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Abstract: Aims: Perform in-silico analysis of human SOS1 mutations to elucidate their pathogenic
role in Noonan syndrome (NS).

Background: NS is an autosomal dominant genetic disorder caused by single nucleotide mutation
in PTPN11, SOS1, RAF1, and KRAS genes. NS is thought to affect approximately 1 in 1000. NS
patients suffer different pathogenic effects depending on the mutations they carry. Analysis of the
mutations would be a promising predictor in identifying the pathogenic effect of NS.

Methods: We performed computational analysis of the SOS1 gene to identify the pathogenic non-
synonymous single nucleotide polymorphisms (nsSNPs) th a t cause NS. SOS1 variants were re-
trieved from the SNP database (dbSNP) and analyzed by in-silico tools I-Mutant, iPTREESTAB,
and MutPred to elucidate their structural and functional characteristics.

Results: We found that 11 nsSNPs of SOS1 that were linked to NS. 3D modeling of the wild-type
and the 11 nsSNPs of SOS1 showed that SOS1 interacts with cardiac proteins GATA4, TNNT2,
and ACTN2. We also found that GRB2 and HRAS act as intermediate molecules between SOS1
and cardiac proteins. Our in-silico analysis findings were further validated using induced cardiomy-
ocytes (iCMCs) derived from NS patients carrying SOS1 gene variant c.1654A>G (NSiCMCs) and
compared to control human skin fibroblast-derived iCMCs (C-iCMCs). Our in vitro data confirmed
that the SOS1, GRB2 and HRAS gene expressions as well as the activated ERK protein, were signi-
ficantly decreased in NS-iCMCs when compared to C-iCMCs.

Conclusion: This is the first in-silico and in vitro study demonstrating that 11 nsSNPs of SOS1
play deleterious pathogenic roles in causing NS.

Keywords: Noonan syndrome, SOS1 gene, in-silico analysis, post-translational modification, nonsynonymous SNP, patho-
genic variants.

1. INTRODUCTION
Noonan syndrome (NS) is an autosomal dominant genet-

ic  disorder  characterized by short  stature,  congenital  heart
disease, bleeding problems, developmental delays, and skele-
tal malformation. The occurrence of NS is estimated to be
between 1:1000 and 1:2500 live births, and it affects more
males than females [1, 2]. The molecular defects of NS are
related  to  the  altered  function  of  RAS-MAPK  signaling
caused by a mutation in four main genes - PTPN11, SOS1,
RAF1,  and KRAS.  Among these genes,  the PTPN11  is  the
dominant gene for NS [3, 4].
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The Son of Sevenless Homolog 1 (SOS1) is the second
dominant gene for NS, and the mutation of this gene causes
a distinctive phenotype with keratosis pilaris and curly hair
[5].  The substitution of Thr266Lys in SOS1  showed facial
dysmorphisms and mild pulmonic stenosis [6]. Studies have
shown that in NS patients with germline mutation of SOS1
developed tumors [7]. Individuals with NS display cardiac
anomalies, such as non-syndromic pulmonic stenosis, atrial
septal defects, and ventricular septal defects [8]. SOS1 is a
guanine nucleotide exchange factor, which upregulates the
RAS signaling pathway, leading to the changes in human de-
velopment [9, 10], and also alters RAS and RAC1 pathways
[11]. The CIIA act as a negative regulator of RAS-specific
guanine nucleotide exchange factor  activity  of  SOS1  [12].
The interaction domains of SOS1/GRB2 control the embry-
onic stem cell fate during mammalian development [13].
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The  human  genome  contains  1.42  million  single  nu-
cleotide  polymorphisms  (SNPs).  Among  these  250,000  -
400,000 SNPs in the protein-coding region, not sequence of
the genome are named as non-synonymous SNPs (nsSNPs),
which alters the amino acid in their functional protein [14,
15]. About 26-32% of nsSNPs are functionally effective and
lead to cause disease by changing post-translational modifi-
cation (PTM), protein stability and protein-protein interac-
tion [16, 17]. In this study, we computationally analyzed the
SOS1  gene  to  identify  the  pathogenic  nsSNPs  responsible
for NS. The 3D models of wildtype and mutant SOS1 pro-
teins were analysed. Since NS is known to cause cardiac ano-
malies, the interactions of SOS1 with other cardiac proteins
were studied using STRING, and were experimentally vali-
dated in-vitro by mRNA and protein expressions in NS pa-
tient-derived induced cardiomyocytes (NS-iCMCs). This is
the first in-silico  study of the SOS1  variants linked to NS,
and to discover the molecular pathways associated with this
disease.

2. MATERIALS AND METHODS

2.1. Datamining
The SOS1  variants were retrieved from the NCBI SNP

database (dbSNP) (https://www.ncbi.nlm.nih.gov/snp/) that
is a public domain archive for a broad collection of single ge-
netic polymorphisms. The protein sequence of SOS1 was re-
trieved from UniProt (https://www.uniprot.org/), which pro-
vides free accessible resources of protein sequence and func-
tional information.

2.2. Consequences of Variants
The retrieved variants were analysed by the variant ef-

fect  predictor  (VEP)  tool  (http://www.ensembl.org/Tools/
VEP)  to  determine  the  likely  consequences  of  amino  acid
substitutions on protein function [18].

