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Novel semi‑automated 
fluorescence microscope imaging 
algorithm for monitoring IgG 
aggregates in serum
Shravan Sreenivasan1,3, Deepak Sonawat1,3, Shyamapada Mandal1, Kedar Khare2 & 
Anurag S. Rathore1*

Analysis of therapeutic IgG aggregates in serum is a potential area of investigation as it can give 
deeper insights about the function, immunogenic issues and protein interaction associated with the 
aggregates. To overcome various complexities associated with the existing analytical techniques for 
analyzing aggregates in serum, a novel florescence microscopy-based image processing approach 
was developed. The monoclonal antibody (mAb) was tagged with a fluorescent dye, fluorescein 
isothiocyanate (FITC). Aggregates, generated by stirring, were spiked into serum and images were 
captured at various time points. After denoising, thresholding by weighted median, 1D Otsu, and 
2D Otsu was attempted and a modified 2D Otsu, a new mode of thresholding, was developed. This 
thresholding method was found to be highly effective in removing noises and retaining analyte sizes. 
Out of 0–255, the optimized threshold value obtained for the images discussed in modified 2D Otsu 
was 9 while 2D Otsu’s overestimated values were 38 and 48. Other morphological operations were 
applied after thresholding and the area, perimeter, circularity, and radii of the aggregates in these 
images were calculated. The proposed algorithm offers an approach for analysis of aggregates in 
serum that is simpler to implement and is complementary to existing approaches.
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TEM	� Transmission electron microscopy
AFM	� Atomic force microscopy
TV	� Total variation
SNR	� Signal-by-noise ratio
VWD	� Variable wavelength detector
SDCM	� Spinning disk confocal microscopes
MS 2000	� Mastersizer 2000
FCM	� Flow cytometry

Therapeutic monoclonal antibodies (mAbs) form aggregates during various stages of production, transporta-
tion, and storage. These aggregates can result in altered biological activity and adverse immune responses1,2. 
Analysis of sub-visible (0.1–50 µm) and higher sized (> 50 µm) aggregates is popular due to the adverse immune 
responses they may cause3,4.

The aggregates of therapeutic IgG have altered properties as compared to the monomer1,5–8. When aggre-
gates are introduced into the blood, various undesired outcomes such as blockage of blood capillaries, change 
in efficacy, clearance, and adverse immune reactions can occur3,6,9. Aggregate size and its nature can further 
change in the blood due to its interaction with other aggregates and blood proteins3,8–10. Hence, understanding 
the behavior of therapeutic IgG aggregates in biological fluids such as plasma and serum is of great interest3,6,9,10. 
Serum has various proteins already present in it3,8. As a result, characterization of aggregates in serum is difficult, 
if not impossible, via the existing tools such as size exclusion chromatography (SEC), nanoparticle tracking 
analysis (NTA), dynamic light scattering (DLS), asymmetrical field-flow fractionation (FFF), light obscuration 
(LO), particle counting, analytical ultracentrifugation (AUC) and flow-based imaging techniques5–7. As a result, 
the knowledge of how aggregates evolve once in blood or serum is quite limited3,6,10,11. Although specialized 
techniques such as fluorescence single particle tracking (fSPT), confocal laser scanning microscopy (CLSM), 
AUC with fluorescence detection system (FDS), optical microscopy, and flow cytometry (FCM) have been 
reported3,6,9,11, they suffer from drawbacks such as limited size range, complex optimization of settings, sample 
dilution in instrument fluid and application of forces such as centrifugation3,4,6,9,11,12. In addition to it, these 
instruments require very high investment and trained users4,12.

Fluorescence microscope, a type of optical microscope, enables us to selectively measure aggregate size and 
morphology in cells and other biological fluids4,11. It works on the principle of fluorescence where the analyte 
is irradiated using light from an excitation source. The sample then emits light of higher wavelength, which is 
selectively detected. Other than tagging the sample with fluorescent dye, this technique does not require any 
complex sample preparation steps. A simple widefield fluorescence microscope is cheaper, easier to maintain, 
use and house. Wider illumination areas combined with lesser instrumental and operational complications are 
more of its distinctive features. Images in a fluorescence microscope can be acquired with reduced exposure 
times, which can further enable recording of fast-moving particles4,11,12.

Use of microscopy-based methods have a general disadvantage that only a small fraction of the sample can be 
analyzed at a time. Hence the output from a single image might not be a true representation of the entire sample. 
So, multiple images of a particular sample containing aggregates must be obtained. Fluorescence microscope has 
an additional drawback that its images are corrupted by noise and blurred particles from out of focal plane. An 
image of aggregate in a mAb sample captured by this technique is shown in Supplementary Fig. 1. The noises, 
which results in images with very low signal-by-noise ratio (SNR), are due to the stray light from the background, 
inaccuracy in the detection and emission of light (Poisson noise), and incorrect quantification by the detector 
(Gaussian noise)13. The experimental parameters and auto-fluorescence from untagged regions also contribute to 
noise. The noises are removed by using various image processing techniques which include different de-noising 
and thresholding steps14,15. A lot of algorithms for noise removal have been proposed in the literature, but most 
of them suffer from major drawbacks such as blurring of target aggregates, false detection of noise, improper 
local illumination as target particles, and false removal of low intensity aggregates as noise13,16,17.

