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Abstract

Functional magnetic resonance imaging studies have documented the resting

human brain to be functionally organized in multiple large-scale networks, called

resting-state networks (RSNs). Other brain imaging techniques, such as electroen-

cephalography (EEG) and magnetoencephalography (MEG), have been used for

investigating the electrophysiological basis of RSNs. To date, it is largely unclear

how neural oscillations measured with EEG and MEG are related to functional

connectivity in the resting state. In addition, it remains to be elucidated whether

and how the observed neural oscillations are related to the spatial distribution of

the network nodes over the cortex. To address these questions, we examined

frequency-dependent functional connectivity between the main nodes of several

RSNs, spanning large part of the cortex. We estimated connectivity using band-

limited power correlations from high-density EEG data collected in healthy partici-

pants. We observed that functional interactions within RSNs are characterized by

a specific combination of neuronal oscillations in the alpha (8–13 Hz), beta

(13–30 Hz), and gamma (30–80 Hz) bands, which highly depend on the position

of the network nodes. This finding may contribute to a better understanding of

the mechanisms through which neural oscillations support functional connectivity

in the brain.
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1 | INTRODUCTION

Functional magnetic resonance imaging (fMRI) studies docu-

mented that the resting human brain is functionally organized in

several large-scale networks, so-called resting-state brain net-

works (RSNs) (Damoiseaux et al., 2006; Fox & Raichle, 2007;

Raichle et al., 2001). These RSNs were named in analogy to topo-

logically corresponding brain networks that are modulated during
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task performance. For instance, RSNs such as the default-mode

(DMN), the dorsal (DAN) and the ventral (VAN) attention, the lan-

guage (LN), the somatomotor (SMN) and the visual (VN) networks

are typically reported in resting-state fMRI studies (Damoiseaux

et al., 2006; Smitha et al., 2017). Considering that fMRI provides only

an indirect measure of neural activity, other brain imaging tech-

niques such as electroencephalography (EEG) and magnetoencepha-

lography (MEG) were also proposed to study RSNs (Brookes

et al., 2014; de Pasquale et al., 2010; Liu, Farahibozorg, Porcaro,

Wenderoth, & Mantini, 2017; Marino et al., 2018; Samogin, Liu,

Marino, Wenderoth, & Mantini, 2019; Siems, Pape, Hipp, &

Siegel, 2016; Tang et al., 2017; Yuan et al., 2016). Although EEG and

MEG have lower spatial resolution compared to fMRI, they are bet-

ter suited to investigate the electrophysiological correlates of func-

tional connectivity in RSNs. Indeed, they provide a direct measure

of neural activity and their temporal resolution is sufficiently high

to capture fast neural oscillations in the brain (de Pasquale

et al., 2010; Mantini, Perrucci, Gratta, Romani, & Corbetta, 2007;

Marino, Arcara, Porcaro, & Mantini, 2019). Neural activity mea-

sured using EEG/MEG is classified based on the frequency of its

oscillations, in the delta (1–4 Hz), theta (4–8 Hz), alpha (8–13 Hz),

beta (13–30 Hz), and gamma (30–80 Hz) bands (Atasoy, Deco,

Kringelbach, & Pearson, 2018; Buzsáki, 2006; Roopun et al., 2008).

The role of neural oscillations in supporting brain network connec-

tivity is yet unclear. By using simultaneous EEG-fMRI in partici-

pants at rest, we revealed that fMRI activity in brain networks were

correlated with power fluctuations of neuronal oscillations, primar-

ily in the alpha, beta and gamma bands (Mantini et al., 2007). More

recent MEG and high-density EEG (hdEEG) studies (Samogin

et al., 2019; Tang et al., 2017), which focused on the DMN, con-

firmed that the alpha band oscillations play a pivotal role in

supporting functional interactions between all network nodes, and

documented that beta and gamma band oscillations support inter-

actions between relatively closer node pairs (Samogin et al., 2019).

