast, phase was used for further analy-

sis. To take the effect of donor photobleaching into account for estimation of accurate tRNA selec-

tion kcat/KM values, donor photobleaching rates estimated from the total dataset were subtracted

from the apparent reaction rates. To estimate the fraction of time the ribosomal pre-translocation

complexes spend in each tRNA binding state, state dwell times were extracted directly from the hid-

den Markov-model idealizations. All experimental uncertainties were estimated from bootstrap anal-

ysis of two to five smFRET datasets. Significance testing of the difference in tRNA selection

efficiency and tRNA state occupancy between ribosomes isolated from HuH-7 sgRNA-ctrl and

sgRNA-24 cells was carried out by a bootstrap implementation of Welch’s t-test. Briefly, the t statis-

tic was calculated from the bootstrap distributions of the estimated reaction rate constants or frac-

tional state occupancies. This was then compared to 106 t statistics calculated from bootstrap

samples picked from null distributions generated by shifting the mean of both original distributions

to their pooled mean. This generated the upper bound for the P value of p<10�6 reported in the

text.

LipidTOX staining
HuH-7 sgRNA-ctrl or sgRNA-24 cells plated on glass coverslips and treated with Oleic Acid (diluted

1:10 in media) 24 hrs after plating. 6 hrs following Oleic Acid addition, cells were fixed using 4%

PFA for 30 min at room temperature, followed by a PBS wash, and LipidTOX green neutral lipid

staining (Thermo) (1:200 dilution in PBS) for 1 hr. Coverslips were mounted on glass slides using Pro-

long anti-fade mounting solution with DAPI. Imaging was performed on a Zeiss Cell Observer Spin-

ning Disc Confocal Microscope and quantification was performed using ImageJ.

Proliferation assay
HuH-7 sgRNA-ctrl or sgRNA-24 cells were plated at 2,000 cells per well in 96-well plates. 24 hrs after

plating, cells were treated with the indicated concentration of translation inhibitor or DMSO and

incubated for 48 hrs. CellTiter-Glo Luminescent Cell Viability Assay (Promega, WI, USA) was per-

formed following manufacturer’s instructions with luminescence measurements made using a Glo-

max 96-well plate luminometer (Promega). Proliferation data were generated by first normalizing

luminescence intensity in each well to that of the DMSO-treated wells and normalized luminescence

data was plotted (± SD) from at least three independent experiments.

McMahon et al. eLife 2019;8:e48847. DOI: https://doi.org/10.7554/eLife.48847 20 of 26

Research article Cancer Biology Chromosomes and Gene Expression

https://doi.org/10.7554/eLife.48847


Quantification of site-specific rRNA pseudouridine modifications
SCARLET was performed essentially as previously described (Li et al., 2015; Liu and Pan, 2015) on

10 mg of total RNA isolated using TRIzol (Invitrogen) from the indicated human HuH-7 cells or mouse

KrasG12D tumor cell lines using the following oligonucleotides, where Nm = 2’-O-Me modified nucle-

otide; U609 18S rRNA chimera: 5’-CmAmGACTUmGmCmCmCmUmCmCmAmAmUm-3’, U609 18S

rRNA splint: 5’-AGCTGGAATTACCGCGGCTGCTGGCACCACTATTAACTCACAGGACCGGCGA

TGGCTG-3’, U863 18S rRNA chimera: 5’-UmCmCmAmUmUmAmTTCCUmAmGmCmUmGmCm-3’,

U863 18S rRNA splint: 5’-CAAAATAGAACCGCGGTCCTATTCCATTACTATTAACTCACAG-

GACCGGCGATGGCTG-3’. Site-specific detection of pseudouridine modifications in LNA-S and

LNA-24 treated samples was performed 48 hrs post-transfection as described (Karijolich et al.,

2010) using the following oligonucleotides, where Nm = 2’-O-Me modified nucleotide; U609 18S

rRNA: 5’-CmAmGACTUmGmCmCmCmUmCmCmAmAmUm-3’, U863 18S rRNA: 5’-UmAmTTCC

UmAmGmCmUmGmCmGmGmUmAm-3’, U1731 28S rRNA: 5’-CmAmTTCGCmUmUmUmAmCmC

mGmGmAmUm-3’, U105 18S rRNA: 5’-GmAmTTTAAmUmGmAmGmCmCmAmUmUmCm-3’.

Results were visualized by a phosphor imager and quantification of uridine or pseudouridine in a

given sample was determined using ImageJ.

Luciferase reporter assays
HuH-7 sgRNA-ctrl and HuH-7 sgRNA-24 cells were seeded in 12 well plates at 30,000 cells/well. 24

hrs later cells were transfected using Lipofectamine 2000 (Invitrogen) with 0.1 mg per well of the indi-

cated luciferase reporter construct. Cells were lysed after 24 hrs in passive lysis buffer and Rluc and

Fluc activity was assessed using the Dual-luciferase Reporter Assay System (Promega) according to

the manufacturer’s instructions and using a Glomax microplate luminometer (Promega). For stop

codon readthrough experiments, performed in the presence of paromomycin, 1 mg/ml paromomy-

cin (Sigma) was added to cells 8 hrs post-transfection. To measure stop codon readthrough (%), nor-

malized Fluc activity (Fluc/Rluc) from UAG or UGA stop codon readthrough luciferase reporters was

further normalized to a control construct, which does not have a stop codon between Rluc and Fluc

as described (Jack et al., 2011). To measure amino acid misincorporation (%), normalized Fluc activ-

ity (Fluc/Rluc) from CGC or AAU amino acid misincorporation luciferase reporters was normalized to

a control construct, which does not contain a point mutation in Fluc as described (Fujii et al., 2018).

The amino acid misincorporation (%) or stop codon readthrough (%) values from the indicated num-

ber of independent experiments in HuH-7 sgRNA-ctrl and sgRNA-24 cells are shown.

Quantitative Polymerase Chain Reaction (qPCR) and snoRNA qPCR
array
RNA was isolated using TRIzol (Invitrogen) purification on Direct-zol RNA Microprep columns (Zymo

Research, CA, USA) according to manufacturer’s instructions with DNase treatment. cDNA samples

were diluted 1:10 and 1 ml of template was used in a PowerUP SYBR Green master mix reaction run

on an Applied Biosystems QuantStudio 6 Flex Real-Time PCR System (Thermo Fisher). qPCR primer

sequences are listed in Supplementary file 2. For snoRNA qPCR array, 2 mg Dnase treated (Turbo

DNAse) RNA was reverse transcribed using an Arraystar rtStar First-strand cDNA Synthesis kit. The

Arraystar nrStar snoRNA PCR Array was performed following manufacturer’s instructions using

Arraystar SYBR Green Real-time qPCR master mix and run on an Applied Biosystems QuantStudio 6

Flex Real-Time PCR System (Thermo Fisher).

Quantification and statistical analysis
Unless otherwise stated data is presented as mean ± SD. Statistical tests and specific P values used

for experiments are listed in the figure legends and were generated using GraphPad Prism six soft-

ware unless otherwise stated. Results are representative of at least three independent experiments.

For survival analysis, a log-rank test was used. p<0.05 was considered significant and the exact P val-

ues are indicated in the figures and the corresponding figure legends.
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