In this work, a novel image processing algorithmic sequence is proposed for the analysis of samples contain-
ing sub-visible and visible aggregates in serum using fluorescence microscopy. The series of specific denoising 
steps address the different noises identified for the images. The different steps used in image processing being 
mentioned henceforth have been previously published elsewhere18–23. But its application towards analysis of 
IgG aggregates in serum has not yet been reported. The aggregate was made by introducing mechanical shear 
by stirring the mAb tagged with a fluorescent dye, fluorescein isothiocyanate (FITC). These aggregates were 
introduced into serum and microscope images were captured at varying time points. Processing of these images 
was performed using the inbuilt ‘image processing toolbox’ in MATLAB. The proposed algorithm successfully 
addressed various noise reduction methods along with different modes of thresholding. A comparison among 
the addressed methodologies has also been presented.

Approach to image analysis
The complete procedure of analyzing images is shown in Fig. 1. The images are imported into MATLAB in the 
form of a 3-dimensional (3D) matrix. The noises are removed using median filtering followed by total variation 
(TV) de-noising algorithm. The illumination noise is further reduced by separating and removing the background 
using fast Fourier transformation. The processed images are then converted into binary images by thresholding. 
Various thresholding methods such as weighted median, 1-dimensional (1D) Otsu and 2-dimensional (2D) Otsu 
thresholding are applied. A new modified 2D Otsu thresholding approach has been proposed to address the low 
image to background ratio problem in 2D Otsu approach and increase in size of aggregates in modified median 
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thresholding approach. Morphological operations are then performed to remove unwanted pixels. The particles 
are labeled and features such as size distribution and circularity are calculated.

Importing image as readable data.  Fluorescence microscope images of the mAb aggregates are imported 
into MATLAB as 3D matrix of dimension J × K × 3. The third dimension of the matrix is designated to each 
colour (channel) i.e. Red (R), Green (G) and Blue (B) channels. J × K is the number of pixels in the image, where 
J points to the row and K to the column. Value in pixels of each channel ranges from 0 to 255, where 0 indicates 
absence of transmission of colour intensity and 255 indicates complete presence of transmission of that colour 
intensity. FITC is a derivative of fluorescein where an isothiocyanate reactive group (–N=C=S) replaces an H 
atom at the bottom ring of fluorescein, imparting green colour to the analyte18. Hence, the contributions of blue 
and red channels were neglected. Only green channel data g

(
x, y

)
 is taken forward for processing.

De‑noising.  The analyzed image is composed of true signals along with different types of noises whose 
removal requires multiple steps.

Median filtering.  Median filtering is a common noise reduction method used in image processing. In this 
method the value of 

(
i, j
)th pixel is replaced with the median of the chosen N × N neighbourhood (Fig. 2a). The 

neighbourhood, N, is user defined. This method is effective on images with random noise or long-tailed histo-
grams of images19.

TV denoising algorithm and background normalization.  Total variation 
(
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(
g
(
x, y

)))
 is the L-1 norm of the 

gradient of image (Eq. 1) in horizontal 
(
∇xg

)
 and vertical 

(
∇yg

)
 direction. Total variation captures the local fluc-

tuations (noise) in the image. TV reduction is achieved by recursive gradient descent method (Eq. 2) (Gaur et al., 
2015). Convergence criteria (Eq. 4) are defined as the relative change in the image from ith to (i + 1)th iteration. 
Tolerance level for convergence is user defined. The approach used in reducing total variance is shown in Fig. 2b.

Here, || … || represents the L-2 norm and τ is the step size determined by line search. Image obtained after 
TV denoising method is used to normalize the background. A low pass filtered image is obtained by applying 
the fast Fourier transform. The TV denoised image is divided pixel-by-pixel by the low-pass filtered image. The 
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Figure 1.   The overall procedure showing the different steps for processing the fluorescence microscope images.
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image obtained after this operation has normalized background which helps in uniform thresholding on the 
image. The steps for normalizing background are shown in Fig. 2c.

Thresholding.  Final step in image treatment after all the necessary steps of noise reduction is converting it 
into black and white (binary) image using thresholding method. Level of threshold (T) is calculated from differ-
ent methods available or is user defined. T is compared with the modified image and the pixel values larger than 
T are assigned 1 corresponding to a white pixel. Pixel values less than threshold are marked 0 which corresponds 
to black pixel as shown in Eq. (5). The different modes of thresholding used are shown in Fig. 3a–c.

Figure 2.   Various operations involved in de-noising steps where (a) is the median filtering, (b) is the steps 
involved in TV algorithm and (c) summarizes the process of background subtraction.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11375  | https://doi.org/10.1038/s41598-021-90623-7

www.nature.com/scientificreports/

Figure 3.   Various steps of median thresholding are shown in (a). Further, (b) represents the separated classes 
by the threshold (S,T), (c) is the different stages of 2D Otsu and modified 2D Otsu thresholding and (d) shows 
the ‘Fill’ and ‘Clean’ morphological operations.
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Weighted median thresholding.  Median thresholding method requires only one parameter (T) for obtaining 
the binary image. Method involves calculation of the median of the complete matrix, the resulting median is 
subtracted from the image matrix to obtain the deviation with median. Threshold (T) is equal to the median 
of the matrix obtained multiplied with the weight. The weight used in the threshold calculation is user defined 
parameter. The method is explained with the help of Fig. 3a.