It remains to be elucidated whether and to which extent the find-

ings obtained for the DMN generalize to other RSNs. Several stud-

ies suggested that oscillations at higher and lower frequencies may

support short- and long-range connectivity patterns, respectively

(Jones, Pinto, Kaper, & Kopell, 2000; Kopell, Ermentrout,

Whittington, & Traub, 2000; Lopes da Silva, 2013). Further elabo-

rating on this concept, we posited that the neural oscillations

supporting functional connectivity between network nodes may

relate to their spatial distribution over the cortex (Ganzetti &

Mantini, 2013). In the present study, we investigated frequency-

dependent connectivity within several RSNs using hdEEG, thereby

extending the work we recently conducted for the DMN (Samogin

et al., 2019). We tested the hypothesis that connectivity in the

alpha band is the most prominent in the resting state condition not

only for the DMN but also for other RSNs. A second hypothesis

that was tested, however, was that other frequency bands may

show the largest difference between within-network and between-

network connectivity.

2 | MATERIALS AND METHODS

2.1 | EEG data collection

EEG data were collected in 19 healthy young adult volunteers (age

28 ± 6 years, 14 females) during an eyes-open resting state condition.

They were previously used in one of our previous studies (Samogin

et al., 2019). Ethical approval was granted by the Ethics Committee of

ETH Zurich. The experiment was performed in accordance with the rel-

evant guidelines and regulations, and informed consent was obtained

from all participants. For each participant, we recorded hdEEG signals

for 5 min at 1000 Hz sampling rate using a 256-channel HydroCel Geo-

desic Sensor Net by Electrical Geodesics (Eugene, OR). Vertical electro-

oculogram (vEOG), horizontal electrooculogram (hEOG) and

electromyogram (EMG) were collected in addition to the EEG signals.

Positions of the EEG sensors as well as of three landmarks (nasion, left

and right preauricular) were localized using a Geodesic Photogramme-

try System (Russell, Eriksen, Poolman, Luu, & Tucker, 2005). Moreover,

we acquired in a separate session a T1-weighted whole-head anatomi-

cal image using a Philips Ingenia 3T Magnetic Resonance (MR) scanner

(Best, The Nederlands) with a turbo field echo sequence. The scanning

parameters were: TR = 8.25 ms, TE = 3.8 ms, flip angle = 8�, voxel size

= 1 mm3 isotropic.

2.2 | fMRI data collection

Eyes-open resting state fMRI data were collected in a different cohort

of 24 healthy volunteers (25.5 ± 5.5 years, 15 females). These data

have been already used in previous studies (Liu, Ganzetti,

Wenderoth, & Mantini, 2018; Mantini et al., 2012; Mantini &

Vanduffel, 2013; Samogin et al., 2019). Ethical approval was granted

by the Ethics Committee of Chieti University. The experiment was

performed in accordance with the relevant guidelines and regulations,

and informed consent was obtained from all participants. Functional

images were obtained using a Philips Achieva 3T MR scanner. More

specifically, T2*-weighted echo-planar imaging (EPI) with blood

oxygen level dependent (BOLD) contrast was used. The scanning

parameters were the following: 32 axial slices, 230 × 230 in-plane

matrix, TR = 2000 ms, TE = 35 ms, flip angle = 90�, voxel size =

2.875 × 2.875 × 3.5 mm3, 300 dynamic volumes. Furthermore, we

acquired a 3D high-resolution T1-weighted whole-head anatomical

image using an MP-RAGE sequence, used as anatomical reference.

The scanning parameters were: TR = 9.1 ms, TE = 3.7 ms, flip angle =

8�, voxel size = 0.938 × 0.938 × 1 mm3.

2.3 | EEG data analysis

We used an automated analysis workflow for studying frequency-

dependent functional connectivity from EEG data. This workflow was

used in a previous study (Samogin et al., 2019), and consisted of four
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main steps: EEG signals preprocessing, individual head model creation,

reconstruction of EEG source space data, seed-based connectivity

analysis.

