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ABSTRACT
Objective Atrial fibrillation (AF) is common and is 
associated with an increased risk of stroke. We aimed 
to systematically review and meta- analyse multivariable 
prediction models derived and/or validated in electronic 
health records (EHRs) and/or administrative claims 
databases for the prediction of incident AF in the 
community.
Methods Ovid Medline and Ovid Embase were 
searched for records from inception to 23 March 2021. 
Measures of discrimination were extracted and pooled 
by Bayesian meta- analysis, with heterogeneity assessed 
through a 95% prediction interval (PI). Risk of bias was 
assessed using Prediction model Risk Of Bias ASsessment 
Tool and certainty in effect estimates by Grading of 
Recommendations, Assessment, Development and 
Evaluation.
Results Eleven studies met inclusion criteria, describing 
nine prediction models, with four eligible for meta- analysis 
including 9 289 959 patients. The CHADS (Congestive 
heart failure, Hypertension, Age>75, Diabetes mellitus, prior 
Stroke or transient ischemic attack) (summary c- statistic 
0.674; 95% CI 0.610 to 0.732; 95% PI 0.526–0.815), 
CHA2DS2- VASc (Congestive heart failure, Hypertension, 
Age>75 (2 points), Stroke/transient ischemic attack/
thromboembolism (2 points), Vascular disease, Age 65–74, 
Sex category) (summary c- statistic 0.679; 95% CI 0.620 to 
0.736; 95% PI 0.531–0.811) and HATCH (Hypertension, 
Age, stroke or Transient ischemic attack, Chronic obstructive 
pulmonary disease, Heart failure) (summary c- statistic 
0.669; 95% CI 0.600 to 0.732; 95% PI 0.513–0.803) 
models resulted in a c- statistic with a statistically significant 
95% PI and moderate discriminative performance. No 
model met eligibility for inclusion in meta- analysis if studies 
at high risk of bias were excluded and certainty of effect 
estimates was ’low’. Models derived by machine learning 
demonstrated strong discriminative performance, but 
lacked rigorous external validation.
Conclusions Models externally validated for prediction 
of incident AF in community- based EHR demonstrate 
moderate predictive ability and high risk of bias. Novel 
methods may provide stronger discriminative performance.
Systematic review registration PROSPERO 
CRD42021245093.

INTRODUCTION
Atrial fibrillation (AF) is the most common sustained 
cardiac arrhythmia and is associated with a five- fold 

increased risk of stroke.1 2 This risk can be reduced 
by two- thirds by a number of effective oral antico-
agulants,3 4 but it is estimated that 30% of patients 
living with AF are undiagnosed and its first mani-
festation is stroke in more than 10% of patients.5 6

International guidelines recommend opportu-
nistic rather than systematic screening in asymp-
tomatic patients, using age over 65 years as the only 
risk predictor.2 7 In many European countries, a 
large proportion of the population is registered in 
primary care with a routinely collected electronic 
health record (EHR).8 9 A multivariable prediction 
model that uses this data source to give a more 
discriminative assessment of risk could allow far- 
reaching, cost- effective targeted screening.

There are several prediction models for incident 
AF in community- dwelling individuals but they 
have predominantly been tested in prospective 
cohorts and their performance may not translate to 
EHR data.10 To show utility for targeting screening 
in the general population using real- world EHR, 
a model would need to have been tested in EHR 
or administrative claims databases relevant to the 
general population or primary care (herein referred 
to as community- based EHR).

We performed a systematic review and meta- 
analysis with a number of aims. First, to iden-
tify prediction models for incident AF derived or 
validated in community- based EHR. Second, to 
summarise the performance of individual predic-
tion models to understand if any would be suitable 
for use in targeted screening. Third, to summarise 
the methods by which prediction models have been 
developed in EHR to inform future research within 
the field.

METHODS
We reported this systematic review and meta- 
analysis in accordance with the Preferred Reporting 
Items for Systematic Reviews and Meta- Analyses 
guidelines (online supplemental material).11

Search strategy and inclusion criteria
The research question was framed using the CHeck-
list for critical Appraisal and data extraction for 
systematic Reviews of prediction Modelling Studies 
(CHARMS) (online supplemental material).12 
We searched the Medline and Embase databases 
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through the Ovid platform from inception through 23 March 
2021. We used a combination of keywords and subject headings 
related to AF, prediction models and EHR based on previous 
literature.13–15 The search was limited to the English language 
and to human studies. The full search strategy is provided in 
online supplemental material. We manually searched the refer-
ence lists of included studies and previous systematic reviews.13 14 
Duplicates were removed using Endnote’s duplicate identifica-
tion strategy and then manually.

