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Abstract A fundamental question of biology is what determines organ size. Despite

demonstrations that factors within organs determine their sizes, intrinsic size control mechanisms

remain elusive. Here we show that Drosophila wing size is regulated by JNK signaling during

development. JNK is active in a stripe along the center of developing wings, and modulating JNK

signaling within this stripe changes organ size. This JNK stripe influences proliferation in a non-

canonical, Jun-independent manner by inhibiting the Hippo pathway. Localized JNK activity is

established by Hedgehog signaling, where Ci elevates dTRAF1 expression. As the dTRAF1

homolog, TRAF4, is amplified in numerous cancers, these findings provide a new mechanism for

how the Hedgehog pathway could contribute to tumorigenesis, and, more importantly, provides a

new strategy for cancer therapies. Finally, modulation of JNK signaling centers in developing

antennae and legs changes their sizes, suggesting a more generalizable role for JNK signaling in

developmental organ size control.

DOI: 10.7554/eLife.11491.001

Introduction
Within a species, organ size is remarkably reproducible. While extrinsic factors like hormones are

required for growth, classic transplantation experiments indicate that intrinsic factors within organs

determine size (Bryant and Simpson, 1984). For example, embryonic limb buds transplanted from a

large species of salamander onto a small species grow to the size characteristic of the donor

(Twitty and Schwind, 1931). Similar findings have been made in quail and chick limbs (Iten and

Murphy, 1980; Wolpert, 1978), rat hearts and kidneys (Dittmer et al., 1974; Silber, 1976), and

mouse thymuses (Metcalf, 1963). Consistently, developing Drosophila wings transplanted into adult

abdomens grow to the proper size, indicating that the information determining size is located within

the developing organ (Garcı́a-Bellido, 1965). Indeed, the Drosophila wing is a classic model system

for studying organ size, as its size is highly replicable (Garcı́a-Bellido and Merriam, 1971; Garcı́a-

Bellido, 1965), and all adult precursor cells are located within the pouch region of the developing

larval imaginal disc (Garcı́a-Bellido et al., 1973) (Figure 1A, grey). Despite extensive work, the

molecular mechanisms underlying intrinsic organ size control remain unclear (Vogel, 2013). While

morphogens direct both patterning and growth of developing organs (Tabata and Takei, 2004), a
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link between patterning molecules and growth control pathways has not been established

(Schwank et al., 2011).

The Jun N-terminal Kinase (JNK) pathway promotes proliferation during regeneration and tumor

growth (Bosch et al., 2005; Igaki et al., 2006; Ryoo et al., 2004; Srivastava et al., 2007;

Wu et al., 2010). In fact, JNK-induced proliferation is often non-autonomous (Enomoto and Igaki,

2012; Pastor-Pareja et al., 2008; Ryoo et al., 2004; Sun and Irvine, 2011; Wu et al., 2010). Basket

(Bsk) is the singular Drosophila JNK and is activated by phosphorylation by the JNKK Hemipterous

(Hep) (Glise et al., 1995; Stronach, 2005). Canonical JNK signaling acts through the transcription

co-factor Jun, which regulates migration and apoptosis (Stronach, 2005). Although the role of JNK

in activating Yorkie signaling and growth during regeneration and tumorigenesis is clear

(Enomoto and Igaki, 2012; Sun and Irvine, 2011; Sun and Irvine 2013), it is not known to regulate

proliferation and growth during developmental size control.

Here we show that localized JNK activity in the developing wing is established by Hedgehog (Hh)

signaling and controls wing size through a non-canonical, Jun-independent signaling mechanism

that inhibits the Hippo pathway.

Results and discussion

JNK is active in the developing Drosophila wing pouch
Two independently generated antibodies that recognize the phosphorylated, active form of JNK

(pJNK) specifically label a stripe in the pouch of developing wildtype third instar wing discs

(Figure 1B–C and Figure 1—figure supplement 1G–H). Importantly, localized pJNK staining is not

detected in hemizygous JNKK mutant discs (Figure 1D–E; hepr75/Y), in clones of JNKK mutant cells

within the stripe (Figure 1F; hepr75, FRT10/Ubi-GFP, FRT10;; MKRS, hs-FLP/+), following over-

expression of the JNK phosphatase puckered (puc) (Figure 1—figure supplement 1I; ap-Gal4, UAS-

puc), or following RNAi-mediated knockdown of bsk using two independent, functionally validated

RNAi lines (Figure 1—figure supplement 1K–L; rn-Gal4, UAS-bskRNAi#1 or ptc-Gal4, UAS-bskRNAi#2;

see Experimental Genotypes for full genotypes and conditions) (Glise et al., 1995;

MacDonald et al., 2013; Martı́n-Blanco et al., 1998; Pérez-Garijo et al., 2013; Weber et al.,

2000; Xu and Rubin, 1993).