2.3.1 | EEG signals preprocessing

The first step was the cleaning of the EEG data, to correct bad chan-

nels and to attenuate noise and biological artifacts (Liu et al., 2017;

Samogin et al., 2019). First of all, we detected channels with low signal

quality and label them as “bad channels.” To this end, we used an

automated procedure that combines information from two different

parameters. The first parameter was the minimum Pearson correlation

of the signal in the band (1–80 Hz) against all the signals from the

other channels. The second parameter was the noise variance in the

band 200–250 Hz, where the contribution of the EEG signal can be

considered negligible. We defined bad channels those channels for

which at least one of the two channel-specific parameters was an out-

lier as compared to the total distribution of values. To ensure robust-

ness of the detection, the threshold to define an outlier was set to m

+ 4s, where m was the average value and s was the standard devia-

tion. Subsequently, the signal of each bad channel was reconstructed

by spatially interpolating the neighboring channels, as defined using

the FieldTrip toolbox (http://www.fieldtriptoolbox.org/). Next, we

band-pass filtered the resulting EEG data in the band (1–80 Hz) using

EEGLab (https://sccn.ucsd.edu/eeglab), and we re-referenced them in

average reference, by removing the mean value across channels (Liu

et al., 2015). We attenuated ocular and muscular artifacts that were

present in the EEG recordings by using independent component anal-

ysis (ICA) (D. Mantini, Franciotti, Romani, & Pizzella, 2008). Specifi-

cally, we used a fast fixed-point ICA (FastICA) algorithm (http://

research.ics.aalto.fi/ica/fastica) with deflation approach and hyper-

bolic tangent as contrast function (Hyvarinen, 1999) to estimate inde-

pendent components (ICs), as well as the weights with which those

ICs were mixed in the data. The ICs associated with the artifacts

(or artifactual ICs) were automatically identified using the artifact

detection solution implemented in (Liu et al., 2017). This relies on the

following parameters: 1) correlation of the power of the IC with the

power of vEOG, hEOG and EMG signals; 2) the coefficient of determi-

nation obtained by fitting the IC power spectrum with a 1/f function;

3) the kurtosis of the IC time-course. An IC was classified as artifactual

if at least one of those parameters was above its specific threshold,

set in accordance with previous studies (de Pasquale et al., 2010; Liu

et al., 2017; Dante Mantini, Mantini, Corbetta, Perrucci, Romani, &

Del Gratta, 2009). The artifact-corrected EEG signals were obtained

by linearly mixing the ICs that were not classified as artifactual, with

the corresponding weights estimated by ICA.

2.3.2 | Individual head model creation

A realistic head model was reconstructed from the anatomical

MR image, which was previously segmented in 12 different

compartments, and the EEG sensors positions, which were rigidly co-

registered to the head contour (Liu et al., 2017; Samogin et al., 2019).

On the layers corresponding to cortical, subcortical, and cerebellar

gray matter, a 3D regular 6 mm grid was overlapped in order to define

all the possible dipole sources. Conductivity values were chosen based

on previous literature (Haueisen, Ramon, Eiselt, Brauer, & Nowak,

1997). Finally, the whole-head finite element head model was gener-

ated by using SimBio (Wolters, Grasedyck, Anwander, & Hackbusch,

2004; Ziegler et al., 2014). Based on this head model, a leadfield

matrix expressing the linear relationship between scalp EEG data and

source-space neural activity was calculated.

2.3.3 | Reconstruction of EEG source space data

The exact low-resolution brain electromagnetic tomography

(eLORETA) algorithm was used to compute the cortical three-

dimensional distribution of current density from processed scalp EEG

data (Pascual-Marqui et al., 2011). The algorithm, which also used the

leadfield matrix as input, estimated source-space neural activity in a

6 mm homogeneous grid constrained to the gray matter.

