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Purpose: An AE147 peptide-conjugated nanocarrier based on PEGylated liposomes was 
developed in order to target the metastatic tumors overexpressing urokinase-type plasmino-
gen activator receptor (uPAR), which cancer progression via uPA signaling. Therefore, the 
AE147 peptide-conjugated nanocarrier system may hold the potential for active targeting of 
metastatic tumors.
Methods: The AE147 peptide, an antagonist of uPAR, was conjugated to the PEGylated 
liposomes for targeting metastatic tumors overexpressing uPAR. Docetaxel (DTX), an antic-
ancer drug, was incorporated into the nanocarriers. The structure of the AE147-conjugated 
nanocarrier, its physicochemical properties, and in vivo biodistribution were evaluated.
Results: The DTX-loaded nanocarrier showed a spherical structure, a high drug-loading 
capacity, and a high colloidal stability. Drug carrying AE147 conjugates were actively taken 
up by the uPAR-overexpressing MDA-MB-231 cancer cells. In vivo animal imaging confirmed 
that the AE147-conjugated nanoparticles effectively accumulated at the sites of tumor 
metastasis.
Conclusion: The AE147-nanocarrier showed potential for targeting metastatic tumor cells 
overexpressing uPAR and as a nanomedicine platform for theragnosis applications. These 
results suggest that this novel nano-platform will facilitate further advancements in cancer 
therapy.
Keywords: tumor-targeting ligand, urokinase-type plasminogen activator, liposome, 
circulating tumor cell, metastatic tumor

Introduction
Cancer, a disease caused by the uncontrolled growth of abnormal cells in the body, 
is a major cause of death worldwide, accounting for approximately 9.6 million 
deaths in 2018.1 Although various anticancer therapies, including surgery at the 
primary tumor site, have decreased the mortality rate, the occurrence of cancer 
metastasis reflects treatment failure and a poor prognosis.2 In cancer metastasis, 
cancer cells disseminate from the primary tumor site to invade surrounding 
tissues, enter the vasculature as circulating tumor cells, and extravasate into 
distant sites to develop metastatic tumors.3–5 The cascading steps of cancer 
metastasis require stromal cells.6,7 Moreover, several protease systems including 
the urokinase-type plasminogen activator (uPA) and uPA receptor (uPAR) system 
have been recognized to play critical roles in the degradation of the basement 
membrane and the extracellular matrix, eventually resulting in cell invasion and 
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metastasis.7 The uPAR, a glycolipid-anchored membrane 
glycoprotein, is overexpressed in several aggressive can-
cers, and its overexpression is linked to the regulation of 
tumorigenesis, invasion, metastasis, and cancer cell 
survival.8–12 As uPA binds to uPAR followed by the 
internalization of the uPA-uPAR complex, targeting 
uPAR with uPA antagonists may be a promising strategy 
to inhibit metastasis. Furthermore, incorporating cyto-
toxic payloads with uPAR targeting moieties can lead to 
the internalization of the complex and intracellular deliv-
ery of the chemotherapeutic drugs, siRNAs, and protein- 
based therapeutics.11,13–15

Several therapeutics based on nanomaterials, including 
liposomes, micelles, albumin nanoparticles, and metal 
nanoparticles, have been widely developed for treating 
metastatic cancers. In particular, nanocarriers modified 
with ligands targeting specific metastatic cancer cell 
types have been designed for effective tumor targeting. 
The AE147 peptide, composed of 13 amino acids, is an 
antagonist of uPAR.9,16,17 The AE147 binds to uPAR by 
occupying its central cavity, causing subsequent internali-
zation via receptor-mediated endocytosis.18,19 Therefore, 
conjugating AE147 on therapeutic nanoformulations is 
expected to impart tumor specificity and improve cyto-
toxic drug delivery.