To be eligible for inclusion a study had to:
1. Be an original study in human adults (≥18 years of age).
2. Develop and/or validate a prediction model(s) for incident 

AF or atrial flutter (AFl) based on multivariable analysis in 
a community- based EHR. We included AFl as a co- outcome 
because it has a similar indication for anticoagulation.2

3. Be written in English.
Articles were excluded if they:

1. Included patients with AF or AFl at baseline.

2. Only reported measures of association between risk factors 
and incident AF rather than a full prediction model.

3. Studied only a subset of the general population, for example, 
individuals diagnosed with a particular morbidity.

4. Incorporated variables that would not be routinely available 
in community- based EHR (eg, ECG parameters) (online sup-
plemental material).

We uploaded records to a systematic review web application 
(Rayyan, Qatar Computing Research Institute).16 Four investi-
gators (RN, EA, BH and SA) independently screened them for 
inclusion by title, abstract, full text and supplementary materials 
. Disagreements were resolved by consultation with a fifth inves-
tigator (JW).

Data extraction and quality assessment
Two investigators (RN and EA) independently extracted the data 
from the included studies based on CHARMS. This included 
the following domains: data source, participants, outcome(s), 

Figure 1 Flow diagram of literature search. AF, atrial fibrillation; AFl, atrial flutter; EHR, electronic health record.
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candidate predictors, sample size, missing data, and model 
development, performance and evaluation. Discrepancies were 
resolved with a third investigator (JW). All data came from the 
primary reference, unless otherwise stated.

To allow quantitative synthesis of the predictive performance 
of the models we extracted measures of discrimination and cali-
bration.17 Discrimination quantifies the model’s ability to distin-
guish between individuals developing or not developing the 
outcome. We extracted data on the c- statistic (c- statistic=1 if the 
model discriminates perfectly, c- statistic=0.5 if discrimination 
no better than chance) or area under the receiver operating char-
acteristic (AUROC) and corresponding 95% confidence interval 
(95% CI). When the 95% CI was not reported we calculated it 
using methods described by Debray et al.17 Calibration refers 
to the model’s accuracy of predicted probabilities; we extracted 
data on the p value of a goodness- of- fit test and the reported 
ratio for observed to expected events or calibration slope.

Two investigators (RN and JW) assessed each model in each 
study for risk of bias and applicability to our review ques-
tion using the Prediction model Risk Of Bias ASsessment Tool 
(PROBAST).18 Discrepancies were resolved with a third investi-
gator (CPG). Each model was assessed for risk of bias as either 
‘high’, ‘unclear’ or ‘low’ in four domains (participants, predic-
tors, outcomes and analysis) through a range of signalling ques-
tions. Applicability to our review question was assessed for each 
model in three domains (participants, predictors and outcomes) 
using the same scale.18

Data synthesis and statistical analysis
We reported continuous variables as means±SD and categorical 
variables as percentages. Calibration was infrequently reported, 
so we restricted meta- analysis to discrimination through a 
summary measure of c- statistic and corresponding 95% CI. 
In our primary analysis we assessed overall discrimination for 
models that had ≥3 EHR cohorts with c- statistic data. When 
multiple c- statistic data for a model were reported in a single 
cohort by different studies we only included the first published 
study.

We calculated the 95% prediction interval (PI) to depict the 
extent of between- study heterogeneity and to indicate a possible 
range for prediction model performance in a new validation.19 
When the 95% CI or PI of the summary c- statistic included 
0.5 we concluded that there was insufficient evidence that the 
prediction model has statistically significant discriminatory 
ability.13 20 We used a Bayesian approach throughout as frequen-
tist methods, where there are fewer studies or a mixture of study 
sizes, have produced PIs with poor coverage.19 The prior distri-
butions specified are summarised in online supplemental mate-
rial. A logit transformation was applied to the c- statistic prior 
to meta- analysis, as the between- study distribution of the c- sta-
tistic is often skewed.21 We conducted meta- analyses in R using 
the metafor and metamisc package (R foundation for Statistical 
Computing V.3.6.3).22–24

We performed a number of sensitivity analyses:

Table 2 Characteristics of included prediction models

Model Study Predicted outcome Number of predictors Derivation EHR cohort (country) External validation EHR cohort (country)