2.3.4 | Seed-based connectivity analysis

We examined connectivity between the nodes of six RSNs, which

have been most commonly investigated in previous studies, and

cover together large part of the cortical surface: DMN, DAN, SMN,

VN, VAN, and LN. Among these RSNs, the last two are strongly

lateralized, whereas the others are bilateral. The main nodes of the

RSNs were selected based on previous studies (de Pasquale

et al., 2012; Grootswagers, Cichy, & Carlson, 2018; D. Mantini

et al., 2007; Samogin et al., 2019), imposing a minimum distance of

15 mm between them to minimize the spurious effects of signal

leakage. Accordingly, 21 nodes were defined in the Montreal

National Institute (MNI) space (Table S1 and Figure 1). The node

coordinates were projected to individual space. For each of them, a

spherical region of interest (ROI) with 6 mm radius was defined.

Time-courses corresponding to voxels in the gray-matter were

decomposed in the time-frequency domain using the short-time

Fourier transform. We calculated the power spectrum of each ROI

in the range (1–80 Hz), and then reconstructed the power spectrum

of each RSN by averaging those constituting its ROIs. From the RSN

power spectra, we extracted the power in the delta (1–4 Hz), theta

(4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–80 Hz)

bands. For each of these bands, we tested whether the power of

pairs of RSNs was different, by using a paired two-tailed t-test. The

false discovery rate (FDR) method (Benjamini & Hochberg, 1995)

was used to account for multiple comparisons across bands and

RSNs, its significance level was set to q < 0.001. Next, EEG connec-

tivity was measured using power envelope correlations between

orthogonalized signals (Hipp, Hawellek, Corbetta, Siegel, &

Engel, 2012). Pearson correlations were calculated on the

SAMOGIN ET AL. 5189

http://www.fieldtriptoolbox.org/
https://sccn.ucsd.edu/eeglab
http://research.ics.aalto.fi/ica/fastica
http://research.ics.aalto.fi/ica/fastica


logarithmic-transformed signal-orthogonalized power time-courses.

These correlations were then transformed to z-values using the

Fisher transform (de Pasquale et al., 2012; Hipp et al., 2012). Con-

nectivity maps corresponding to the delta, theta, alpha, beta, and

gamma brain oscillations were reconstructed by averaging the z-

values calculated for each individual frequency within the relevant

range. Connectivity maps were registered to MNI space to assess

the statistical significance of the connectivity results across partici-

pants. Specifically, we performed a one-sample t test for each fre-

quency band on the EEG connectivity maps in MNI space. The FDR

value q was calculated to account for multiple comparisons and its

significance level was set to q < 0.05. Then, we examined the EEG

connectivity profiles between pairs of RSNs, for each frequency

band. In particular, we defined intra-network connectivity (IntraNC)

as the average connectivity between pairs of ROIs within a specific

network. Similarly, inter-network connectivity (InterNC) was calcu-

lated as the average connectivity between all the possible pairs of

ROIs belonging to two different networks (Newton, Morgan, Rog-

ers, & Gore, 2011). Frequency-specific IntraNC and InterNC values,

respectively, were averaged within the five frequency bands of

interest (delta, theta, alpha, beta, and gamma). For each frequency

band and for each pair of RSNs, we then regressed out the differ-

ence in power from the connectivity values. In order to test for the

effects of frequency band and network on IntraNC (and InterNC)

values, we used a two-way analysis of variance (ANOVA). Further-

more, a two-tailed paired t-test was performed on IntraNC and

InterNC values, for each frequency band and each RSN. The FDR

method was used to account for multiple comparisons, and the sig-

nificance level was set to q < 0.05.

2.4 | fMRI data analysis

FMRI data were preprocessed using standard procedures for func-

tional connectivity analyses, including: head motion correction, regis-

tration to brain anatomy, band-pass filtering (0.01–0.1 Hz), regression

of head motion (3 translation and 3 rotation parameters), white mat-

ter, cerebrospinal fluid and global signals, and spatial smoothing at

6 mm full width half maximum (de la Cruz et al., 2019). Seed coordi-

nates were projected in individual MR space and around each coordi-

nate a spherical ROI was defined, with 6 mm radius. FMRI

connectivity maps were calculated by correlating the fMRI time-

course of the seed ROI with the time-courses of all the voxels in the

gray matter. fMRI connectivity maps of each individual were then reg-

istered to MNI space, and a group-level connectivity map was

obtained by calculating a one-sample t-test across them. The FDR

value q was calculated to account for multiple comparisons, and its

significance level was set to q < 0.05.