Liposomes are the most common and well-known nano-
carriers used for anticancer drug delivery.20–23 Moreover, 
certain modification methods can stabilize encapsulated mole-
cules, improve their cellular uptake by tumor cells via passive 
targeting, exhibit the enhanced permeability and retention 
(EPR) effect, and improve drug distribution at the target 
sites.23–28 Active cancer cell targeting has been achieved by 
the surface modification of nanoparticles. Attaching specific 
targeting moieties to the nanocarrier surface increases its 
accumulation and cellular uptake by the target cells.21,29–31 

Targeted delivery of therapeutics not only reduces the non- 
specific cytotoxicity but also increases drug accumulation in 
cancer tissues, resulting in improved effects.18,23,32

In this study, we developed targeting nanocarrier lipo-
somes to recognize uPAR expressed in metastatic cancer 
cells. The nanocarrier liposomes were prepared by the 
thin-film method using cholesterol, L-α-phosphatidylcho-
line, hydrogenated (Soy) (HSPC), and 1,2-distearoyl-sn-gly-
cero-3-phosphoethanolamine-N-[methoxy(polyethylene 
glycol)-2000] (DSPE-PEG). To target uPAR, AE147 was 
conjugated with DSPE-PEG via a stable amide group.33–35 

Docetaxel (DTX), an anticancer drug currently used to treat 

metastasis, was encapsulated within the hydrophobic lipid 
bilayer of AE147-conjugated liposomes and evaluated for 
therapeutic efficacy. In addition, for the in vivo imaging 
study, the fluorescent dye chlorin e6 (Ce6) was conjugated 
with the liposomes. The AE147-conjugated PEGylated lipo-
some targeted metastatic tumors overexpressing uPAR, the 
circulation tumor cells, as well as the soluble uPAR due to 
the increased systemic circulation time of the PEGylated 
liposomes.36,37 The liposomal formulation was characterized 
for its particle size, zeta potential, and morphology. In addi-
tion, we studied the targeting potential of AE147-conjugated 
liposomes in vitro and in vivo using fluorescence techniques. 
An outline of this study is depicted in Figure 1.

Materials and Methods
Materials
DSPE-PEG, DSPE-PEG-NH2, HSPC, and cholesterol 
were bought from Avanti Polar Lipids Inc. 
(Alabaster, AL, USA). Dimethyl sulfoxide (DMSO) 
and dimethyl formamide (DMF) were purchased from 
Honeywell Burdick & Jackson (Muskegon, MI, USA). 
Triethylamine (TEA), 1-ethyl-3-(3-dimethyl aminopro-
pyl) carbodiimide hydrochloride (EDC), DMSO-d6, 
and N-hydroxysuccinimide (NHS) were purchased 
from Sigma–Aldrich (St. Louis, MO, USA). 
Fluorescein isothiocyanate (FITC) conjugated DSPE- 
PEG (DSPE-PEG-FITC) was acquired from Nanocs 
(New York, NY, USA). DSPE-PEG-NHS was obtained 
from Nanosoft Biotechnology LLC (Winston Salem, 
NC, USA). Ce6 was bought from Frontier Scientific 
(Logan, UT, USA). KSD-cha-FskYLWSSK (cha = 
L-cyclohexyl alanine, s = D-form Ser, k = D-form 
Lys, acetate salt) (AE147) was purchased from 
Bankpeptide Biological Technology (Hefei, Anhui, 
China). DTX was purchased from Samyang Bio 
Pharmaceutical (Seongnam-si, Gyeonggi-do, South 
Korea). Human breast cancer cell lines MDA-MB- 
231 (KCLB No 30026) and MCF-7 (KCLB No 
30022) were obtained from the Korean Cell Line 
Bank (Seoul, South Korea). RPMI 1640 medium, 
fetal bovine serum, Dulbecco’s phosphate-buffered sal-
ine, trypsin-EDTA, and penicillin-streptomycin were 
acquired from Welgene (Gyeongsan-si, 
Gyeongsangbuk-do, South Korea). The Cell Counting 
Kit-8 (CCK-8) was purchased from Dojindo Molecular 
Technologies (Rockville, MD, USA). All other chemi-
cals used were of analytical grade.
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Synthesis of DSPE-PEG-AE147 and 
DSPE-PEG-Ce6
AE147 and DSPE-PEG-NHS were dissolved in DMSO at 
a molar ratio of 1:1 (total 5 mg/mL). After stirring for 1 h, 
TEA was added in excess, and the air was replaced with 
the nitrogen gas. After stirring at 25 °C for three days, the 
solution was dialyzed against distilled water (DW) for two 
days using a dialysis membrane (molecular weight cutoff 
[MWCO] 3.5 kDa; Spectrum Laboratories, Rancho 
Dominguez, CA, USA) to remove the by-products. 
DSPE-PEG-AE147 was lyophilized using an Operon 
FDB-5503 freeze dryer (Gyeonggi-do, Korea). The 
AE147 conjugation to DSPE-PEG was analyzed using a 
1H NMR 600 MHz spectrometer (JNM-ECZ600R, JEOL, 
Tokyo, Japan) and confirmed by comparing the Fourier 
transform infrared (FT-IR) peaks measured by an FT-IR 
spectrometer (Nicolet 6700, Thermo Fisher Scientific) in 
the spectral range of 400–4000 cm−1. Each spectrum was 
obtained with four scans and a resolution of 2 cm−1, and 
peak fitting was performed using OMNIC software 
(Thermo Nicolet Corporation, Madison, WI, USA).38