1D Otsu thresholding.  1D Otsu thresholding calculates the gray level threshold (T) for binary image conver-
sion. The probability distribution function of the histogram of pixel values is evaluated and then zeroth and first 
order cumulative moments are calculated using this function. The within class, between class and total variance 
are evaluated to measure the goodness of the chosen threshold. Optimal threshold (T) is one for which the 
between class variance is maximum. The calculated threshold is used to obtain the binary image using Eq. (5) 19.

2D Otsu thresholding.  2D thresholding approach converts to binary image with the help of two threshold 
parameters (S,T) . In 2D Otsu thresholding method, S and T corresponds to grayscale and average grayscale 
threshold, respectively. First, the average grayscale matrix 

(
h
(
x, y

))
 is calculated using Eq. (6a).

where, g
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)
 the grayscale/digital image is obtained from the noise removing steps.
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= j, 0 ≤ rij ≤ (JK) . The dimension of the resulting joint frequency distribution is L × L.

From the rij , joint probability distribution 
(
pij
)
 is calculated using Eq. (7).

Joint probability distribution matrix is the basis for calculating within-class, between-class and total variance. 
The background class ( C0) and image class (C1) are separated by the threshold (s, t) , the probabilities of class 
occurrence are given by Eqs. (8) and (9). Figure 3b represents the separated classes by the threshold (S,T) . The 
quadrants 0 and 1 in Fig. 3b correspond to background and object classes, respectively, while the quadrants 2 
and 3 correspond to pixels near edges and noise20. The probability distribution values in quadrants 2 and 3 are 
negligible because of the use of noise removal and edge enhancing techniques.

where,(s, t) is the threshold for grayscale and average grayscale.
The mean levels corresponding to each class are defined by Eqs. (10) and (11).
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Figure 4.   (a) is the image of a sample without any mAb (blank). (b) and (c) show two images of aggregates of 
various sizes at 4 × and 10 × magnifications and (d) is 4 × magnified image showing large sized aggregate.
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where,µi(s, t) =
∑s

i=1

∑t
j=1 ipij and µj(s, t) =

∑s
i=1

∑t
j=1 jpij

The between-class variance (σB) matrix is then calculated using Eq. (12).

Trace of between-class variance (trσB) is the measure of between-class variance and the threshold (S,T) is one 
for which the trσB is maximum as shown by Eqs. (13a) and (13b). Stepwise approach for 2D Otsu thresholding 
is shown in Fig. 3c20.

Modified 2D Otsu thresholding.  Average grayscale threshold parameter (T) is optimised in this method by 
extending the 2D otsu algorithm. Optimised grayscale threshold is calculated using the iterative approach. A 
rough estimate of the total number of particles in the image is required in this method to define convergence 
criteria. The threshold parameter corresponding to grayscale matrix is the same as obtained from the 2D Otsu 
method. Frequency distribution, (k(n)), wherenis the corresponding pixelvalue) vector is first calculated for the 
average grayscale matrix calculated in the 2D Otsu method (Eq. 6a). Common logarithm of frequency vector 
(log(k(n)) is fitted with pixel-value using the cubic polynomial (P(n)) . First derivative fP(n) is then calculated for 
the fitted polynomial. Pixel values (Tmin,Tmax) for which the slope of the cubic polynomial is set value are deter-
mined. Value of the pixel for which the slope is greater than the set value is termed as minimum threshold (Tmin) 
and the value for which the slope is less than the set value is the maximum threshold (Tmax) . Guess threshold 
corresponding to average grayscale is chosen such that it lies between the Tmin and Tmax . Guess threshold 

(
Tguess

)
 

is defined as the weighted average of Tmin,TmaxandTotsu (Eq. 14).

where,w1,w2 and w3 are weight parameters.
Once the guess threshold is known, calculation of optimum average threshold requires an estimate of the 

total number of particles in the image. The estimate for the total number of particles (Ne) is calculated using the 
weighted median thresholding method. An iterative approach is used to calculate the optimum value with the 
help of Tguess and Ne . First the total number of particles 

(
Ng

)
 is calculated using the guess threshold. Difference 

between Ne and Ng is the error, which is then used to calculate α (tuning parameter). The new guess threshold 
is calculated by subtracting α from the old guess threshold. Convergence criteria is defined such that either Ng 
equals Ne or Ng becomes constant for the subsequent iterative steps. Complete approach of the proposed method 
is shown in Fig. 3c.

Binary image 
(
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))
 formation from the two thresholding parameters (S,T) calculated above for the actual 

image 
(
g
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 and average grayscale image 

(
h
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 respectively is shown in Eq. (15).

Morphological operations.  Morphological operations are applied to remove any unwanted pixels cre-
ated due to thresholding. This operation is performed using the in-built morphological operation toolbox in 
MATLAB. From the available operations, clean, close and fill are used on the modified image. Figure 3d shows 
the functioning of the applied operations. Size threshold is also applied to remove the bunch of particles smaller 
than a certain size (considered as noise) based on the type of object. Size threshold is a user defined parameter.

Labeling particles for size, circularity and average circle diameter calculation.  Number of par-
ticles in the image is determined by labeling each cluster of pixels with a certain number. Labeling is done with 
the help of bwlabel function in MATLAB. Number of particles/clusters of pixels in the image is equal to the 
maximum value of the label. Size/area of clusters is determined by calculating the number of pixels correspond-
ing to each label multiplied by the size of each pixel given by Eq. (16). Circularity of the particles is calculated 
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with the help of perimeter and the area using Eq. (17). Average circle diameter is the equivalent circle diameter 
of the particle defined by Eq. (18).

where,N̂ is number of pixels corresponding to a label, l  is the length and b is the breadth of one pixel and A is the 
area of the particle. P is the perimeter of the particle which was directly obtained from MATLAB.