2.5 | Comparison of EEG and fMRI
connectivity maps

Spatial matching of EEG and fMRI connectivity maps calculated using

the same seed was achieved quantitatively using the dice similarity

index (DSI) (Dice, 1945). The EEG and fMRI connectivity maps were

binarized using the significance level q < 0.05 as threshold, such that

the spatial overlap could be quantified using DSI. The statistical signif-

icance of DSI values was assessed using a Monte Carlo approach with

300 iterations. For each iteration, surrogate EEG source signals with

F IGURE 1 Anatomical positions of the 21 seeds used in the study, subdivided into the corresponding networks: Default mode network (DMN,
green); Dorsal attention network (DAN, light blue); Ventral attention network (VAN, pink); Language network (LN, dark blue); Somatomotor network
(SMN, yellow); Visual network (VN, red). MNI coordinates can be found in Table S1, whereas the full names are listed here: Posterior cingulate
cortex (PCC), Medial prefrontal cortex (MPFC), Left angular gyrus (lANG), Right angular gyrus (rANG); Left Frontal Eye Field (lFEF), Right Frontal
Eye Field (rFEF), Left Inferior Parietal Sulcus (lIPS), Right Inferior Parietal Sulcus (rIPS); Right Temporo-Parietal Junction (rTPJ), Right Inferior
Frontal Gyrus (rIFG); Left Temporo-Parietal Junction (lTPJ), Left Inferior Frontal Gyrus (lIFG); Left Supplementary Motor Area (lSMA), Left Primary
Somatosensory Cortex (lS1), Right Primary Somatosensory Cortex (rS1), Left Secondary Somatosensory Cortex (lS2), Right Secondary
Somatosensory Cortex (rS2); Left human ventral Visual 4 area (lV4v), Right human ventral Visual 4 area (rV4v), Left dorsal Visual 2 area (lV2d),
Right dorsal Visual 2 area (rV2d)
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similar frequency content were generated using the iterative ampli-

tude adjusted Fourier transform (IAAFM) method (Schreiber &

Schmitz, 1996). With this new time-course, a pseudo-EEG connectiv-

ity map was produced using the same approach used for real source-

localized EEG activity. Subsequently, the DSI between pseudo-EEG

and fMRI connectivity maps was calculated and logged. This process

yielded a total of 300 DSI values, which were used as “null-distribu-

tion” to calculate a probability associated with the true DSI between

EEG and fMRI connectivity maps.

3 | RESULTS

The six RSNs under investigation had relatively similar power spectral

density profile, characterized by stronger values in the delta band, a

prominent peak in the alpha band and a smaller one in the beta band

(Figure 2). Despite this overall similarity in power spectral density pro-

file, the RSN power was found to be significantly different in specific

frequency bands (Figure 3). In particular, the DMN had significantly

larger power than DAN in delta (p = .0001), beta (p < .0001), and

gamma (p < .0001) bands, and than VN in the theta band (p = .0003).

In the gamma band, the power of DAN was significantly lower than

that of VAN (p = .0001) and LN (p = .0006), respectively, and the

power of VAN was significantly larger than that of SMN (p = .0003).

Finally, DAN and VAN had significantly different power not only in

the gamma, but also in the delta band (p = .0006).

When analyzing network connectivity profiles (Figure 4 and

Figure S1), we found that they differed according to the frequency

band considered. For each network, IntraNC was higher than InterNC

for specific frequency bands. For example, DMN, SMN, and VN

showed higher values in the alpha band for IntraNC than for InterNC.

Conversely, IntraNC values peaked for VAN and LN in the gamma

band and for DAN in the beta band. Within the same frequency band,

the InterNC values largely varied, highlighting different coupling

strengths between pairs of networks.