For real-time in vivo tumor imaging experiments, 
DSPE-PEG-NH2 was reacted with the carboxyl group of 
Ce6 (excess amount) via EDC/NHS activation.39 Ce6 was 
dissolved in 10 mL DMF and activated with EDC and 
NHS for 30 min at room temperature. DSPE-PEG-NH2 

was added to the solution, and a coupling reaction was 
carried out for 3 h at room temperature with N2 purging. 
Free reactants were removed by dialysis (MWCO 3.5 kDa) 
against DMSO for two days and then dialyzed against DW 
for two days. Finally, Ce6-conjugated DSPE-PEG was 
obtained by freeze-drying.

Preparation of Non-Targeting and 
Targeting Liposomes Encapsulating DTX
Liposomes were prepared using the thin-film hydration 
method followed by ultrasonication.20,40–42 For the prepara-
tion of non-targeting liposomes (Lipo), a mixture of HSPC: 
cholesterol:DSPE-PEG (molar ratio 11:8:1) was mixed with 
chloroform in a glass vial; the organic solvent was elimi-
nated using a rotary evaporator and vacuum dried overnight. 
For preparing targeting liposomes (AE-Lipo), the same 

Figure 1 Schematic conceptual representation of AE147-conjugated liposomes. 
Note: i.v. injection, intravenous injection.
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procedure, as for the Lipo preparation, was followed, except 
for the use of a mixture of DSPE-PEG and DSPE-PEG- 
AE147 at a molar ratio of 1:1. The lipid film was resus-
pended on DW, ultrasonicated for 30 min, and extruded 12 
times through two stacked Nuclepore polycarbonate filters 
(400 nm) using a stainless-steel extruder (Avanti Polar 
Lipids, Alabaster, AL, USA). For the preparation of FITC 
or Ce6-conjugated liposomes, the same procedure, as 
described for AE-Lipo, was followed except for the use of 
DSPE-PEG-FITC or DSPE-PEG-Ce6. Table 1 summarizes 
the composition ratio of all liposomes.

For the preparation of DTX-loaded liposomes (DTX/Lipo 
and DTX/AE-Lipo), DTX solution (1 mg/mL) in chloroform 
was mixed with the lipid stock solution (1 mg/mL) at a 1:9 
volume ratio and stirred for one day. After a dry film of the 
mixed solution was formed, it was hydrated, ultrasonicated, 
and extruded. The liposome solution was filtered using a 0.2 
μm-pore-size membrane filter to remove the unloaded drug 
and ensure the sterility of the liposome preparation.

Characterization of the Prepared 
Liposomes
To characterize liposome properties, we measured the 
effective hydrodynamic diameter, zeta potential, and par-
ticle size distribution by photon correlation spectroscopy 
using the Zetasizer Nano-ZS (Malvern instruments, 
Worcestershire, UK) equipped with the Multi Angle 
Sizing Option (BI-MAS).24,40 All samples were stabilized 
for 30 min before measurement. The zeta potential values, 
average particle size, and polydispersity index (PDI) were 
evaluated from three independent measurements for each 
sample (n = 3).