Models originally derived for another purpose but tested for prediction of incident AF

CHADS2 Gage 200137 Stroke risk 5 – ClalitHS (IL)
NHIRD (TW)
NHIS- HEALS (KR)
NHIS- NSC (KR)
YMID (CN)

CHA2DS2- VASc Lip et al38 Stroke risk 7 – ClalitHS (IL)
Nivel- PCD (NL)
NHIS- HEALS (KR)
NHIS- NSC (KR)
YMID (CN)

HATCH de Vos et al36 Progression to persistent AF 5 – NHIRD (TW)
NHIS- HEALS (KR)
NHIS- NSC (KR)
YMID (CN)

Regression model derived in a prospective cohort design

CHARGE- AF Alonso et al48 Incident AF or AFl 11 – CPRD (UK)
Nivel- PCD (NL)

Regression models derived in EHR

C2HEST Li et al31 Incident AF 6 YMID (CN) NHIRD (TW)
NHIS- HEALS (KR)

MHS Aronson et al26 Incident AF or AFl 10 MHS (IL) N/A

Machine learning models derived in EHR

CPRD Hill et al28 Incident AF or AFl 100 CPRD (UK) Discover (UK)

NHIRD Hu W- S et al29 Incident AF 19 NHIRD (TW) N/A

NHIS- NSC Kim et al35 Incident AF or AFl 22 NHIS- NSC (KR) N/A

AF, atrial fibrillation; AFl, atrial flutter; CHADS2, Congestive heart failure, Hypertension, Age>75, Diabetes mellitus, prior Stroke or transient ischaemic attack [two points]; 
CHA2DS2- VASc, Congestive heart failure, Hypertension, Age>75 [2 points], Stroke/transient ischaemic attack/thromboembolism [two points], Vascular disease, Age 65–74, Sex 
Category; CHARGE- AF, Cohorts for Heart and Ageing Research in Genomic Epidemiology; C2HEST, Coronary artery disease/Chronic obstructive pulmonary disease [one point 
each], Hypertension, Elderly (Age≥75, 2 points), Systolic heart failure, Thyroid disease (hyperthyroidism); ClalitHS, Clalit Health Services; CN, China; CPRD, Clinical Practice 
Research Datalink; EHR, electronic health records; HATCH, Hypertension, Age, stroke or Transient ischemic attack, Chronic obstructive pulmonary disease, Heart failure; IL, Israel; 
KR, Republic of Korea; MHS, Maccabi Healthcare Services; N/A, not available; NHIRD, National Health Insurance Research Database; NHIS- HEALS, National Health Insurance 
Service - Health screening Cohort; NHIS- NSC, National Health Insurance Service- based National Sample Cohort; Nivel- PCD, Netherlands Institute for Health Services Research 
Primary Care Database; NL, Netherlands; TW, Taiwan; UK, United Kingdom; YMID, Yunnan Medical Insurance Database.
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1. To only include studies where the participants’ domain in 
PROBAST assessment was ‘low’ or ‘unclear’ risk of bias.

2. To only include studies where the overall PROBAST assess-
ment was ‘low’ or ‘unclear’ risk of bias.

3. Where a cohort had been reported multiple times we re-
placed the meta- analysis data with the data on the same co-
hort from any later study.

4. We excluded data from one of the Korean National Health 
Insurance Service Health screening cohort (NHIS- HEALS) 
and Korean National Health Insurance Service- based 
National Sample cohort (NHIS- NSC) because they originat-
ed from the same EHR database.

The Grading of Recommendations, Assessment, Development 
and Evaluation approach was used to assess the certainty of the 
evidence.25 The certainty of the evidence was graded as ‘high’, 
‘moderate’, ‘low’ or ‘very low’. One investigator (RN) rated the 
certainty of the evidence for the primary outcome and this was 
checked by a second investigator (JW). The criteria used are 
summarised in online supplemental material.

Patient and public involvement
Patients or the public were not involved in the design, conduct, 
reporting or dissemination plans of our research.

RESULTS
Study selection
The study selection process is described in figure 1. We iden-
tified 3949 unique records, reviewed 102 full- text reports and 

included 11 studies. A list of excluded studies that met a number 
of the inclusion criteria is available in online supplemental 
material.

Characteristics of included studies
The 11 included studies were based on nine cohorts from eight 
EHR databases, located in Asia Pacific (n=3), Europe (n=3) and 
the Middle East (n=2) (table 1).9 26–35 The number of times a 
prediction model had been derived or validated in EHR was 
skewed to Asia Pacific (n=17) compared with Europe (n=5) and 
the Middle East (n=3) (table 2).