2.3. Identifying the Most Pathogenic nsSNPs with Noo-
nan Syndrome

The pathogenic nsSNPs of SOS1 were filtered following
a previous literature review on NS (https://www. ncbi.nlm.ni-
h.gov/pubmed/) on NS. Further, the nsSNPs were analysed
by in-silico  tools  such as  dbNSFP, sorting intolerant  from
tolerant (SIFT), polymorphism phenotyping (PolyPhen), pro-
tein variation effect analyser (PROVEAN), functional analy-
sis  through  hidden  markov  model  (FATHMM),  mutation
taster,  consensus  deleteriousness  (condel),  likelihood ratio
test  (LRT)  (https://www.ensembl.org/Homo_sapiens/Tool-
s/VEP?db=core), single nucleotide polymorphisms and gene
ontology  (SNP  &  GO)  (http://snps.biofold.org/snps-and-
go/snps-and-go.html),  and  predictor  of  human  deleterious
single  nucleotide  polymorphisms  (PhD-SNP)  (http://snps.
biofold.org/phd-snp/ phd-snp.html). Studies have shown that
the SNPs were considered as more pathogenic, when it had
been predicted by more than eight in-silico tools [18, 19].

2.4. Analysing Protein Stability
The stability of the wild type and mutant SOS1 protein

stability was predicted by I-Mutant 2.0 (http://folding.bio-
fold.org/i-mutant/i-mutant2.0.html) and iPTREE-STAB, an
interpretable  decision  tree-based  method  (http://203.
64.84.190:8080/IPTREEr/iptree.htm). I-Mutant 2.0 is a sup-
port vector machine-based web server that helps in the auto-
matic prediction of protein stability changes upon single-site
mutations by using a data set derived from ProTherm. It pre-
dicts the changes in free energy delta-delta-G (DDG), which
predicts how a single-point mutation affects protein stability
and the results are expressed as a positive or negative value
in  Kcal/mol.  We  submitted  protein  sequence  by  changing
single-site mutations of SOS1 protein to predict the stability
of proteins, while the conditions were set at the temperature
25º C and pH 7 [20, 21].

2.5. Analysis of Structural and Functional Properties of
nsSNPs

The  structural  and  functional  properties  of  pathogenic
nsSNPs were analyzed by submitting their amino acid substi-
tution of the protein sequence (FASTA format) in MutPred2
(http://mutpred2.mutdb.org/about.html).  It  predicts  the
molecular pathogenicity of amino acid substitution and the
altered molecular mechanism affecting the phenotype using
the threshold P-value of ≤0.05 [22].

2.6. 3D Protein Modeling and Visualization
To generate the 3D models of wild type and mutants of

SOS1 protein, we submitted amino acid substitution of a pro-
tein sequence in the Iterative Threading ASSEmbly Refine-
ment (I-TASSER) (https://zhanglab.ccmb.med.umich.edu/I-
TASSER/), which is a hierarchical approach to predict the
structure and function of a protein. It identifies the structural
templates  from  the  PDB,  based  on  LOMETS  approaches,
and the function of the target is derived by BioLiP [23-25].
Later, these models were verified and selected based on C-S-
core,  ERRAT  score  (https://servicesn.mbi.ucla.edu/  ER-
RAT/) [26], and also verified by Ramachandran Plot Analy-
sis  (http://mordred.bioc.cam.ac.uk/~rapper/rampage.php)
[27]. Then, the verified structure was visualized on PyMOL
2.2.2, a 3D structure visualization software. The 3D structu-
ral  effect  on  the  mutation  was  analyzed  by  HOPE
(http://www.cmbi.ru.nl/hope/input/), which is an automatic
mutation  analysis  server  [28].  Furthermore,  to  extend  our
structural analysis,  TM-score and root mean square devia-
tion (RMSD) between wild type and mutant was calculated
using  TM-align  software  (https://zhanglab.ccmb.med.u-
mich.edu/TM-align/)  [29].

2.7. SOS1 Protein Network
To predict the specific interaction of SOS1 with cardiac

proteins,  we  submitted  the  protein  in  the  STRING  server
(https://string-db.org/),  which  is  a  database  that  provides
computational direct protein-protein interactions and its indi-
rect functional associations [30].
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2.8. In-vitro Validation of Protein Network
Finally, the findings from the in-silico gene interactions

associated with NS were further validated by in-vitro condi-
tions  using  induced  pluripotent  stem  cells  (iPSC)-derived
cardiomyocytes (iCMCs) obtained from normal control indi-
viduals (C-iCMCs),  NS patient  (NS-iCMCs),  and their  re-
spective parent cells; normal human skin fibroblast (C-SF),
NS patient cardiac fibroblasts (NS-CF), and iPSCs derived
from C-SF (C-iPSCs); NS-iCMCs, and iPSC-derived from
NS-CF (NS-iPSCs) carrying SOS1 gene variant c.1654A>G
(SNP_ID.rs137852814)  as  demonstrated  in  our  previous
studies  [31,  32].