Results and discussion
Analytical characterization of aggregates.  Visual inspection of the stressed samples showed very high 
turbidity whereas the unstressed sample and blank (1 × PBS) was not turbid at all (Supplementary Fig. 2a). The 
high turbidity signified the presence of aggregates of the sub-visible and visible size range. The stressed sample 
was centrifuged at 5000 rpm for 10 min. The SEC chromatogram of the supernatant did not show the presence 
of any protein indicating that majority of the tagged mAb was degraded (Supplementary Fig. 2b). The size distri-
bution obtained from DLS showed that the aggregate size distribution was beyond the analysis capability of the 
instrument (Supplementary Fig. 2c). Fluorescence microscope images indicated presence of various green spots 
indicating the presence of sub-visible and visible aggregates. These aggregates were introduced in the serum in 
the ratio of 1:20 (v/v) and incubated at 37 °C. Figure 4 shows four images, namely an image devoid of any sam-
ple (blank) (Fig. 4a), images of the serum sample spiked with aggregates of 4 × and 10 × magnification showing 
numerous aggregates of various sizes (Fig. 4b,c) and an image with a large aggregate obtained at 4 × magnifica-
tion (Fig. 4d). Apart from the aggregates, all these images are full of random minute dots (noises) that gets 
detected as aggregates on size distribution analysis using various conventional image processing algorithms. It 
can also be visualized that each of these figures had varying background illumination. Figure 4c showed some 
out of focus blurred images that needs to be removed effectively. The images consisting of aggregate specimens 
were taken for image analysis. Blank samples and images not showing the visible presence of aggregates were 
not considered.

Image processing.  Importing, denoising and background reduction.  Florescence images imported in 
MATLAB using the Image Processing Toolbox in the matrix form had a dimension of 1536 × 2048 × 3. The 
images obtained at 4 × and 10 × magnification had a scale/pixel ratio of 2.667 and 1.0416, respectively. The con-
tribution of green channel data ( g

(
x, y

)
 ) was taken for processing. The green channel figures corresponding to 

Fig. 4b,c are shown in Supplementary Fig. 3a,b. Figure 4b,c are used further as representative images to explain 
various stages of image processing.

Filtering is a step in de-noising where a new value is designated for each pixel of the image based on the pixel 
values of the neighborhood. Median filtering is known to offer advantage over mean filter in that it removes 
extremely isolated values completely. Median filtering with a 3 × 3 neighborhood was first applied to remove the 
Gaussian tailing and random noise16. Figure 5a shows the image obtained after filtering of Figs. 4b and 5b depicts 

(16)Size of Particle = N̂ lb,

(17)Circularity = 4πA/P2,

(18)φ =
√

4A/π ,

Figure 5.   Various images obtained after applying de-noising algorithm on Fig. 4b,c. (a) and (b) are the median 
filtered output of Fig. 4b,c. (c) and (d) are the output after applying TV algorithm, (e) and (f) are the background 
and (g) and (h) are the background subtracted output of Fig. 4b,c.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11375  | https://doi.org/10.1038/s41598-021-90623-7

www.nature.com/scientificreports/

median filtered output of Fig. 4c. The method is effective in differentiating between the location of particles 
and background. If the pixel location corresponds to a particle, then most of the neighborhood pixel values are 
close to the value representing the particle. If the neighborhood of the pixel corresponds to background, then 
the chosen pixel value is itself background and its value is replaced by the median of the chosen neighborhood.

The aggregates in a mAb sample generally have random shape and size unlike cells. This makes the detection 
of the edges difficult for aggregates. Since edges of the aggregates are characterized by excessive change in its 
pixel values as compared to that of background, gradient filters are known to be a useful choice. TV algorithm 
is a gradient filtering technique which is known to be effective in removing undesired noise in the data along 
with preserving the information of edges of the particles21. Figure 5c,d show the images obtained after process-
ing by reducing the total variance using the TV algorithm on Fig. 5a,b. The algorithm is incorporated in the 
analysis using gradient descent method22. TV(g(x,y)) captures the fluctuations in the image, where higher value 
represents presence of more noise. The ability to distinguish between the sharp changes due to boundaries of 
the particles and random fluctuations in the image gives an advantage of using this method for removing noises. 
The convergence criteria is set such that the relative change in the TV denoised image is less than 0.005 times the 
Frobenius norm of current guess for g(x,y). On average, 20 steps are enough for convergence using this method.

The illumination noise was addressed by using the Fourier transform for detecting the background of the 
image. The detected background of the output image (Fig. 5c,d) after being processed by the TV algorithm is 
shown in Fig. 5e,f. The removed background involved the local signal fluctuations around the target particles 
which can be observed as light greenish yellow blurry patches. The detected background was then subtracted 
from the image, which resulted in the images shown in Fig. 5g,h. After the background removal, the image was 
relatively free from the random background. The normal logarithm frequency distribution plot obtained after 
background removal is shown in Supplementary Fig. 3c,d. After this step, the image was taken forward for 
thresholding to convert it into the binary image.