The stripe of localized pJNK staining appeared to be adjacent to the anterior-posterior (A/P)

compartment boundary, a location known to play a key role in organizing wing growth, and a site of

active Hedgehog (Hh) signaling (Basler and Struhl, 1994; Tabata and Kornberg, 1994;

Zecca et al., 1995). Indeed, pJNK co-localizes with the Hh target gene patched (ptc) (Figure 1G;

eLife digest A key challenge in biology is to understand what determines size. As an animal

grows, signals are produced that control the size of its organs. Many of the signaling pathways that

regulate size during normal animal development also contribute to the formation of tumors.

Therefore, it is important to find out exactly how the signaling molecules that regulate size are

linked to those that regulate tumor growth.

A protein called JNK activates a signaling pathway that triggers tumor growth. JNK signaling also

stimulates cells to multiply in tissues that need repair, but it is not known whether it also regulates

the size of organs during animal development. Here, Willsey et al. investigate whether JNK is active

in the developing wings of fruit flies, which are commonly used as models of animal development.

The experiments show that JNK is active in a stripe across the developing wing and is required

for the wing to grow to its proper size. A master signal protein called Hedgehog is responsible for

establishing this stripe of JNK activity. Unexpectedly, rather than acting through its usual signaling

pathway, JNK activates the Hippo pathway in the wing to control organ size during development.

Willsey et al.’s findings highlight potential new targets for cancer therapies. A future challenge

will be to find out whether small patches of JNK signaling are found in the developing organs of

other animals, and whether they can help explain how size changes between species.

DOI: 10.7554/eLife.11491.002
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ptc-Gal4, UAS-RFP). Expression of the JNK phosphatase puc in these cells specifically abrogated

pJNK staining (Figure 1H; ptc-Gal4, UAS-puc), as did RNAi-mediated knockdown of bsk (Figure 1I

and Figure 1—figure supplement 1L; ptc-Gal4, UAS-bskRNA#i1or2). Together, these data indicate

that the detected pJNK signal reflects endogenous JNK signaling activity in the ptc domain, a region

of great importance to growth control. Indeed, while at earlier developmental stages pJNK staining

is detected in all wing pouch cells (Figure 1—figure supplement 1A), the presence of a localized

stripe of pJNK correlates with the time when the majority of wing disc growth occurs (1000 cells/disc

at mid-L3 stage to 50,000 cells/disc at 20 hr after pupation, (Garcia-Bellido, 2009), so we hypothe-

size that localized pJNK plays a role in regulating growth.

Localized JNK activity regulates global wing size
Inhibition of JNK signaling in the posterior compartment previously led to the conclusion that JNK

does not play a role in wing development (McEwen and Peifer, 2005). The discovery of an anterior

stripe of JNK activity spurred us to re-examine the issue. Since bsk null mutant animals are

Figure 1. Localized JNK activity exists in the developing wing. (A) Schematic of wing precursor cells (grey) in the

developing disc (A, anterior; P, posterior). (B-F) Antibody staining against active, phosphorylated JNK (pJNK,

green; DAPI, blue) labels a stripe in wildtype (B-C) but not JNKK mutant (D-E, hepr75/Y) third instar discs. Boxed

region in (B) and (D) is magnified in (C) and (E), respectively. Weak pJNK signal is also detected along the dorsal/

ventral boundary. pJNK stripe staining is lost in JNKK mutant clones (F, hepr75, clone is negatively marked in F’).

(G-I) pJNK localizes to the same cells in which ptc is expressed (G, ptc>RFP, red) along the A/P boundary, and is

lost following JNK phosphatase expression (H, ptc>puc, RFP, red) or RNAi-mediated knockdown of bsk within the

ptc domain (I, ptc>bskRNAi, RFP, red). Bar: 50 um (B-F, H-I) and 25 um (G). See also Figure 1—figure supplement

1.

DOI: 10.7554/eLife.11491.003

The following figure supplement is available for figure 1:

Figure supplement 1. pJNK recognizes endogenous JNK activity in developing wing discs.