To perform qRT-PCR, we isolated total  RNA from C-
SF, C-iPSCs, C-iCMCs, NS-CF, NS-iPSCs and NS- iCMCs
using trizol reagent (Ambion by Life Technologies) as de-
scribed in the manufacturer protocol. Then, the first strand
cDNA  was  synthesized  from  each  RNA  sample  by  using
High-Capacity  cDNA  Reverse  Transcription  Kit  (Applied
Biosystems). The gene expressions for the protein-network
interacted genes (ACTN2, GATA4, GRB2, HRAS, NKX2.5,
TNNT2  and SOS1) were performed using PowerUp™ SY-
BR™ Green Master Mix (Applied Biosystems). Briefly, a to-
tal reaction volume of 10 µl was prepared with the composi-
tion of 0.5 µl of cDNA, 1 µl of 5 picomole forward and rev-
erse primer mix, 5 µl of SYBR Green and 3.5 µl of DEPC
water. The PCR amplification was carried out in a Quantstu-
dio 6pro (Applied Biosystems) with fast thermal cycling con-
dition, 2 minutes of UDG activation temperature at 50˚C, 2

minutes of dual-lock DNA polymerase temperature at 95˚C
and followed with 40 cycles at 95˚C for 1 second and 60˚C
for 30 seconds. The relative expression for the target genes
was normalized with 18S rRNA as endogenous control. The
results are shown in fold change expression, and the values
were calculated as the ratio of induced expression to control
expression. The mRNA expression was further supported by
Western immunoblotting analysis  of  protein expression as
described earlier [33]. GAPDH was used as a protein load-
ing control. The sequence of primers used for qRT-PCR and
the antibodies used for the Western immunoblotting are giv-
en in Supplementary Table 1.

2.9. Statistical Analysis
The  statistical  analyses  were  performed  between  the

mean  of  each  group  by  Bonferroni’s  method  of  one-way
ANOVA  using  GraphPad  Prism  8  software.  The  P-value
<0.05 is considered as statistically significant.  All  in-vitro
experiments were performed with biological triplicates.

3. RESULTS

3.1. Variants of SOS1 Genes
We used NCBI -  dbSNP and UniProt  were used to re-

trieve variants of the SOS1 gene and the protein sequence of
human  SOS1  (ID:  Q07889).  There  was  a  total  of  38137
variants, including 634 deletions, 3767 deletions/insertions,
11 multiple nucleotide variants and 33725 single nucleotide
variants in SOS1 gene (Fig. 1).

Fig. (1). Variation classes of SOS1_variants. Deletion (DEL) - 634, Deletion/Insertion (DEL/INS) - 3767, Multiple Nucleotide Variant (MN-
V) - 11, and Single nucleotide variant (SNV) - 33725. (A higher resolution / colour version of this figure is available in the electronic copy
of the article).
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3.2. Consequences of SOS1 Variants in Percentages
We have used the VEP tool to find the consequences of

SOS1  variants [18]. From a total of 38137 variants, 34058
(89.1%) occurred in the intron; 1814 (4.8%) in upstream and
downstream, 1066 (2.8%) in 3' UTR, 688 (1.8%) in nonsyn-
onymous,  320  (0.9%)  in  synonymous,  and  191  (0.5%)  in
other variant classes were identified Fig. (2). The 688 nsS-
NPs were analysed further to examine their pathogenicity.

3.3.  Prediction  of  Most  Pathogenic  nsSNPs  in  Noonan
Syndrome

Based on the literature, we identified that 16 nsSNPs of
SOS1 variants were pathogenic with NS (Table 1). The func-
tionality  of  these  16 nsSNPs was predicted using in-silico
tools.  The  functional  prediction  and  scores  obtained  from
various in-silico tools are given in Supplementary Table 2.
The  SIFT  score  predicts  a  function  of  protein  affected  by
amino acid substitution. The score ranges from 0.0 (deleteri-
ous) to 1.0 (tolerate), and the score 0.0 to 0.05 considered as
deleterious. The PolyPhen score ranges from 0.0 (benign) to
1.0 (deleterious), and the results predicted to be benign, prob-
ably  or  possibly  damaging.  In  the  PROVEAN  tool,  if  the
score is below the threshold value of -2.5, it is considered as
deleterious, and if the score is greater than the threshold, it is
considered as neutral. FATHMM tool returns a p-value, and
the variant scores ≤ 0.5 are considered deleterious. In Muta-
tion Taster, a larger score is considered as deleterious, and
based on the score ranges from 0 to 1; a variant is classified
as  A  (disease-causing  automatic),  D  (disease-causing),  N
(polymorphism),  or  P  (polymorphism  automatic).  Condel

tool evaluates missense single nucleotide variants and yields
a score ranging from 0.0 to 1.0; the value < 0.5 is considered
as neutral, and the value >0.5 is considered as deleterious.
The score of LRT ranges from 0 to 1, and this can predict
the SNP as damaging or neutral based on the rules described
by Liu et al.  [34]. For the SNPs & GO and PhD-SNP, the
score ranges from 0.0 to 1.0; if the value of a variant is >0.5,
it is predicted as disease causing, otherwise, it is considered
neutral  [18,  19].  Based on the results  of  in-silico  analyses
(Table 1  and Supplementary Table 2),  we have chosen 11
SNPs as the most pathogenic predicted based on the number
of in-silico tools (8 out of 9 tools) and shown as deleterious
(Supplementary Table 1  and Fig. 3A) and the remaining 5
SNPs were predicted as less pathogenic (Fig. 3B). The speci-
ficity of our analysis was confirmed with the cancer-associat-
ed SOS1 mutation D309Y [35], which showed pathogenicity
in  7  out  of  9  in-silico  tools  in  our  study  (Supplementary
Table 2).