Thresholding.  Thresholding is done to automatically define the region of interest in the form of a binary image 
in an unbiased way23. The binary image only includes regions that are either the part of the aggregates or back-
ground. In case of images without noises, where the target particles are clearly detected, it is possible to apply 
global thresholding where a lower and upper value of a pixel is chosen to obtain the target image. But in case of 
noisy images as in our case, mathematical modeling is needed. It is  known that in a noisy fluorescence micro-
scope image, a low threshold value retains most of the aggreagate pixels in the binary image and it could enlarge 
the target particle size and a high threshold value could reduce the number of particles detected in the binary 
image. This makes the requirement of a suitable algorithm with minimal bias for the required application. Dif-
ferent thresholding methods are discussed and compared here. The two background separated images and the 
corresponding binary image obtained after weighted median thresholding, 1D Otsu, 2D Otsu, and modified 2D 
Otsu thresholding are further discussed below. The blank image and its thresholded images along with the size 
distribution data are shown in Supplementary Fig. 4.

The weight (ω) used to obtain the threshold in the weighted median threshold method was set to be 4.5. 
Image obtained from the weighted median thresholding is shown in Fig. 6a. The graph showing the particle size 
distribution as a function of number of particles against size of particles is shown in Fig. 6b. It can be visually 
observed that most aggregates are correctly identified. The particle size distribution chart further showed the 
presence of more than 80 particles of area less than 1000 µm2 and less than 20 particles for all other sizes. A 
similar observation can be found for the median thresholded image shown in Fig. 6c. Its size distribution shown 
in Fig. 6d. The median thresholded blank image and its histogram showed 5 particles being detected. Moreover, 
median thresholding resulted in blurring and enlarging of target specimens. To avoid the blurring, the utility of 
Otsu thresholding was explored.

1D Otsu thresholding method is also rigorous in calculating the threshold parameter by comparing the 
between class variance for each pixel and returns the pixel for which it is maximum. Image and size distribution 
chart from the 1D Otsu thresholding of Fig. 4b is shown in Fig. 7a,b. It is evident that the image has a lot of grainy 
appearance which indicates imperfect thresholding due to incorrect detection of particles. The size distribution 
chart shows the presence of more than 3500 particles of area less than 0.5 µm2. The thresholded blank image and 
its histogram showed numerous grainy disturbances. A similar output after this mode of thresholding for Fig. 4c 
is shown in Fig. 7c,d. In view of these results, 1D Otsu thresholding was deemed suboptimal for our application.

2D Otsu thresholding can be applied to different types of images. Its applicability is robust for images with 
background to image ratio near to 1. Figure 7e shows the image obtained after applying 2D Otsu segmentation 
on Fig. 4b and its size distribution graph is shown in Fig. 7f. The graph shows only 4 detected particles. Majority 
of the target aggregates got removed resulting in a false negative result. Figure 7g,h, which are the thresholded 
outputs of Fig. 4c, also resulted in a similar output. Supplementary Fig. 5a shows the output of an image with 
a large aggregate. Here the aggregate was segmented into two after 2D Otsu thresholding. When the ratio of 
background to image becomes too small or too large then thresholding using this method is not relevant for the 
analysis. However, this mode of thresholding prevented blurring as observed in weighted median thresholding 
and hence can be put into consideration after suitable optimization. Therefore, the parameters obtained from 2D 
Otsu method were further optimized by modifying the algorithm to achieve better segmentation.

The plot of common logarithm of frequency with pixel value for average grayscale matrix h
(
x, y

)
 for the image 

(Fig. 4b) is shown in Fig. 8a as actual data. The plot shows that the common logarithm of frequency decreases 
with increase in pixel values. The decrease in the logarithm of frequency in the plot shows the movement of pixel 
value from the background to the foreground specimen. The sudden drop in the slope at lower pixel values is a 
characteristic of the background. This trend is common for all the images as shown in Fig. 8b. This change was 
captured by fitting a cubic polynomial to the plot as shown in Fig. 8a and then the derivative was calculated. The 
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pair (Tmin,Tmax) were determined when the slope of the fit was − 0.05. The weight parameters were case specific 
and depended on the type of image needed to be processed. For all of our images or images of fluorescence 
microscope, weight parameters w1,w2and w3 for calculation of Tguess were chosen as 0.6, 0.2 and 0.2, respectively. 
It is known that 2D Otsu method overestimates the value of T, which results in removal of actual particles from 
the thresholded image. To minimize the overestimation and reduce the number of iterations for optimizing the 
threshold, more weight was given to the smaller estimate of T(Tmin ). The tuning parameter (α) value was decided 
by the error as shown in Eq. 19 (Supplementary Fig. 6). The optimized threshold obtained from this method was 
then used for segmenting the image into binary form using Eq. (15).

The threshold parameters for this new approach along with other thresholding approaches applied on Fig. 4b,c 
are mentioned in Table 1. In case of Fig. 4b, the S and T values were 53 and 9, the Tmin,TmaxandTguess were 20.11, 
49.48 and 29.56, respectively, and for Fig. 4c, the S,T ,Tmin,TmaxandTguess values were 57, 9, 17.4, 45.76 and 29.2, 
respectively. The image obtained after applying modified 2D Otsu thresholding on image in Fig. 4b is shown in 
Fig. 9a and its size distribution is shown in Fig. 9b. Many of the particles were retained after this thresholding with 
minimal distortions. However, the number of particles retained were less than weighted median thresholding. 
The size distribution graph shows that around 50 particles had a size ranging from 0 to 1000 µm2 and less than 
10 particles observed were of higher size ranges. Similar observations were seen in case of thresholded image 
shown in Fig. 9c. It is the output for image in Fig. 4c, whose size distribution is represented in Fig. 9d.