The total number of participants in the included studies was 
17 889 536. Cohort size ranged from 96 778 to 2 994 837. The 
mean age varied from 41.3 years to 65.7 years and the propor-
tion of female participants ranged from 47.3% to 54.7%. The 
mean follow- up ranged from 2.9 years to 10.9 years. The inci-
dence of AF during follow- up ranged from 0.2% to 5.8%.

Characteristics of included prediction models
The included studies reported data on nine multivariable predic-
tion models (table 2). Three models had originally been derived 
for a purpose other than incident AF prediction.36–38 Five 
models had been derived in community- based EHR; three using 
machine learning techniques.28 29 35 In two of these studies, a 
range of machine learning techniques had been investigated with 
the optimum technique chosen by discriminative performance 
(online supplemental table S2).28 35 Among machine learning 
techniques, random forests were investigated in all three 

Figure 2 An overview of the ten predictors most frequently incorporated in the prediction models in this study. IHD, ischaemic heart disease; MI, 
myocardial infarction; SBP, systolic blood pressure.

https://dx.doi.org/10.1136/heartjnl-2021-320036
https://dx.doi.org/10.1136/heartjnl-2021-320036
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studies28 29 35 and neural networks were considered in two.28 35 
All studies reported a measure of discrimination (either c- statistic 
or AUROC), but only two studies provided a measure of cali-
bration.9 26 Three prediction models— CPRD (Clinical Practice 
Research Datalink), C2HEST (Coronary artery disease/Chronic 
obstructive pulmonary disease (one point each), Hypertension, 
Elderly (Age ≥75, two points), Systolic heart failure, Thyroid 
disease (hyperthyroidism)) and HATCH (Hypertension, Age, 
stroke or Transient ischemic attack, Chronic obstructive pulmo-
nary disease, Heart failure)—showed a c- statistic greater than 
0.75 in an external validation study (online supplemental table 
S1).30 33

Online supplemental table 3a,b summarises the variables used. 
The 10 most frequently included variables are summarised in 
figure 2. Age and chronic heart failure were the only variables 
included in every model. The number of variables incorporated 
into machine learning models was far greater than traditional 
regression models (table 2). The CPRD model was unique in 
incorporating time- varying variables (eg, change in body mass 
index (BMI) between the last two quarters of the year).28

Online supplemental figure S1 plots the performance of tradi-
tional regression and machine learning models in the devel-
opment population of each study. Online supplemental table 
S2 summarises the performance of traditional regression and 
machine learning techniques during model development in the 
CPRD and NHIS- NSC data sets. In each case, machine learning 
produced stronger discriminative performance in the develop-
ment population.

Risk of bias assessment
Online supplemental table S4 shows the results of the risk of 
bias and applicability assessment for each PROBAST domain for 
each model in the included studies. Figure 3 gives an overall 
summary of PROBAST domain assessments across all included 
studies. Overall, 96% of model results were at high risk of bias 
predominantly driven by high risk of bias in the analysis domain 
(88%). This resulted from exclusion of participants with missing 
data from analysis (72%) or not mentioning missing data (16%).

Figure 3 Judgements on the four PROBAST risk of bias domains and three PROBAST applicability domains presented as percentages across all 
included studies. PROBAST, Prediction model Risk of Bias ASsessment Tool; ROB, risk of bias.

https://dx.doi.org/10.1136/heartjnl-2021-320036
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Meta-analysis
Four models were eligible for the primary meta- analysis, incor-
porating 9 289 959 patients (figure 4). Only C2HEST was 
derived specifically for the purpose of predicting incident AF.31 
There were three models that resulted in a summary c- sta-
tistic with statistically significant 95% PI in our primary meta- 
analysis: CHADS2 (Congestive heart failure, Hypertension, 
Age >75, Diabetes mellitus, prior Stroke or transient ischemic 
attack) (summary c- statistic 0.674; 95% CI 0.610 to 0.732; 95% 
PI 0.526–0.815; n=5 studies; n=3 119 807), CHA2DS2- VASc 
(Congestive heart failure, Hypertension, Age >75 (2 points), 
Stroke/transient ischemic attack/thromboembolism (2 points), 
Vascular disease, Age 65–74, Sex Category) (summary c- sta-
tistic 0.679; 95% CI 0.620 to 0.736; 95% PI 0.531–0.811; n=5 
studies; n=2 528 780) and HATCH (summary c- statistic 0.669; 
95% CI 0.600 to 0.732; 95% PI 0.513–0.803; n=4 studies; n=2 
026 036). There was high heterogeneity, as shown by the wide 
95% PIs (figure 4).