3.4. Protein Stability Prediction
We used I-Mutant 2.0 and iPTREE-STAB tools to pre-

dict  the  stability  of  a  protein  resulting  from  the  nsSNPs.
Both of these tools gave a DGG value of a protein at the pH
7.0 and at the temperature at 25° C. The value of DGG can
be positive or negative, and it is interpreted as the increase
or decrease in protein stability, respectively [20, 21]. Our re-
sults showed that all of the 11 nsSNPs had a decreased pro-
tein stability, at least in one of the two tools (Table 2). The
protein stability scores predicted for the five less pathogenic
SOS1  mutants  from  I-Mutant  and  iPTREE  are  given  in
Table  3.

Table 1. List of Pathogenic nsSNPs associated with NS.

SNP ID cDNA Changes CDS Changes Amino Acid Changes Disorders References

rs137852812 c.884C>A c.797C>A p.Thr266Lys NS Type 4, NS, Rasopathy, Gingival fibromatosis 1

[3-13, 45-56]

rs137852813 c.893T>G/C c.806T>G/C p.Met269Arg/Thr NS Type 4, NS, Rasopathy, Inborn genetic diseases

rs137852814 c.1741A>G c.1654A>G p.Arg552Gly
NS Type 4, NS, Rasopathy, Gingival fibromatosis 1

rs267607079 c.1743G>T/C c.1656G>C/T p.Arg552Ser

rs267607080 c.1381T>C c.1294T>C p.Trp432Arg NS Type 4, NS

rs397517147 c.1384G>A c.1297G>A p.Glu433Lys NS, Rasopathy

rs397517148 c.1387G>A c.1300G>A p.Gly434Arg
NS, Abnormality of the sternum, Ptosis, Pulmonic stenosis, Short sta-

ture, Rasopathy

rs397517149 c.1729A>C c.1642A>C p.Ser548Arg NS Type 4, NS, Rasopathy, Inborn genetic diseases

rs397517150 c.1397T>C c.1310T>C p.Ile437Thr
NS, Rasopathy

rs397517153 c.1736T>C c.1649T>C p.Leu550Pro

rs397517154 c.1742G>C/A c.1655G>C/A p.Arg552Thr/Lys NS, NS Type 3, Rasopathy, Abnormality of the aortic valve

rs397517156 c.2270A>T c.2183A>T p.Lys728Ile NS

rs397517159 c.2623G>A c.2536G>A p.Glu846Lys NS Type 4, NS, Rasopathy, Gingival fibromatosis 1

rs397517164 c.409G>A c.322G>A p.Glu108Lys NS, Rasopathy

rs397517180 c.1012G>T c.925G>T p.Asp309Tyr NS

rs727504295 c.1409G>A c.1322G>A p.Cys441Tyr NS, Rasopathy



530   Current Genomics, 2021, Vol. 22, No. 7 Sigamani et al.

Fig. (2). Pie diagram showing the consequences of SOS1 variants in percentages. Intron variants - 90.9%, Upstream & Downstream variants
- 4.8%, 3`_UTR variants - 2.8%, nonsynonymous variants - 1.8%, Synonymous variants - 0.9%, and other variants - 0.5%. (A higher resolu-
tion / colour version of this figure is available in the electronic copy of the article).

Fig. (3). The pathogenicity of SOS1 nsSNPs predicted by various in-silico tools. (A) The most pathogenic 11 nsSNPs and (B) the less patho-
genic 5 SNPs were associated with NS, predicted by various in-silico tools. (A higher resolution / colour version of this figure is available in
the electronic copy of the article).
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Table 2. SOS1 mutant proteins stability prediction by I-mutant 2.0 and iPTREE-STAB.

SNP ID Amino Acid Changes
I-Mutant 2.0 iPTREE-STAB

DDG Protein Stability DDG Protein Stability
rs137852813 p.Met269Arg -0.78 Decrease -2.46 Decrease
rs137852814 p.Arg552Gly -1.17 Decrease -0.60 Decrease
rs267607079 p.Arg552Ser -2.14 Decrease -5.10 Decrease
rs267607080 p.Trp432Arg -1.82 Decrease -0.11 Decrease
rs397517147 p.Glu433Lys -0.81 Decrease -1.85 Decrease
rs397517148 p.Gly434Arg -1.79 Decrease -1.77 Decrease
rs397517149 p.Ser548Arg -0.26 Decrease -1.55 Decrease
rs397517150 p.Ile437Thr -2.15 Decrease -5.10 Decrease
rs397517153 p.Leu550Pro -0.08 Decrease -0.60 Decrease
rs397517154 p.Arg552Thr -1.12 Decrease -5.10 Decrease
rs727504295 p.Cys441Tyr 0.83 Increase -0.02 Decrease
rs137852812 p.Thr266Lys -0.28 Decrease 0.1725 Increase
rs397517156 p.Lys728Ile 0.27 Increase -1.8289 Decrease
rs397517159 p.Glu846Lys -0.82 Decrease -1.3925 Decrease
rs397517164 p.Glu108Lys -0.41 Decrease -0.6080 Decrease
rs397517180 p.Asp309Tyr -0.77 Decrease -0.4600 Decrease

Table 3. The protein stability scores predicted for the five less pathogenic SOS1 mutants by I-mutant 2.0 and iPTREE-STAB.