It can be summarized that weighted median thresholding retained majority of the aggregates but were slightly 
blurred. 1D Otsu and 2D Otsu mode of thresholding resulted in over and underestimation of aggregates. Modi-
fied 2D Otsu thresholding did result in deletion of some of the aggregates in the image. But many of the aggre-
gates were retained and their sizes were not blurred. Hence, weighted median and modified 2D Otsu mode of 
thresholding can be considered for further analysis. However, in this study modified 2D Otsu mode of thresh-
olding was taken for morphological operations.

Morphological operations and feature extraction.  Morphological operations and size-based threshold is applied 
to the binary image. ‘Clean’ and ‘Fill’ features were used in morphology operations. ‘Clean’ replaces any single 
isolated pixel of value 1 with 0, while ‘Fill’ replaces all the pixels with value 0 to 1 surrounded with pixels of value 
1. A simple size thresholding of 20 pixels was applied to both the images to remove very small sized particles. 
The 20 pixels corresponded to 142 µm2 for 4 × and 21.7 µm2 for 10 × or a radius of 6.72 µm for 4 × and 2.62 µm 
for 10 × magnified images, respectively. The images obtained after performing morphological operations and size 
thresholding on the output images of modified 2D Otsu thresholding of Fig. 4b,c are shown in Fig. 10a,b. Both 
the images obtained had morphologically adjusted pixel values with the certain particles removed and added. 
Now the aggregates to be analyzed were separated from the background and were used for further feature extrac-

Figure 6.   (a) and (b) are the median thresholded output figure and size distribution graph of Fig. 4b. Similarly 
(c) and (d) are the output figure and size distribution graph of Fig. 4c after applying median threshold.
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Figure 7.   Output of 1D and 2D Otsu thresholding. (a) and (b) are the 1D Otsu thresholded output figure and 
size distribution graph of Fig. 4b. (c) and (d) are the output for Fig. 4c. (e) and (f) are 2D Otsu thresholded 
output figure and size distribution graph of Fig. 4b. (g) and (h) are the 2D Otsu thresholded output figure and 
size distribution graph of Fig. 4c.
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tion. Number of particles was calculated by using the labeling function in the MATLAB. For each label, the size 
of the particle was calculated using Eq. (16). The size distribution graphs and images with the circularity of the 
corresponding particle drawn on the respective particle are shown in Fig. 10c,d. The size (in µm2), circularity and 
radii calculated using the respective scale by pixel ratio for each particle for the images in Fig. 5b is shown in Sup-
plementary Table 1. This raw data was used to construct the size distribution graph. The image processing steps 
showed that the particle sizes in a fluorescence microscope image can be obtained by removing the characteristic 
noises. A case study is shown henceforth for the comparison of aggregate sizes in serum over 24 h.

Case study: analysis of aggregate size using fluorescence microscopy.  The size distribution of 
aggregates spiked into serum was compared at 24 and 48 h. The images were obtained at a magnification of 4x. 
20 images of aggregates visualized at 24 h and 4 of them are shown in Supplementary Fig. 7a–d. The images 
were processed as per the above-mentioned steps and the output after performing morphological operations are 
shown in Supplementary Fig. 7e–h. The particles and its sizes for all the images were uploaded and combined in 
MATLAB in the form of a column matrix. These sizes were then arranged in increasing order. The size, perim-
eter, circularity, and average radii of all the aggregates obtained from the images at 24 h are shown in Supplemen-
tary Table 2. Aggregate sizes ranging from 177.82 µm2 to 9389.01 µm2 were obtained. The average radii of these 
aggregates varied from 7.52 µm to 54.67 µm. The representative images of the aggregates obtained at 48 h are 

Figure 8.   Frequency distribution curves of images in Fig. 4b,c.
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shown in Supplementary Fig. 8a–d with its corresponding processed images shown in Supplementary Fig. 8e–h. 
The aggregate size distribution shown in Supplementary Table 3 displayed aggregate sizes ranging from 184.94 
µm2 (or 7.67 µm radii) to 41,482.36 µm2 (114.91 µm radii). These radii were then divided into various ranges 
of 10 µm from 0 to 10 µm onwards and the number of particles corresponding to each range was plotted. The 
graphs growing the distribution of average radii at 24 h and 48 h are shown in Fig. 10e,f. It is evident that at 48 h, 
more aggregates having sizes in the range of 20–30 µm, 40–50 µm to more than 100 µm were present. In case 
of aggregates obtained at 24 h, majority of aggregates had the size range of 0–10 µm, 10–20 µm and 20–30 µm. 
The change in the size of aggregates over time was due to either interaction of aggregates among themselves 
or due to interaction with proteins in serum. Serum consists of albumin (HSA) along with other antigens and 
antibodies8,24–26. The reason behind change in aggregate size on spiking to serum is a matter of further investiga-
tion. The comparison of measurable size ranges of aggregates in various microscopic techniques shows that a 
simple fluorescence microscope can easily analyze aggregates of size ranging from 1 μm (Supplementary Fig. 9).