DOI: 10.7554/eLife.11491.004
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embryonic lethal, we thus conditionally inhibited JNK signaling in three independent ways in the

developing wing disc. JNK inhibition was achieved by RNAi-mediated knockdown of bsk

(bskRNAi#1or2), by expression of JNK phosphatase (puc), or by expression of a dominant negative bsk

(bskDN). These lines have been independently validated as JNK inhibitors (MacDonald et al., 2013;

Martı́n-Blanco et al., 1998; Perez-Garijo et al., 2013; Weber et al., 2000). Inhibition of JNK in all

wing blade cells (rotund-Gal4, rn-Gal4) or specifically in ptc-expressing cells (ptc-Gal4) resulted in

smaller adult wings in all cases, up to 40% reduced in the strongest cases (Figures 2A–F, 2J–K, and

Figure 2—figure supplement 1D). Importantly, expression of a control transgene (UAS-GFP) did

Figure 2. Modulation of localized JNK signaling changes wing size. Inhibition of JNK in all wing blade cells (B-E, J) or within the ptc domain (F, K)

decreases adult wing size compared to controls (A, C-E, J, rn>) or (F, K, ptc>). Note that autonomous reduction between longitudinal veins 3 and 4

accounts for a small portion of the global reduction. Apoptosis inhibition does not rescue the small wing phenotype (red, G, rn>p35, bskDN). (H-I, L)

Increased JNK signaling within the ptc domain following eiger expression causes an increase in disc size (I, ptc>egr, RFP, red; DAPI, blue) compared to

controls (H, ptc>RFP, red). (L) This is increase is dependent on bsk (ptc>egr, bskDN) but not affected by diap1 or p35 expression (ptc>egr, diap1 or

ptc>egr, p35). Due to high pupal lethality, disc size was analyzed when animals reached the wandering third instar stage. (M-O) JNK inhibition does not

affect cell size (N-O, rn>bskDN). (P-Q) Increased JNK signaling within the ptc domain causes an increase in proliferation (Q, ptc>egr, RFP, red; EdU,

green) compared to controls (P, ptc>RFP, red; EdU, green). EdU of boxed region in (P) and (Q) is shown in (R) and (S), respectively. (T) Quantification of

mean EdU signal in wing pouch regions between ptc>RFP and ptc>egr animals. Whiskers are SD. For box plots of area quantifications, whiskers

represent maximum and minimum values (J-L, O). *-****=p<0.05–0.0001. n.s.= not significant. Bar: 50 um. See also Figure 2—figure supplements 1–4.

DOI: 10.7554/eLife.11491.005

The following figure supplements are available for figure 2:

Figure supplement 1. JNK inhibition does not affect body size or cell death, but rather cell proliferation.

DOI: 10.7554/eLife.11491.006

Figure supplement 2. Activating JNK signaling increases wing disc size independent of cell death or developmental timing.

DOI: 10.7554/eLife.11491.007

Figure supplement 3. JNK inhibition does not affect Dpp or EGFR signaling.

DOI: 10.7554/eLife.11491.008

Figure supplement 4. Inhibiting EGFR or Dpp signaling does not affect pJNK establishment.

DOI: 10.7554/eLife.11491.009
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not affect wing size (Figure 2—figure supplement 1B–C; ptc-Gal4, UAS-GFP). This contribution of

JNK signaling to size control is likely an underestimate, as the embryonic lethality of bsk mutations

necessitates conditional, hypomorphic analysis. Nevertheless, hypomorphic hepr75/Y animals, while

pupal lethal, also have smaller wing discs (Figure 2—figure supplement 1G), as do animals with

reduced JNK signaling due to bskDN expression (Figure 2—figure supplement 1H–I; ap-Gal4, UAS-

bskDN). Importantly, total body size is not affected by inhibiting JNK in the wing. Even for the small-

est wings generated (rn-Gal4, UAS-bskDN), total animal body size is not altered (Figure 2—figure

supplement 1A,E).