SNP ID Amino Acid Changes
I-Mutant iPTREE-STAB

DDG Protein Stability DDG Protein Stability
rs137852812 p.Thr266Lys -0.28 Decrease 0.1725 Increase
rs397517156 p.Lys728Ile 0.27 Increase -1.8289 Decrease
rs397517159 p.Glu846Lys -0.82 Decrease -1.3925 Decrease
rs397517164 p.Glu108Lys -0.41 Decrease -0.6080 Decrease
rs397517180 p.Asp309Tyr -0.77 Decrease -0.4600 Decrease

Table 4. Prediction of altered molecular mechanisms of SOS1 nsSNPs by mutPred2.

SNP ID Amino Acid Changes MutPred2 Score
Molecular Mechanisms with P-Values <= 0.05

Prediction Probability P-Value
rs137852813 p.Met269Arg 0.782 Gain of Intrinsic disorder 0.3 0.05
rs137852814 p.Arg552Gly 0.464 - - -
rs267607079 p.Arg552Ser 0.447 - - -

rs267607080 p.Trp432Arg 0.896
Gain of Intrinsic disorder 0.41 0.0075

Gain of Acetylation at K427 0.3 0.0039
Altered Coiled coil 0.28 0.02

rs397517147 p.Glu433Lys 0.528
Altered Coiled coil 0.53 0.004

Gain of Helix 0.27 0.04

rs397517148 p.Gly434Arg 0.573
Gain of Helix 0.28 0.02

Altered Coiled coil 0.25 0.02
rs397517149 p.Ser548Arg 0.349 - - -
rs397517150 p.Ile437Thr 0.644 Altered Metal binding 0.23 0.04

rs397517153 p.Leu550Pro 0.849
Loss of Helix 0.33 0.0016

Loss of Proteolytic cleavage at D555 0.21 0.0017
Altered Transmembrane protein 0.16 0.01

(Table 4) contd....
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SNP ID Amino Acid Changes MutPred2 Score
Molecular Mechanisms with P-Values <= 0.05

Prediction Probability P-Value

rs397517154 p.Arg552Thr 0.519
Loss of Helix 0.29 0.01

Loss of Proteolytic cleavage at D555 0.2 0.0024
Altered Transmembrane protein 0.15 0.01

rs727504295 p.Cys441Tyr 0.922

Loss of Helix 0.33 0.0016
Gain of Relative solvent accessibility 0.28 0.02

Gain of Strand 0.27 0.02
Altered Metal binding 0.26 0.02

Table 5. Structural verification scores for the wild type and selected mutant models of SOS1.

SNP ID Amino Acid Changes C - Score ERRAT Value
Ramachandran Plot

TM-Score RMSD (Å)
Favoured Region Allowed Region Outlier Region

Wild Type - -2.4 82.459 78.40% 12.50% 9.10% - -
rs137852813 p.Met269Arg -2.49 96.641 75.40% 12.70% 11.90% 0.7823 0.55
rs137852814 p.Arg552Gly -2.23 85.832 75.40% 12.50% 12.10% 0.7765 0.47
rs267607079 p.Arg552Ser -2.5 85.146 77.20% 11.30% 11.50% 0.9451 1.29
rs267607080 p.Trp432Arg -2.16 84.783 77.50% 12.90% 9.60% 0.7856 0.49
rs397517147 p.Glu433Lys -2.15 84.633 78.10% 11.40% 10.40% 0.9448 1.37
rs397517148 p.Gly434Arg -2.11 81.559 75.80% 12.80% 11.30% 0.7776 0.48
rs397517149 p.Ser548Arg -2.21 84.621 77.80% 10.40% 11.80% 0.7821 0.48
rs397517150 p.Ile437Thr -2.34 85.008 78.30% 11.80% 9.90% 0.9465 1.26
rs397517153 p.Leu550Pro -2.35 86.702 79.10% 10.80% 10.10% 0.9319 1.25
rs397517154 p.Arg552Thr -1.95 81.095 75.40% 11.60% 13.10% 0.7709 0.51
rs727504295 p.Cys441Tyr -2.67 84.441 76.40% 13.20% 10.40% 0.7864 0.5

3.5. Structural and Functional Properties of nsSNPs
The structural and functional properties of nsSNPs were

evaluated by MutPred2, which predicted the probability of
deleterious mutations and the alterations in molecular mech-
anism,  if  it  obtains  a  P-value  of  ≤  0.05  [22].  Our  results
showed that eight nsSNPs, listed in Table 4, have deleteri-
ous mutations with altered mechanisms with a P-value of ≤
0.05.  However,  three  nsSNP  (IDs  rs137852814,
rs267607079,  and  rs397517149)  had  a  score  of  <0.5  and
classified as ‘tolerated’ by MutPred2.