The 20 images in the case study were randomly captured by the user. However, for more accurate representa-
tion of the entire sample, a larger number of images (at least > 150 for magnification of 4×) from multiple slides 
should be acquired. Further validation is required to optimize the number of images. It should be followed by 
compilation of outputs from image analysis. Further, fluorescence microscopes capable of automated acquisition 
of images can be used for capturing such large number of images as these instruments can reduce the manual 
effort required for capturing the images. An instrument called Cytell Cell Imaging System, capable of acquiring 
multiple images has been mentioned in the subsequent section.

Application of other fluorescence‑based techniques.  The images of samples obtained using CLSM 
and Cytell showed similar images as seen by fluorescence microscope (Supplementary Fig. 10). The above-men-
tioned image processing algorithm (with modified 2D Otsu thresholding and a morphological threshold of 
7 µm) was applied on a set of 5 images and the obtained average radii was 24.37 µm and 28.4 µm, which was in 
similar range as compared to the image shown in Fig. 4c (17.08 µm). The accuracy of this data can be further 
enhanced using automated features of fluorescence based microscopic systems such as Cytell and SDCM (Spin-
ning disk confocal microscopes), that can be helpful in acquiring numerous images per sample. Moreover, using 
higher magnification such as 20×, 40×, and 60× can be used for more effective visualization and detailed analysis 
of aggregates. A set of images of the sample containing aggregates were acquired before introducing it into the 
serum (a representative image in Supplementary Fig. 11), followed by subsequent image analysis. It was found 
that size distribution of aggregates (in radii) ranged from 1 to 20 µm (Supplementary Fig. 11). Further, the sam-
ple containing aggregates were analyzed using Mastersizer 2000 (MS2000, Malvern Instruments, Worcestershire, 
UK) and it was found the size distribution ranged from 1 to 30 µm (or radii of 0.5–15 µm) (Supplementary 
Fig. 11c). The results of MS2000 confirms the presence of aggregates in the similar size range as indicated by the 
image analysis. The use of two different techniques resulted in aggregate sizes of similar range, however the dif-
ference in quantitative output can be attributed towards different mechanisms of both12. Researchers have dem-
onstrated the fate of aggregates in serum using fSPT, CLSM, AUC with FDS, and FCM3,6,9,27–29. These techniques 
have certain drawbacks. For example, fSPT can measure fluorescent particles only up to 1 μm6. FCM requires 
optimization of instrument settings, use of standard particles and the sample gets diluted in the instrument 
fluid3,12. In case of AUC, the application of centrifugal force might change the nature of aggregates27. The current 
approach provides an easier and faster methodology for size distribution analysis. Further, this methodology 
does not require any sample dilutions or extensive optimization of instrument settings (Supplementary Table 4).

Apart from analyzing the size distribution of aggregates in serum, the proposed algorithm with fluorescence 
microscopy can also be used as a tool to analyze visible and sub-visible aggregates. The methodology offers signifi-
cant advantages over other microscopy-based approaches. Microscopic techniques such as electron and atomic 
force microscopy can resolve aggregates ranging from 0.1 to 1 nm, whereas various optical and flow imaging 

Table 1.   Threshold parameters for Figs. 4b,c.

Our approach Median thresholding 2D Otsu 1D Otsu

Threshold Parameters for Fig. 4b

S T S S_otsu T_otsu S

53 9 26.29 53 38 0.498

T_min T_max

20.11 49.48

T_guess

29.562

Threshold parameters for Fig. 4c

S T S S_otsu T_otsu S

57 9 25.173 57 48 0.498

T_min T_max

17.4 45.76

T_guess

29.2
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microscopes can visualize aggregates with a resolution of 0.5–1 µm4–6. Aggregates sizing from 1 µm onwards 
can be analyzed using a simple optical microscope but it could be inefficient due to the requirement of complex 
sample preparation steps and the difficulty to differentiate between protein and non-protein particles12. In the 
case of electron microscopy and AFM, the small imaging area limits the acquisition of information about large 
sized aggregates. Further, complex sample preparation steps, presence of various salts in the sample, extreme 
expense, optimization of imaging and data acquisition adds to the complexity4,12. In case of flow imaging sys-
tems such as FlowCAM (Fluid Imaging Technologies, Maine), Sysmex Flow Particle Image Analyzer (FPIA) 
(Malvern Instruments, Germany), and Micro-Flow Imaging (MFI, Protein simple, Santa Clara, California), the 
dilution of sample can change the nature of aggregate. The requirement of a certain difference in refractive index 
between the solvent and the protein could result in inaccurate quantification for certain samples4,5,12. Analysis 
using fluorescence microscopy enables prevention of false detection of dust, air bubbles and non-proteinaceous 
particles that could plague the analysis11. Overall, it can be concluded that the proposed algorithm can success-
fully denoise the fluorescence microscope images. The proposed methodology can be effectively used as a cheap 
and complementary technique to traditional approaches.

Figure 9.   Output of modified 2D Otsu thresholding. (a) and (b) are the modified 2D Otsu thresholded output 
figure and size distribution graph for Fig. 4b, whereas (c) and (d) are the output figure and size distribution for 
Fig. 4c.