For the morphological evaluation, the prepared lipo-
somes were investigated using field emission-scanning 
electron microscope (FE-SEM; Sigma, Carl Zeiss 
Meditec AG, Jena, Germany), which avoided damage to 
electron beam-sensitive samples.43 The samples of 

liposomal solutions were ground on a glass slide and 
dried in vacuo. Ion-beam sputtered platinum coating was 
applied to the sample surface before acquiring the 
microphotographs.44

The concentration of DTX in DTX/Lipo and DTX/AE- 
Lipo was determined by performing high-performance 
liquid chromatography (Agilent 1200 series, Agilent 
Technologies Santa Clara, CA, USA).45 A reverse phase 
C18 column (ZORBAX Eclipse Plus C18, 4.6×150 mm, 
pore size 5 μm, Agilent Tech., CA, USA) was used, and 
the flow rate of the mobile phase was set at 1 mL/min. The 
mobile phase included a mixture of acetonitrile and DW 
(55:45, v/v%). The column effluents were detected at 230 
nm, and DTX concentrations were calculated using 
a linear calibration curve of the standard DTX solutions. 
The DTX loading capacity and efficiency of the prepared 
liposomes were calculated using the following equations:

Drug-loading capacity (wt %) = Weight of the drug in 
liposomes (mg)/Weight of the liposomes (mg) 
X 100 (Eq. 1)

Drug-loading efficiency (wt %) = Weight of the drug in 
liposomes (mg)/Weight of the drug initially added to the 
formulation (mg) X 100 (Eq. 2)

In vitro Cellular Uptake Study
The cellular uptake of liposomes by MDA-MB-231 and 
MCF-7 cells was evaluated by confocal microscopy and 
flow cytometry.12,13 To obtain confocal images, cells (4 × 
105 cells/well) were seeded in each confocal dish, and 
after 24 h, treated with FITC-conjugated AE-Lipo 
(FITC-AE-Lipo) and FITC-conjugated Lipo (FITC- 
Lipo). After 4 h incubation, the cells were washed three 
times with cold PBS and incubated with Vectashield® 

mounting medium with 4′,6-diamidino-2-phenylindole 
(Vector Laboratories, Burlingame, CA, USA) for 15 
min. The treated cells were covered with a confocal dish 
cover glass and analyzed under a confocal microscope 

Table 1 Molar Ratio of Components Used in All Liposomal Formulations

Sample HSPC Chol DSPE-PEG DSPE-PEG- AE147 DSPE-PEG- FITC DSPE-PEG- Ce6

Lipo 11 8 1 – – –

AE-Lipo 11 8 0.5 0.5 – –

FITC-Lipo 11 8 1 – 0.2 –
FITC-AE-Lipo 11 8 0.5 0.5 0.2 –

Ce6-Lipo 11 8 1 – – 1

Ce6-AE-Lipo 11 8 – 1 – 1

Abbreviations: Chol, cholesterol; Lipo, non-targeting liposomes; AE-Lipo, targeting liposomes; FITC-Lipo, FITC-conjugated Lipo; FITC-AE-Lipo, FITC-conjugated AE-Lipo; 
Ce6-Lipo, Ce6-conjugated Lipo; Ce6-AE-Lipo, Ce6-conjugated AE-Lipo.
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(LSM 510 Meta, Carl Zeiss AG, Jena, Germany). For flow 
cytometry analysis, both cell lines (4 × 105 cells/well) 
were seeded in six-well plates. The next day, cells were 
treated with FITC-AE-Lipo and FITC-Lipo for 4 h. The 
cells were washed three times with cold PBS, harvested, 
and subjected to the fluorescence-activated cell sorting 
(FACS) analysis using FACSCalibur flow cytometer and 
Cell Quest Pro software (BD Biosciences, San Diego, CA, 
USA).46