Online supplemental table S5 shows the results of the sensi-
tivity analyses. Only CHA2DS2- VASc maintained a summary 

c- statistic with statistically significant 95% PI when either 
restricting the primary analysis to studies with ‘low’ or ‘unclear’ 
risk of bias for the participants domain of PROBAST, or using 
later data when a cohort had been analysed multiple times, or 
excluding data from either of the NHIS- HEALS or NHIS- NSC 
cohorts. However, when restricting primary analysis to models 
with ‘low’ or ‘unclear’ risk of bias for overall PROBAST assess-
ment, no models met eligibility for inclusion.

Certainty of evidence
The initial certainty level of the included prediction modelling 
studies was set at ‘high’ because the association between the 
predictors and outcomes was considered irrespective of any 
causal connection.39 The overall certainty level was, however, 
downgraded to ‘moderate’ and then ‘low’ because of inconsis-
tent results (high heterogeneity) and the large proportion of high 
overall risk of bias amongst studies. The final overall certainty of 
‘low’ implies that our confidence in the effect estimates is limited 
and further research is very likely to change the effect estimate.

Figure 4 Forest plot of primary analysis of c- statistics. C2HEST, Coronary artery disease/chronic obstructive pulmonary disease (one point each), 
Hypertension, Elderly (Age ≥75, 2 points), Systolic heart failure, Thyroid disease (hyperthyroidism); CHADS2, Congestive Heart failure, hypertension, 
Age>75, Diabetes mellitus, prior Stroke or transient ischaemic attack (two points); CHA2DS2- VASc, Congestive heart failure, Hypertension, Age >75 (2 
points), Stroke/transient ischaemic attack/thromboembolism (two points), Vascular disease, Age 65–74, sex category; ClalitHS, Clalit health services; 
HATCH, Hypertension, Age, stroke or Transient ischemic attack, Chronic obstructive pulmonary disease, and Heart failure; NHIRD, National Health 
Insurance Research Database; NHIS- HEALS, National Health Insurance Service - Health screening Cohort; NHIS- NSC, National Health Insurance 
Service- based National Sample Cohort; Nivel- PCD, Netherlands Institute for Health Services Research Primary Care Database; YMID, Yunnan Medical 
Insurance Database.

https://dx.doi.org/10.1136/heartjnl-2021-320036
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DISCUSSION
This systematic review and meta- analysis identified nine models 
that have been derived and/or validated in community- based 
EHR for incident AF. Five had been derived in EHR for this 
purpose; three by machine learning methods. Three models 
(CHADS2, CHA2DS2- VASc and HATCH) produced a summary 
c- statistic with statistically significant 95% PI for prediction of 
incident AF despite high heterogeneity. However the summary 
c- statistics were only 0.669–0.679. For an outcome such as AF 
that is considered difficult to predict, a c- statistic of 0.75 may be 
adequate for the models to be useful.40 This threshold has been 
achieved by prediction models for incident AF in the commu-
nity in non- EHR- based external validation studies,41–43 as well 
as in EHR by the machine learning CPRD model.33 Further-
more, in sensitivity analyses no model met eligibility for inclu-
sion in meta- analysis if studies at overall high risk of bias were 
excluded.

A previous meta- analysis investigated prediction models for 
incident AF that had been derived or validated in community 
cohorts.13 Nevertheless, this review included predominantly 
carefully curated prospective cohort designs, the results from 
which will have limited generalisability. In addition, a number of 
the included models require variables, such as ECG parameters, 
that are not routinely available in community- based EHR.44 The 
authors found CHA2DS2- VASc and CHARGE- AF (Cohorts for 
Heart and Ageing Research in Genomic Epidemiology) resulted 
in a summary c- statistic with statistically significant 95% PI 
on meta- analysis. There is conflicting evidence as to how well 
CHARGE- AF performs in EHR, especially given the incomplete-
ness of structured EHR fields for height, weight and ethnicity,9 10 
and for our study it did not meet eligibility for inclusion into 
meta- analysis. Another systematic review summarised a similar 
selection of prediction models for the detection of AF in the 
community and externally validated these models head- to- head 
in a commercial screening cohort.14 However, the outcome was 
prevalence, rather than future incident AF. Both of these reviews 
predated the emergence of machine learning models in this field, 
which are summarised for the first time regarding the prediction 
of incident AF here.