15

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11375  | https://doi.org/10.1038/s41598-021-90623-7

www.nature.com/scientificreports/

Figure 10.   (a) and (b) are the output after performing morphological operations on Fig. 4b,c. (c) and (d) shows 
the images with circles of the corresponding particle’s circularity drawn over the particles. (e) and (f) shows the 
comparison of size distribution data of aggregates in serum obtained at 24 and 48 h.
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Materials and methods
Chemicals and reagents.  High purity high performance liquid chromatography (HPLC) grade chemicals 
were used throughout the study. All the buffers were prepared in house and were filtered through a 0.22 µm 
nylon membrane filter (Pall Life Sciences, Port Washington, NY, USA) followed by degassing.

mAb.  An IgG1 mAb having a pI of 8.5 present in 15 mM sodium phosphate, 150 mM NaCl, and 0.1% sodium 
azide at pH 7.0 was used in the present study. The mAb was donated to us by a major domestic biotech manufac-
turer. It was stored in − 80 °C until used in experiments.

Fluorescent labeling of mAb.  The mAb used in this study was tagged with FITC. The dye has an emis-
sion/excitation peak wavelength of 519/495  nm, giving it a green color. The mAb was labeled with FITC as 
per the manufacturer’s protocol with minor differences. 1 mg/mL of FITC was prepared in dimethyl sulfoxide 
(DMSO). The mAb was exchanged to carbonate buffer of pH 8 using 10 kDa Centricon (Pall Corporation, USA) 
filter followed by addition of dye. The mixture was very gently mixed and incubated at room temperature for 
90 min in a falcon tube wrapped with aluminum foil. Then the unbound dye was removed by exchanging the 
carbonate buffer with a working buffer (1 × PBS) using a 10 kDa Centricon filter.

Preparation of mAb samples containing aggregates.  A 1.5  mL sample containing labelled mAb 
(1 mg/mL) was subjected to stirring with a magnetic bead in a 5 mL glass vial for 24 h at 4 °C.

Human serum.  Blood samples from 15 healthy individuals were obtained from the local hospital and were 
pooled together in serum separator tube. Informed written consent was obtained from all participants for draw-
ing their blood. The blood was incubated at room temperature followed by centrifugation at 1000×g for 10 min. 
The supernatant (serum) was separated and transferred into cryovials. The cryovials containing serum was 
stored at − 80 °C until further required. The experimental protocol was reviewed and approved by the Ethical 
Committee (Ethics application P-041, IEC, IIT Delhi). All experiments were performed in accordance with 
relevant guidelines and regulations.

Analytical SEC.  A Thermoscientific Dionex Ultimate 3000 HPLC (Thermo Scientific, Sunnyvale, CA, USA) 
was used for  SEC. The system consisted of a quaternary pump with degasser, auto sampler with cooling unit 
and a variable wavelength detector (VWD). A Superdex 200 column (GE Healthcare, Pittsburgh, PA, USA) hav-
ing 30 cm length and 10 mm diameter was used. The system was operated at 25 °C. Mobile phase consisted of 
a 50 mM phosphate buffer and 300 mM NaCl at pH 6.8. Nylon filter (Pall Corporation) of 0.22 μm cut off was 
used to filter the mobile phase. Analytes were detected by monitoring UV absorbance at 280 nm. The elution 
was performed in isocratic mode. The area under the peak was calculated using Chromeleon software (Thermo 
Scientific, Sunnyvale, CA, USA).

Visual observation.  The stressed samples in the glass vial were visually inspected. The presence of turbidity 
and visible particles were noted. Vials containing 1 × PBS without and with unstressed monomers were taken as 
the reference.

Dynamic light scattering.  DLS was performed using Zetasizer Nano ZS 90 (Malvern Instruments), which 
had a 633-nm He–Ne laser and temperature control. The analysis was performed at 25 °C and 1 mg/mL of sam-
ple was used and the scattered intensities were recorded at a scattering angle of 90°.

Fluorescence microscope.  A fluorescence microscope (Olympus IX73) was used to visualize the tagged 
mAb and aggregates. 20 μL FITC tagged sample was mounted on a clean glass slide followed by covering it with 
a cover slip. It was then examined under the FITC filter in the microscope at 4 × and 10 × magnification. Various 
fields of different slides were examined, and the images were captured at different time points.

As an orthogonal tool, samples were also analyzed using Confocal Laser Scanning Microscope (CLSM) and 
Cytell. Samples containing aggregates were visualized directly under CLSM (Olympus FLUOVIEW FV1200 Con-
focal Laser Scanning Microscope) at 20 × magnification. Aggregates were further visualized using Cytell Cell 
Imaging System (GE Healthcare, Buckinghamshire, UK). The Automated Imaging BioApp was used for automatic 
acquisition of multiple images. Samples containing aggregates in buffer were also analyzed using Mastersizer 
2000 (Malvern Instruments, Worcestershire, UK).

Conclusions
The role of a novel image processing algorithm to analyze fluorescence microscope images was shown to monitor 
the fate of aggregates of therapeutic IgG samples in serum. Gaussian and Poisson noises along with other random 
disturbances were effectively removed from fluorescence microscope images using a sequence of de-noising and 
thresholding techniques. Reducing the total variance along with preserving important information in images 
was achieved with TV algorithm. A new variant of 2D Otsu thresholding was proposed and found to be highly 
effective in capturing the changes from background class to image class. Optimization was achieved by an iterative 
approach using the tuning parameter. The proposed thresholding method is effective in retaining the target par-
ticle size. Hence the proposed algorithm was demonstrated as a tool to monitor the effect of aggregates in serum.
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