In vitro Cytotoxicity Assay
MDA-MB-231 and MCF-7 cells (8 × 103 cells/well) were 
seeded in 96-well plates 24 h prior to the cytotoxicity 
test.12,13 Free DTX (in 0.1% DMSO aqueous solution47), 
DTX/Lipo, and DTX/AE-Lipo in RPMI 1640 medium 
were prepared immediately before use. The growth med-
ium was removed from the 96-well plate and free DTX, 
DTX/Lipo, and DTX/AE-Lipo at different concentrations 
were added and incubated for 48 h. Cell cytotoxicity was 
assessed colorimetrically using the CCK-8, which contains 
a highly water-soluble tetrazolium salt that produces 
water-soluble formazan dye following reduction in the 
presence of electron mediators present in the viable cells. 
Briefly, 90 μL of fresh medium along with 10 μL of CCK- 
8 solution was added to each well, and the plates were 
incubated for an additional 2 h. The absorbance was read 
on the Flexstation 3 microplate reader (Molecular Devices, 
Sunnyvale, CA, USA) at 450 nm.46

In vivo Fluorescence Imaging
In vivo studies were performed on four-week-old female 
nude mice (BALB/c, nu/nu mice; Nara Biotech, Seoul, 
South Korea). The mice were maintained according to the 
guidelines of the protocol approved by the Institutional 
Animal Care and Use Committee of Chung-Ang 
University of Korea, and all experiments were performed 
in accordance with the relevant laws and institutional guide-
lines (National Institutes of Health guidelines, “Principles 
of laboratory animal care”, approval number: 2019–00121). 
The uPAR-overexpressing MDA-MB-231 cells were inocu-
lated into BALB/c nude mice by subcutaneous injection (5 
× 105 cells per mouse) and Ce6-labeled liposomes (at 
a molar ratio of 1 of Ce6-conjugated DSPE-PEG in each 
liposome) were injected intravenously via the tail vein 
when the tumor volume reached 100 mm3. The fluores-
cence-labeled organism bioimaging instrument (FOBI) 
fluorescence live imaging system (NeoScience, Suwon, 
South Korea) was used to obtain fluorescent tumor images 

for the mice. The mice were euthanized 24 h post-injection, 
and organs were harvested for further analysis.44 The results 
were analyzed by Student’s t test at a significance level of 
p<0.01.

Results and Discussion
DSPE-PEG-AE147 Synthesis
To target uPAR-overexpressing tumors, AE147 peptide 
was conjugated to DSPE-PEG-NHS by a coupling reaction 
in the presence of TEA (Figure 2A).48,49 The imide bond 
of DSPE-PEG-NHS changed to the amide bond by react-
ing with the amine side group of the N-terminus Lys of the 
13-mer peptide AE147. The conjugation of AE147 to 
DSPE-PEG-NHS was confirmed by the presence of a 
1H nuclear magnetic resonance peak at δ 7.1, consistent 
with the benzene ring of AE147 (Figure 2B). In addition, 
the formation of a stable amide bond by coupling reaction 
was confirmed by FT-IR analysis (Figure 2C).33–35

The spectra of DSPE-PEG-NHS and DSPE-PEG-AE147 
indicated that the 1713.73 cm−1 (imide bond) peak shifted to 
1628.90 cm−1 (amide bond) due to the coupling reaction.38 

Also, the conjugation of Ce6 to DSPE-PEG-NH2 was ana-
lyzed by the presence of a 1H nuclear magnetic resonance 
peak at δ 5.1, consistent with the vinyl of Ce6 (shown in 
Supplementary Figure S1).

Preparation and Characterization of 
Liposomes and DTX-Loaded Liposomes
PEGylated liposomes, also called stealth liposomes, exhibit 
improved physicochemical properties and performance in 
drug delivery applications, such as an increased hydrophili-
city, a decreased opsonization, and an increased circulatory 
half-life.23,24,27,28 For example, Doxil®, a well-known dox-
orubicin incorporating PEGylated liposome, has a prolonged 
half-life and improved antitumor efficacy.28,50 In the present 
study, the targeting moiety, AE147 peptide, was anchored on 
the surface of the PEGylated liposomal carrier to target 
uPAR-overexpressing tumors, such as MDA-MB 231 
derived tumors.12,13