3.6. 3D Modelling and Visualization of SOS1 Protein
We have generated 3D protein models for the wild type

and 11 nonsynonymous mutants of SOS1 by using I-TASS-
ER, which produced five models for each variant [23-25].
These  models  were  verified  and  one  model  was  for  each
variant based on the model having a minimum C-score, max-
imum ERRAT score,  and the  most  allowed region on Ra-
machandran plot [26, 27]. The results of the selected models
are  shown in  Table  5.  Furthermore,  the  chosen  models  of
wild type and mutants were visualized by PyMOL 2.2.2 soft-
ware; and the HOPE server [28] was used to mask their ami-
no acid substitution (Fig. (4 and Supplementary Fig. 1). To
extend our structural analysis, we calculated template model-
ing  score  (TM-score)  and  root-mean-square  deviation  of
atomic positions (RMSD) for the 11 nonsynonymous mutant
models,  and  compared  them  with  wild  type  models  [29].
The  TM-score  shows  the  topological  similarity  between
wild type and mutant models. All the mutants had a score of

>  0.5,  which  indicated  that  the  models  were  similar.  The
RMSD value measures the average distance between the α-
carbon backbones of the wild type and mutant models. The
higher RMSD value indicated a greater deviation between
the wild type and mutant models. The results of TM-align,
along with its RMSD score, are shown in Table 5.

3.7. Interactions of SOS1 with Cardiac-Specific Proteins
The interactions of SOS1 with cardiac proteins were pre-

dicted by the STRING server [30], which predicted the phys-
ical and functional interactions of proteins. SOS1 was found
to  interact  with  many  cardiac  proteins,  such  as  ACTN2,
ACTN4,  GATA4,  NKX2.5,  TNNI3  and  TNNT2,  mainly
through  GRB2  and  HRAS  (Fig.  5).

3.8. In-vitro Validation Using NS-iCMCs in Comparison
with C-iCMCs

We verified the mRNA and protein expressions of SOS1
interacting  cardiac  proteins  in  NS-iCMCs  and  compared
those  levels  with  C-iCMCs.  qRT-PCR  analyses  have  re-
vealed that the mRNA expression of ACTN2, GATA4, TN-
NT2 (Fig. 6A) and GRB2, HRAS, SOS1 (Fig. 6B) were signi-
ficantly decreased, and NKX2.5 (Fig. 6C) was significantly
increased in NS-iCMCs compared with C-iCMCs. To sup-
port these mRNA expression profiles, we performed West-
ern  blot  analyses,  which  showed  that  GATA4,  GRB2,
HRAS, and SOS1 proteins and ERK1/2 activation were signi-
ficantly  reduced  in  NS-iCMCs  compared  with  C-iCMCs
(Fig.  6D).
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Fig. (4). 3D model of SOS1 wild type and its R552G mutant. (A) Green, wild type model of SOS1 and (B) Red, R552G mutant model of
SOS1 (rs137852814) showing an amino acid change at the 552nd position from Arginine to Glycine. (A higher resolution / colour version of
this figure is available in the electronic copy of the article).

Fig. (5). Interactions of SOS1 with cardiac-specific proteins. The interactions of SOS1 with cardiac proteins were predicted using STRING
server, which showed that SOS1 interacts with GATA4, TNNT2, TNNI3, ACTN2, ACTN4 through GRB2 and HRAS. (A higher resolution /
colour version of this figure is available in the electronic copy of the article).
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Fig. (6). In-vitro validation of cardiac protein expressions using NS-iCMCs in comparison with C-iCMCs. A-C, qRT-PCR analyses showing
the mRNA expressions of (A) A decreased expression of cardiac structural genes ACTN2 and TNNT2, and a cardiac specific regulatory
molecule GATA4, *P<0.05 and **P<0.01 C-iCMC vs NS-iCMC; (B) A decreased expression of SOS1 and RAS-MAPK pathway associated
genes GRB2 and HRAS *P<0.05 C-iCMC vs NS-iCMC; (C) An increased NKX2.5 gene expression observed in NS-iCMCs when compared
to Noonan syndrome (NS) patient-derived cardiac fibroblasts (NS-CF), NS-iPSCs, C-iPSCs and C-iCMCs. Each bar represents the mean ±
SEM of three replicated experiments. Each gene expression was normalized with 18S rRNA. *P<0.001 vs C-iCMC. (D) Western blot analys-
es showing the protein expressions of GATA4, GRB2, HRAS, and SOS1 in NS-CF, NS-iPSCs and NS-iCMCs in comparison with C-SF, C-
iPSCs and C-iCMC. GAPDH was used as a protein loading control. (E) Western immunoblotting for the phosphorylation of ERK1/2 at the
Thr202/Tyr204 and the ERK1/2. GAPDH was used to identify the equal loading of protein samples. (F) The ratio of the phosphorylated
ERK1/2 at the Thr202/Tyr204 and the total ERK1/2 was calculated. The activated ERK is significantly reduced in NS-iCMC when com-
pared to N-iCMC *P<0.05 vs. NS-iCMC, whereas the activated ERK significantly increased in NS-iPSC when compared to C-iPSC #P<0.05
vs. C-iPSC. (A higher resolution / colour version of this figure is available in the electronic copy of the article).
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SOS1 promotes the formation of active RAS, leading to
the  activation  of  RAF-MEK-ERK  cascade,  which  plays  a
key role in cardiac physiology/pathophysiology and cancer
[36-38]. In order to analyze the effect of SOS1 mutation in
the downstream effector molecules, we studied the ERK1/2
activation by the phosphorylation of ERK1/2 at the Thr202/-
Tyr204  by  Western  blotting.  Our  results  indicate  that
ERK1/2  activation  was  significantly  decreased  in  NS-
iCMCs  compared  to  C-iCMCs  (Figs.  6E  and  F).  ERK1/2
were  found  to  be  activated  in  both  control  and  NS parent
cells; and interestingly, their activation was found to be high-
er  in  NS-iPSCs,  compared to control  iPSCs (Figs.  6E  and
F).  Importantly,  our  GAPDH  loading  control  showed  an
equal loading of proteins in all the lanes whereas, the total
ERK1/2  expressions  were  unexpectedly  varied  among  the
samples.