ANOVA tests on IntraNC and InterNC values (Figure 5 and

Figure S2), revealed large variability across frequency bands

(p < .001, for both IntraNC and InterNC), but not RSNs (p = .794

and p = .799 for IntraNC and InterNC, respectively). Post hoc

paired t tests between pairs of frequency bands showed that both

IntraNC and InterNC values were larger (q < 0.001) in the alpha

band than in any other band (Figure S3). Moreover, IntraNC and

InterNC values were larger (q < 0.001) in the theta band as com-

pared with the beta and gamma bands, respectively. InterNC in the

delta band was lower from that in theta and gamma bands (both

q < 0.001). In addition, IntraNC was significantly larger than

InterNC in the alpha, the beta, and the gamma frequency bands for

all the networks (Figure 6). In particular, the strongest differences

between IntraNC and InterNC values was reached in the alpha

band for DMN (p = .0242, q = 0.0908), SMN (p = .0011,

q = 0.0335) and VN (p = .0100, q = 0.0562), in the beta band for

DAN (p = .0112, q = 0.0562) and in the gamma band for VAN

(p = .0055, q = 0.0549) and LN (p = .0089, q = 0.0562).

Notably, the EEG connectivity maps obtained for individual seeds,

reconstructed in the frequency bands for which the difference

between IntraNC and InterNC was the strongest, qualitatively and

quantitatively matched the fMRI connectivity map calculated using

the same seed (Figure 7 and Figure S4). Connectivity was relatively

lower in the EEG as compared to the fMRI maps, particularly for brain

regions around the seed. However, the EEG maps showed the seed

region to be connected to topologically-distant brain regions, typically

coherent with those emerging from the fMRI analysis.

4 | DISCUSSION

The results of our study indicated that hdEEG can be reliably used to

map RSNs in the human brain, and the source localization of hdEEG sig-

nals provides sufficient spatial resolution to disentangle brain regions

F IGURE 2 Power spectra of the six resting state networks. In
each panel, the black line represents the average power across the
participants, whereas the surrounding gray shaded area corresponds
to the standard error of the mean
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F IGURE 3 Comparison between power spectra of the RNSs. For all network pairs, a paired two-tailed t test was used on the power values
averaged over the frequencies within each band (delta, theta, alpha, beta, gamma). Differences that are significant at p < .001 are marked with an
asterisk, whereas those at q < 0.001 with a diamond

F IGURE 4 Functional connectivity values between pairs of networks in the five frequency bands (delta, theta, alpha, beta and gamma). In
each panel, group average connectivity values on the diagonal are calculated from the intra-network connectivity (IntraNC) values, whereas the
upper (lower) triangular matrix correspond to the inter-network connectivity (InterNC) measures, both averaged over the subjects
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involved in different networks. We were therefore able to use this

technique to investigate which neural oscillations support connectivity

in RSNs. Notably, hdEEG connectivity was generally most prominent in

the alpha band, but the largest similarity with fMRI connectivity was

obtained for some networks when oscillations in the beta and gamma

frequency bands were considered. In general, the neural oscillations for

which the difference between IntraNC and InterNC values was the

strongest seemed to depend on the specific network topology. We will

elaborate on the points above in the following paragraphs.

4.1 | Imaging of RSNs using hdEEG

In this study, we measured functional connectivity of source-

reconstructed hdEEG data, between a set of nodes of interest distributed

within six RSNs (Figure 1). To this end, we used an analysis workflow for

hdEEG preprocessing, source localization and seed-based connectivity

analysis, which was previously validated using a single RSN, specifically

the DMN (Samogin et al., 2019). The reconstructed connectivity maps

for all RSNs showed great variability depending on the frequency band

in which they were calculated. Notably, some of those connectivity maps

were remarkably similar with the corresponding spatial maps obtained

from the fMRI data set (Figure 7). This finding confirmed that seed-based

connectivity analysis could be performed using hdEEG, as an alternative

to the commonly used MEG (M. J. Brookes et al., 2011; O'Neill, Barratt,

Hunt, Tewarie, & Brookes, 2015) and fMRI techniques (Biswal, Zerrin

Yetkin, Haughton, & Hyde, 1995; Lee, Smyser, & Shimony, 2013; van

den Heuvel & Hulshoff Pol, 2010). The limited costs and the portability

of hdEEG systems may open important avenues for a more widespread

use of this technique, not only to address basic neuroscientific questions

but also for applied or clinical research.