The properties of Lipo and AE-Lipo are listed in Table 2. 
The Lipo with HSPC:cholesterol:DSPE-PEG (at a molar 
ratio of 55:40:5) showed a particle size of 92.6 ± 0.9 nm 
with approximately 0.2 PDI. The size of the AE-Lipo was 
slightly bigger (107.7 ± 1.3 nm) than that of Lipo, but had 
a similar PDI value. The zeta potentials were approximately 
−9.9 and −14.6 mV for Lipo and AE-Lipo, respectively. The 
difference in both the size and zeta potential of Lipo and AE- 
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Figure 2 (A) Synthesis scheme of DSPE-PEG-AE147. (B) 1H NMR spectra of DSPE-PEG-NHS and DSPE-PEG-AE147. (C) FT-IR spectra of AE147, DPSE-PEG-NHS, and 
DSPE-PEG-AE147.
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Lipo may be attributed to the anchored AE147 peptide and 
increased hydration of liposomal particles. DTX was 
selected as the anticancer drug for assessing payload deliv-
ery ability of targeting AE-Lipo. DTX, one of the most 
effective anticancer drugs, is widely used to treat tumors in 
multiple locations, including the stomach, breasts, prostate, 
and lungs.40,41,45 DTX-loaded liposomes had a slightly 
increased particle size and PDI compared to the unloaded 
liposomes (Table 2). The drug-loading efficiency of Lipo 
and AE-Lipo formulations was 80% and 71%, respectively. 
Reduced DTX-loading efficiency of AE-Lipo could be due 
to the increased hydrophilicity imparted by the hydrophilic 
AE147 peptides on the surface of liposomes. The particle 
distribution of DTX/AE-Lipo was mono-distributed, and the 
morphology indicated regular spherical particles of approxi-
mately 70 nm-diameter with smooth surfaces (Figure 3). 
This result is consistent with the previous hypothesis that 

AE147 conjugation could increase the hydration of lipo-
somes in the aqueous solutions and dehydration under the 
condition of the FE-SEM experiment, leading to 
a considerably smaller particle size.51,52 Furthermore, the 
formulated DTX/AE-Lipo showed high stability in aqueous 
conditions, without undergoing a change in particle size or 
precipitation for four weeks (shown in Supplementary 
Figure S2).

Cellular Uptake and in vitro Cytotoxicity 
of AE147-Conjugated Liposomes
The uPA-uPAR system plays a dominant role in tumorigen-
esis and metastasis and is overexpressed in metastatic tumor 
cells, such as breast cancer-derived MDA-MB-231 
cells.8,53–56 This suggests that high uPAR expression on 
cancer cells can be a marker for metastatic tumors and 

Table 2 Characterizations of All Liposome Formulations

Sample Size (nm) PDI Zeta Potential (mV) Loading Capacity (%) Loading Efficiency (%)

Lipo 92.6 ± 0.9 0.212 ± 0.008 −9.9 ± 0.45 N/A N/A
AE-Lipo 107.7 ± 1.3 0.196 ± 0.019 −14.6 ± 0.22 N/A N/A

DTX/Lipo 108.3 ± 1.1 0.243 ± 0.003 −12.3 ± 2.11 8.0 80

DTX/AE-Lipo 129.5 ± 2.4 0.247 ± 0.007 −14.2 ± 2.71 7.1 71
Ce6-Lipo 124.9 ± 1.9 0.168 ± 0.024 −15.1 ± 0.26 N/A N/A

Ce6-AE-Lipo 121.3 ± 1.9 0.189 ± 0.002 −19.7 ± 0.67 N/A N/A

Abbreviations: Lipo, non-targeting liposomes; AE-Lipo, targeting liposomes; DTX/Lipo, DTX-loaded liposomes; DTX/AE-Lipo, DTX-loaded targeting liposomes; Ce6-Lipo, 
Ce6-conjugated Lipo; Ce6-AE-Lipo, Ce6-conjugated AE-Lipo; N/A, Not available.

Figure 3 FE-SEM image and particle size distribution (see inset) of DTX/AE-Lipo. 
Abbreviation: DTX/AE-Lipo, DTX-loaded targeting liposomes.
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used for targeted delivery of anticancer drugs to these cells. 
AE147 derived from a functionally identified uPA sequence 
binds to uPAR with a Kd of 16.4 nM.9 Targeting the cavity 
present in uPAR was suggested as a promising strategy for 
treating the tumors overexpressing uPAR. Moreover, the 
pathway of receptor-mediated endocytosis is more effective 
than the passive endocytosis for the intracellular uptake of 
liposomes.9,22,23 Thus, we attached AE147 on the liposomal 
surface via amide bond to enhance the efficacy of these 
liposomes as drug delivery vehicles.