4. DISCUSSION
Bioinformatic tools are capable of identifying the genet-

ic  variations  that  are  associated  with  a  patient’s  disease
genome. There are several bioinformatic tools available to
acquire specific and accurate genetic information that is al-
ready present in online databases. Genome-wide association
studies (GWAS) can be applied for testing millions of genet-
ic  variants  and  are  also  examined  to  identify  genotype-
-phenotype associations across the genomes. These associa-
tions provide insights into the disease susceptibility through
the identification of disease specific genes and mechanisms
[39]. The SNPs in the coding region of human genes were as-
sociated  with  genetic  disorders  [14].  A  large  number  of
SNPs have been reported in the database, and it is difficult
to screen all the SNPs for the particular phenotype [40, 41].
The computational analysis tools help to narrow down and
examine the pathogenic SNPs for the specific genetic disor-
ders and in minimizing the risk [41, 42].

NS is an autosomal dominant genetic disorder, where the
alterations are predominantly present in four genes - PTP-
N11, SOS1, RAF1, and KRAS. The SOS1 is the second domi-
nant gene for NS [1, 2, 5]. In the human SOS1 gene, a total
of 38137 SNPs have been listed in the database. Among th-
ese, 688 nsSNPs were involved in the functional protein cod-
ing  regions.  In  the  present  study,  various  computational
tools based on different algorithms were utilized to screen
the most pathogenic nsSNPs of the human SOS1 gene to in-
duce NS. A similar approach has been carried out to test the
functional nsSNPs of ARHGEF6, BRAF, TAGAP, and UTY
gene [41-44].

The  688 nsSNPs of  the  SOS1  gene  were  clinically  fil-
tered and it was found that 16 nsSNPs were pathogenic with
NS  [3-13,  45-56].  Using  various  in-silico  tools  such  as,
SIFT, PolyPhen, PROVEAN, FATHMM, Mutation Taster,
Condel, LRT, SNPs&GO, and PhD-SNP, we identified that
11 out of 16 nsSNPs, such as p.Met269Arg, (rs137852813),
p.Arg552Gly  (rs137852814),  p.Arg552Ser  (rs267607079),
p.Trp432Arg  (rs267607080),  p.Glu433Lys  (rs397517147),
p.Gly434Arg  (rs397517148),  p.Ser548Arg  (rs397517149),
p.Ile437Thr  (rs397517150),  p.Leu550Pro  (rs397517153),

p.Arg552Thr  (rs397517154),  and  p.Cys441Tyr
(rs727504295)  were  more  pathogenic  to  induce  NS.

Protein stability analyses that using I-Mutant 2.0 and iP-
TREE-STAB revealed that all of the 11 nsSNPs had a de-
creased  protein  stability,  except  rs727504295.  Decreased
protein stability results in altered protein structure through
increased aggregation, degradation, ubiquitination, and mis-
folding of proteins, leading to initiation of diseases [57-59].
Similarly, the prediction of the altered molecular mechanism
by  MutPred2  revealed  a  gain  of  intrinsic  disorder  in
rs137852813 and rs267607080; gain of acetylation at K427
in  rs267607080;  altered  coiled-coil  in  rs267607080,
rs397517147,  and  rs397517148;  gain  of  the  helix  in
rs397517147  and  rs397517148;  altered  metal  binding  in
rs397517150  and  rs727504295;  loss  of  helix  in
rs397517153, rs397517154 and rs727504295; loss of proteo-
lytic cleavage at D555 and altered transmembrane protein in
rs397517153 and rs397517154; and gain of relative solvent
accessibility and strand in rs727504295.