4.2 | Role of alpha oscillations in network
connectivity

Regardless of the network, we found higher IntraNC and InterNC

values in the alpha band compared to all the other frequency bands

(Figure 5 and Figure S3). This may be due to the fact that alpha is the

rhythm dominating brain activity at rest (de Munck et al., 2007;

Marino et al., 2019; Roopun et al., 2008; Tyvaert, LeVan, Grova,

Dubeau, & Gotman, 2008). It may indeed be argued that there is a

common generator that activates neural assemblies spread all over

the cortex and increases the true connectivity between them. A struc-

ture that is extensively connected with the cortex (Behrens

et al., 2003; Behrens, Berg, Jbabdi, Rushworth, & Woolrich, 2007) and

is known to strongly contribute to the generation of alpha oscillations

is the thalamus (de Munck et al., 2007; Hughes & Crunelli, 2005;

Tyvaert et al., 2008). This brain region has been recognized to be a

promoter of global communication and information integration across

the brain (Malekmohammadi, Elias, & Pouratian, 2015; Wang, Leong,

Chan, Liu, & Wu, 2019). Indeed, brain oscillations in the alpha band

spread through thalamocortical connections to stimulate local activity

F IGURE 5 Box plot of all the intra-network connectivity (IntraNC,
blue) and inter-network connectivity (InterNC, red) values for the
19 participants, calculated in each frequency band. Correlation values
are Fisher-transformed. Outliers outside the interquartile range are
plotted as black crosses

F IGURE 6 Comparison between intra- and inter- network
connectivity (IntraNC and InterNC, respectively), for each pair of
networks in the five frequency bands (delta, theta, alpha, beta and
gamma). A two-tailed paired t-test was used to compare IntraNC and
InterNC values. Differences that are significant at p < .05 are marked
with an asterisk, whereas those at q < 0.05 with a diamond
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(X. Wang et al., 2019). Similarly to the cortical functional organization,

which is preserved even when the brain is not actively responding to

a specific stimulus, such thalamocortical pathways could be present

and detectable also during resting state. To address this research

question, future studies would need to be conducted to examine

thalamocortical and corticocortical connectivity in the alpha band, as

well as in other frequency bands.

4.3 | Relationship between network topology and
neural oscillations

In addition to the high connectivity values in the alpha band (Figure 5

and Figure S3), we detected significant differences in connectivity

strength between nodes of the same and different networks, respec-

tively (Figure 6). Notably, empirical results from our study suggest that

F IGURE 7 Seed based connectivity
maps from fMRI data (left) and hdEEG data
(right). The presented maps are associated
with six seeds, one for each network (from
top panel): rV4v in the visual network,
rANG in the default mode network, lS1 in
the somatomotor network, lFEF in the
dorsal attention network, rTPJ in the
ventral attention network and lTPJ in the

language network. EEG connectivity was
calculated in the bands for which IntraNC
was found significantly higher than
InterNC: alpha band (8–13 Hz) for rV4v,
rANG, and lS1, beta band (13–30 Hz) for
lFEF and gamma (30–80 Hz) for rTPJ and
lTPJ. Group level spatial maps are shown in
coronal, sagittal, and axial sections,
thresholded at q < 0.05
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differences in IntraNC and InterNC values across RSNs are not directly