The use of age alone to target screening strategies for inci-
dent AF has yet to show a benefit for systematic versus opportu-
nistic screening, which is reflected in international guidelines.2 7 
Prediction models could target screening and if implemented 
through primary care EHR would minimise extra resources. The 
use of CHA2DS2- VASc for prediction of incident AF has advan-
tages given it uses variables available with high completeness in 
primary care EHR and would simultaneously provide an assess-
ment of stroke risk as an indicator of eligibility for anticoag-
ulation. Even so, there are a number of limitations. First, the 
discriminative performance was only moderate, overall certainty 
in the estimate effects was ‘low’ and the vast majority of studies 
were at high risk of bias. Second, it has predominantly been 
validated in Asia Pacific countries, where cohorts had different 
baseline characteristics compared with European counterparts. 
Third, it was outperformed by CHARGE- AF and C2HEST 
when compared head- to- head in individual external validation 
studies.9 31

Efforts may be best served to develop and externally validate 
novel prediction models for incident AF in community- based 
EHR. These data sources offer large samples sizes, providing 
the opportunity to investigate a larger number of predictors and 
use novel techniques. Machine learning models in this review 
showed strong discriminative performance in development data 

sets but were not included in meta- analysis due to a sparsity of 
external validation.

This study has a number of strengths. We had a comprehensive 
search strategy and thorough analysis approach. We included 
any model that had been used to predict the risk of incident 
AF, which allowed us to include models that were not origi-
nally intended for predicting AF but may have merits. We only 
included models that had been tested in databases relevant to 
the general population, which ensures the applicability of our 
results for screening in a primary care setting. We also did not 
present meta- regression or subgroup meta- analysis to investigate 
heterogeneity between studies based on study- level characteris-
tics or subgroups in the absence of available individual patient 
data given that such analyses would be prone to ecological bias.45

There are limitations to our study. Meta- analysis of model 
calibration performance was prohibited by poor reporting. 
We did not assess for ‘reporting biases’ visually through a 
funnel plot for several reasons. First, some studies reported 
multiple models in the same cohort so incorporating all these 
data points would skew the plot; second, producing funnel 
plots for individual models would not be informative as there 
would be too few data points; third the sample sizes for all 
included studies was very large making small- study effects less 
likely. The vast majority of studies was at high risk of bias, 
which is consistent with previous literature on clinical predic-
tion models due to limitations in conduct and reporting.46 
We restricted our search to studies written in English, though 
this has not been found to lead to significant bias.47 Finally, 

Key messages

What is already known on this subject?
 ⇒ Without a means of stratifying high- risk patients, 
opportunistic screening is more cost- effective than systematic 
screening. Several models have been derived for predicting 
incident atrial fibrillation in the community; predominantly 
through structured follow- up of prospective cohorts. 
Community- based electronic health records offer a potential 
route for far- reaching and cost- effective implementation 
of such models, but the utility of prediction models in this 
resource is unknown.

What might this study add?
 ⇒ In this systematic review and meta- analysis we found that 
models initially derived for other purposes have been tested 
most frequently for predicting incident atrial fibrillation 
in community- based electronic health records, but only 
show moderate and variable performance. There is high 
heterogeneity between studies and most failed to adequately 
handle missing data or report calibration. Models derived 
using machine learning in community- based electronic 
health records shows promising performance during model 
development.

How might this impact on clinical practice?
 ⇒ This study suggests that none of the available prediction 
models are, at present, suitable for targeting screening for 
atrial fibrillation in the community using electronic health 
records. Models derived by machine learning could provide 
improved performance, but require external validation and 
clinical impact assessment.
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routinely collected databases are associated with a number of 
potential biases relating to their retrospective, observational 
nature.

CONCLUSIONS
In this systematic review with meta- analysis, we identified nine 
multivariable prediction models relevant to screening for inci-
dent AF using community- based EHR. On meta- analysis three 
models produced a summary c- statistic with statistically signifi-
cant 95% PI, but discriminative performance was only moderate. 
At present, due to a combination of high risk of bias and incon-
sistency, there is no high- performing prediction model for inci-
dent AF using primary care EHR. Future research could aim to 
develop models in primary care EHR using machine learning, 
but must better handle missing data, report calibration and 
provide external validation.
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