Our study results did not reveal the details of the domain
or the type of mutation involved with the SOS1 variants. A
study  has  shown  that  most  of  the  pathogenic  SOS1  muta-
tions were clustered in pleckstrin-homology (PH), Dbl-ho-
mology  (DH)  or  in  the  helical  linker  between  PH domain
and RAS exchanger motif (REM) domain. Furthermore, the
SOS1  variants  p.Met269Arg,  p.Arg552Gly,  p.Arg552Ser,
p.Ser548Arg, p.Ile437Thr, p.Leu550Pro, p.Arg552Thr, and
p.Cys441Tyr were associated with Class 1 mutation, where
they participated in the auto-inhibitory interaction of the DH
and  REM  domains  blocking  RAS  access  [8].  The  SOS1
variants p.Trp432Arg, p.Glu433Lys and p.Gly434Arg were
associated  with  Class  2  mutation,  where  they  have  been
shown to modify the surface of the PH domain [8]. The 3D
models were generated using I-TASSER for the wild type
and  mutant  SOS1  proteins,  and  their  structural  variations
were  analysed.  Similar  computational  structural  analysis
have  been  carried  out  for  various  protein’s  models  like
ARHGEF6, BRAF, TAGAP, and UTY [41-44]. Besides, the
HOPE tool was utilized to study the amino acid changes be-
tween the wild type and mutants. The analysis of interaction
of proteins will be helpful to elucidate the network of func-
tional proteomics [60, 61]. In this study, using STRING serv-
er, we found that SOS1 interacts with cardiac structural and
functional  proteins,  such  as  ACTN2,  ACTN4,  GATA4,
NKX2.5,  TNNI3  and  TNNT2 mainly  through  interactions
with GRB2 and HRAS. ACTN-4 is a newly discovered non-
muscle alpha-actinin isoform that requires further investiga-
tion in cardiac physiology/pathophysiology [62].

Our  in-vitro  study  results  have  demonstrated  that  NS-
iCMCs containing SOS1 gene variant (rs137852814) had a
significantly decreased expression of SOS1 mRNA and pro-
tein, when compared with normal C-iCMCs. NS-iCMCs al-
so showed decreased mRNA and protein expressions of car-
diac specific regulatory molecules GATA4, RAS-MAPK path-
way associated GRB2 and HRAS, and decreased mRNA ex-
pressions  of  cardiac  structural  genes  like  ACTN2  and  TN-
NT2, when compared with C-iCMCs. In contrast, the mRNA
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expression level of NKX2.5 was significantly upregulated in
NS-iCMCs, when compared with C-iCMCs. The increased
expression  of  NKX2.5  in  NS-iCMCs  could  be  associated
with cardiac hypertrophy and is in agreement with other pub-
lished studies [63-65]. This increased expression of cardiac
homeobox  gene  NKX2.5  activated  the  NPPA/ANF  and
HAND2  and resulted  in  the  induction of  cardiac  hypertro-
phy. Similarly, in our previous study, we have found an in-
creased  expression  of  NPPA  and  HAND2  in  NS-iCMCs,
compared to C-iCMCs [32].

SOS1 mutation has been shown to affect the stability of
the protein [8], and our study results showed that SOS1 mR-
NA and protein expressions were decreased in NS-iCMCs
relative to the wildtype iCMCs. Our results are in agreement
with the other study, where somatic mutations resulted in al-
tered  mRNA  and  protein  expressions  [66].  Studies  have
shown  that  the  role  of  SOS1-mediated  RAS-RAF-MEK-
ERK cascade plays an important role in preserving cardiac
function during physiological or pathological cardiac hyper-
trophy [36-38, 67, 68]. Although the role of ERK1/2 path-
way during cardiac development is not fully understood, our
study  results  indicated  that  ERK1/2  activation  was  de-
creased in NS-iCMCs compared to C-iCMCs, even though
the  NS-iCMCs  had  a  significant  amount  of  total  ERK1/2
and it was mostly present as an inactive form. These results
emphasise the importance of ERK1/2 activation in normal
cardiac  development.  On  the  other  hand,  suppression  of
ERK  activation  facilitated  the  reprogramming  of  somatic
cells [69], and accordingly, the ERK1/2 activation was re-
duced in normal C-iPSCs, and increased in NS-iPSCs. This
results further indicated the pathophysiology associated with
NS.  It  is  also  intriguing  to  argue  whether  the  increased
ERK1/2 activation in NS-iPSCs impairs its cardiac differenti-
ation ability. Further studies are needed to explore the role
of ERK in NS-iPSCs and NS-iCMCs during differentiation.

CONCLUSION
In conclusion, our in-silico analyses have identified that

11 variants of SOS1 gene nsSNPs were more pathogenic to
cause NS. Furthermore, our in-vitro studies using the NS pa-
tient-derived iCMCs carrying SOS1 mutation showed a spe-
cific pattern of gene expression that results in a reduced ex-
pression of genes involved in cardiac development and an in-
creased  expression  of  genes  involved  in  cardiac  hypertro-
phy. However, further studies are required to elucidate the
specific roles of SOS1 and its interacting proteins in induc-
ing cardiomyopathy in NS. Our current study results will be
helpful for the screening of NS patients with SOS1 mutation
for the expression of more pathogenic variants. This will fa-
cilitate exploring SOS1 interacting proteins in order to target
and thereby discover a possible treatment option for NS.
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