related to differences in their activity levels (Figure 3). The frequency

bands for which IntraNC values were significantly larger than InterNC

ones were not only the alpha but also the beta and the gamma bands,

depending on the RSN considered. For some RSNs, as for instance the

DMN, the DAN, the VN, and the SMN, we found neural oscillations

supporting network connectivity that are largely in line with previous

EEG-fMRI (D. Mantini et al., 2007; Marino et al., 2019), MEG

(de Pasquale et al., 2010, 2012) and hdEEG studies (Samogin

et al., 2019). Whereas the aforementioned networks were associated

with the alpha and beta oscillations, the VAN and LN were primarily

related to gamma oscillations. To the best of our knowledge, little experi-

mental evidence exists in support to the association between RSNs and

neural activity in the gamma band (but see Mantini et al., 2007). Accord-

ingly, we suggest that future studies should be conducted to replicate

our findings. Considering that VAN and LN are strongly lateralized as

compared to DMN, DAN, VN, and SMN, our findings corroborate our

hypothesis that the preferential neural oscillation for network connectiv-

ity depends on the spatial distribution of the RSN nodes. Previous stud-

ies suggested that slower oscillations are better suited than faster

oscillations for supporting long-range connectivity in the brain (Jones

et al., 2000; Kopell et al., 2000; Lopes da Silva, 2013). Recent studies are

addressing the question of how fMRI and MEG connectivity depends on

the specific pattern of structural connections in the brain (Deco

et al., 2014; Fukushima et al., 2018; Surampudi et al., 2018). In this

regard, future computational modeling work focused on hdEEG connec-

tivity may provide novel insights into the mechanisms through which

neural oscillations support connectivity in brain networks, and in particu-

lar in generating new hypotheses on the possible relationships between

network topology and preferential (alpha/beta/gamma) oscillations.

4.4 | Study limitations

A number of limitations of this study should be mentioned. First we

performed source localization using the eLORETA algorithm (Pascual-

Marqui et al., 2011), in line with our previous studies (Liu et al., 2017,

2018; Samogin et al., 2019; Zhao, Marino, Samogin, Swinnen, &

Mantini, 2019). It has however been shown that each source localiza-

tion method has different effects on EEG connectivity estimates

(Anzolin et al., 2019). Furthermore, we measured functional connec-

tivity using power envelope correlations between orthogonalized sig-

nals (Hipp, Hawellek, Corbetta, Siegel, & Engel, 2012). Several other

connectivity methods are however available, each of them capturing

slightly different features of the neural signals they were applied

to. We therefore suggest that future studies should be conducted to

test whether the main findings in this study can be replicated using

different source localization algorithms and connectivity methods.

Finally, we would like to point out that 21 ROIs associated with the

main nodes of six different RSNs were included in the present study.

This allowed us to test our hypotheses concerning intra- and inter-

network EEG connectivity. Nonetheless, to further investigate the

relation between frequency-specific connectivity and the spatial

distribution of the network nodes, additional ROIs belonging to differ-

ent RSNs should be considered. When the number of ROIs increases

up to the point they are very close to each other, the use of pruning

methods for connectivity analysis, such as hyperedge bundling

(S. H. Wang et al., 2018), is warranted.

5 | CONCLUSION AND FUTURE
PERSPECTIVES

We have shed new light on the neural oscillations that primarily sup-

port intrinsic interactions within specific large-scale networks. We

have found evidence supporting the hypothesis that position of the

nodes of a given RSN over the cortex influences the frequency of the

neural oscillations related to network connectivity (Ganzetti &

Mantini, 2013). This finding may represent an important step toward

a better understanding of the mechanisms through which neural oscil-

lations support functional connectivity in the brain. In future studies,

it would be interesting to investigate how frequency-dependent con-

nectivity changes across different levels of consciousness (Cavanna,

Vilas, Palmucci, & Tagliazucchi, 2018; Pal et al., 2019) and is modu-

lated by task performance (Watrous, Tandon, Connor, Pieters, &

Ekstrom, 2013). Moreover, future research may focus on characteriz-

ing changes in frequency-dependent network connectivity during

aging (King et al., 2017) as well as in neurological disorders

(Bourgeron, 2009; Uhlhaas & Singer, 2006, 2010).
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