Flow cytometry and confocal microscopy were used to 
determine the efficiency of the cellular delivery of AE147 

conjugated liposomes to the MDA-MB-231 cells; MCF-7 
cells, which do not express uPAR,13 were used as a control. 
Confocal fluorescence imaging showed no significant differ-
ence in FITC fluorescence intensity of MCF-7 cells treated 
with FITC-Lipo or FITC-AE-Lipo, while FITC fluorescence 
intensity of uPAR-overexpressing MDA-MB-231 cells treated 
with FITC-AE-Lipo was higher than FITC fluorescence inten-
sity of cells incubated with FITC-Lipo (Figure 4A and B). 
FITC-AE-Lipo demonstrated a uniform distribution through-
out cancer cells. Furthermore, the enhanced uptake of FITC- 
AE-Lipo was confirmed by flow cytometry analysis. Flow 
cytometry results demonstrated a similar uptake of FITC- 

Figure 4 Confocal microscopy images ((A) MCF-7 cell, (B) MDA-MB 231 cell) and flow cytometry analysis ((C) MCF-7 cell, (D) MDA-MB 231 cell) treated with FITC-Lipo 
or FITC-AE-Lipo for 4 h. 
Note: *FL1-H indicates the relative intensity of fluorescence. 
Abbreviations: FITC-Lipo, FITC-conjugated Lipo; FITC-AE-Lipo, FITC-conjugated AE-Lipo.
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Lipo and FITC-AE-Lipo by MCF-7 cells (Figure 4C). 
However, the cellular uptake of FITC-AE-Lipo in MDA- 
MB-231 cells was ~2.4 times higher than that of FITC-Lipo 
(Figure 4D). These results may be due to the AE147 moiety- 
conjugated delivery platform, which promotes cellular uptake 
via the ligand–receptor interaction in uPAR-overexpressing 
cancer cells. DTX-loaded liposomes of approximately 130 
nm particle size (Table 2) were evaluated for their in vitro 
anticancer effect. AE147-conjugated liposomes are more 
likely to be taken up by the tumor cells via uPAR-mediated 
endocytosis, leading to enhanced anticancer activity.10,57,58

The cytotoxicity of DTX/Lipo and DTX/AE-Lipo against 
MDA-MB-231 and MCF-7 cells was evaluated using a cell 
viability test. The cells were treated with equivalent concen-
trations of DTX, DTX/Lipo and DTX/AE-Lipo for 48 h and 
the viability of the treated cells was assessed using CCK-8. In 
MCF-7 cells, free DTX showed stronger anticancer activity 
than DTX/Lipo or DTX/AE-Lipo (shown in Supplementary 
Figure S3). However, in uPAR-overexpressing MDA-MB- 
231 cells, DTX/AE-Lipo (IC50 4.61 µg/mL) achieved better 
anticancer activity than free DTX (IC50 7.18 µg/mL) or 

DTX/Lipo (IC50 8.59 µg/mL), indicating that the addition 
of the targeting moiety AE147 could improve the therapeutic 
efficacy of the drug against uPAR-overexpressed tumors 
(Figure 5, and shown in Supplementary Table S1).

Collectively, these results indicate that AE147 conju-
gation to nanoparticles, such as liposomes, may be an 
effective strategy to improve the delivery of anticancer 
agents in uPAR-overexpressing tumors, especially those 
associated with metastatic cancer. Furthermore, this 
approach of active targeting via ligand–receptor mediation 
can be used in diagnostic applications, such as the detec-
tion of circulating tumor cells and metastasis.9,11,13,59

In vivo Imaging Analysis
To demonstrate tumor-targeting via the AE147-uPAR interac-
tion, the time-dependent biodistribution of the prepared lipo-
somes was evaluated in an MDA-MB-231 xenograft mouse 
model. Free Ce6, Ce6-labeled Lipo (Ce6-Lipo), and Ce6- 
labeled AE-Lipo (Ce6-AE-Lipo) were intravenously injected 
into uPAR-overexpressing, MDA-MB-231 cells-derived 
tumor bearing, nude mice. Ce6 is one of the most widely 

Figure 5 Cell viability of MDA-MB-231 cells treated with free DTX (1 mg/mL DTX solution in DMSO), DTX/Lipo, and DTX/AE-Lipo when exposed to a series of 
equivalent concentrations of DTX for 48 h. 
Abbreviations: DTX/Lipo, DTX-loaded liposomes; DTX/AE-Lipo, DTX-loaded targeting liposomes.
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used second-generation photosensitizers in photodynamic 
therapy with high efficacy and low dark toxicity.60,61 As 
shown in Figure 6, Ce6-Lipo and Ce6-AE-Lipo gradually 
increased the fluorescence intensity at the tumor site, 

compared to the free Ce6. The PEGylated liposome has longer 
circulation time in the blood; moreover, these liposomes avoid 
the immune system due to the slightly negative charge and 
reduced degree of opsonization imparted by PEG62–64 and can 

Figure 6 Non-invasive in vivo fluorescent imaging of free Ce6, Ce6-Lipo, and Ce6-AE-Lipo after i.v. injection via the tail vein of MDA-MB-231 cells-derived tumor-bearing 
Balb/c nude mice. Whole body imaging at predetermined time points (0, 1, 3, 6, 12, and 24 h) after i.v. injection at the 24 h time point. 
Abbreviations: Ce6-Lipo, Ce6-conjugated Lipo; Ce6-AE-Lipo, Ce6-conjugated AE-Lipo; i.v. intravenous.

Figure 7 (A) Ex vivo optical and fluorescent imaging of (i) heart, (ii) lungs, (iii) kidneys, (iv) spleen, (v) liver, and (vi) tumor tissues obtained 24 h post-injection of liposomes 
(Free Ce6, Ce6-Lipo, and Ce6-AE-Lipo). (B) Quantitative FI of tumors and main organs (n = 3). (C) Relative FI of the tumor to liver. 
Notes: **p < 0.01, Student’s t-test, Ce6-AE-Lipo versus Ce6-Lipo in the tumor. 
Abbreviations: Ce6-AE-Lipo, Ce6-conjugated AE-Lipo; Ce6-Lipo, Ce6-conjugated Lipo; FI, fluorescence intensity.
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accumulate at tumor sites due to the EPR effect.20,27,40 In 
addition, to determine the targeting ability of AE147, nude 
mice were euthanized, and the main organs as well as tumors 
were excised 24 h post-injection (Figure 7). The absolute 
fluorescence intensity of Ce6 of each system was remarkably 
higher in the liver compared to that in the other organs (shown 
in Supplementary Figure S4). However, when the intensity 
was normalized by the organ area, the relative fluorescence 
intensity of tumors treated with Ce6-AE-Lipo was 3.50 and 
2.22 times higher than those treated with free Ce6 and Ce6- 
Lipo, respectively. This indicated that AE147-conjugated lipo-
somes were more efficiently transported to the tumor site due 
to active targeting.

Conclusion
In this study, AE147-conjugated liposomes were prepared and 
evaluated for their potential as a drug delivery nano-platform 
to actively target uPAR-overexpressing metastatic tumors. 
HSPC, cholesterol, and DSPE-PEG at a molar ratio of 
55:40:5 were used to improve the DTX-loading capacity and 
liposomal stability. The AE147 moiety was conjugated to the 
liposomes to enhance their targeting efficacy. The hydropho-
bic drug DTX was successfully loaded within the bilayer lipid 
membrane of liposomes with an average size of approximately 
130 nm. Compared to the free DTX, DTX/AE Lipo demon-
strated improved anticancer effects by showing a 64% lower 
IC50 value (4.61 µg/mL) against uPAR-overexpressing MDA- 
MB-231 cancer cells. Also, the AE147-conjugated liposomes 
showed improved tumor-targeting ability. Based on these find-
ings, the AE147-conjugated liposomes are a potential delivery 
nano-platform for the treatment of metastatic tumors.
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