To test whether elevation of this signal can increase organ size, we expressed eiger (egr), a

potent JNK activator (Igaki et al., 2002), within the ptc domain (ptc-Gal4, UAS-egr). Despite induc-

tion of cell death as previously reported (Igaki et al., 2002) and late larval lethality, we observed a

dramatic increase in wing disc size without apparent duplications or changes in the shape of the disc

(Figures 2H–I and 2L; ptc-Gal4, UAS-egr). While changes in organ size could be due to changing

developmental time, wing discs with elevated JNK signaling were already larger than controls

assayed at the same time point (Figure 2—figure supplement 2A–C; ptc-Gal4 and ptc-Gal4, UAS-

egr). Similarly, inhibition of JNK did not shorten developmental time (Figure 2—figure supplement

1F; rn-Gal4, UAS-bskDN). Thus, changes in organ size by modulating JNK activity do not directly

result from altering developmental time. Finally, the observed increase in organ size is not due to

induction of apoptosis, as expression of the pro-apoptotic gene hid does not increase organ size

(Figure 2—figure supplement 2D–F). In contrast, it causes a decrease in wing size (Figure 2—fig-

ure supplement 2D–F). Furthermore, co-expression of diap1 or p35 did not significantly affect the

growth effect of egr expression (p>0.05; Figure 2L and Figure 2—figure supplement 2H–I; ptc-

Gal4, UAS-egr, UAS-diap1 and ptc-Gal4, UAS-egr, UAS-p35), while the effect was dependent on Bsk

activity (p<0.05; Figure 2L and Figure 2—figure supplement 2G; ptc-Gal4, UAS-egr, UAS-bskDN).

In stark contrast to known developmental morphogens, we did not observe any obvious defects

in wing venation pattern following JNK inhibition (Figure 2A–B), suggesting that localized pJNK

may control growth in a pattern formation-independent manner. Indeed, even a slight reduction in

Dpp signaling results in dramatic wing vein patterning defects (Figure 2—figure supplement 3K).

Second, inhibiting Dpp signaling causes a reduction in wing size along the A-P axis, while JNK inhibi-

tion causes a global reduction (Figure 2—figure supplement 3J–L). Furthermore, ectopic Dpp

expression increases growth in the form of duplicated structures (Zecca et al., 1995), while

increased JNK signaling results in a global increase in size (Figure 2H–I). Molecularly, we confirm

that reducing Dpp signaling abolishes pSMAD staining, while quantitative data shows that inhibiting

JNK signaling does not (Figure 2—figure supplement 3D–I). Furthermore, we also find that Dpp is

not upstream of pJNK, as reduction in Dpp signaling does not affect pJNK (Figure 2—figure sup-

plement 4B). Together, the molecular data are consistent with the phenotypic results indicating that

pJNK and Dpp are separate programs in regulating growth. Consistent with our findings, during the

revision of this manuscript, it has been suggested that Dpp does not play a primary role in later lar-

val wing growth control (Akiyama and Gibson, 2015). Finally, we found that inhibition of JNK does

not affect EGFR signaling (pERK) and that inhibition of EGFR does not affect the establishment of

pJNK (Figure 2—figure supplement 3A–C and 4A).

A difference in size could be due to changes in cell size and/or number. We examined wings with

reduced size due to JNK inhibition and did not detect changes in cell size or apoptosis (Figure 2M–

O and Figure 2—figure supplement 1L–N; rn-Gal4, UAS-bskDN), suggesting that pJNK controls

organ size by regulating cell number. Consistently, the cell death inhibitor p35 was unable to rescue

the decreased size following JNK inhibition (Figure 2G; rn-Gal4, UAS-p35, UAS-bskDN). Indeed, inhi-

bition of JNK signaling resulted in a decrease in proliferation (Figure 2—figure supplement 1J–K;

ap-Gal4, UAS-bskDN), while elevation of JNK signaling in the ptc domain resulted in an increase in

cell proliferation in the enlarged wing disc (Figure 2P–T; ptc-Gal4, UAS-egr). Importantly, this

increased proliferation is not restricted to the ptc domain, consistent with previous reports that JNK

can promote proliferation non-autonomously (Enomoto and Igaki, 2012; Pastor-Pareja et al.,

2008; Ryoo et al., 2004; Sun and Irvine, 2011; Wu et al., 2010).

Non-canonical JNK signaling regulates size
To determine the mechanism by which pJNK controls organ size, we first considered canonical JNK

signaling through its target Jun (Ip and Davis, 1998). Interestingly, RNAi-mediated knockdown of
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jun in ptc cells does not change wing size (Figure 3A–B and Figure 3—figure supplement 1C–F;

ptc-Gal4, UAS-junRNAi#1or2; Both RNAi lines can effectively inhibit jun activity, Figure 3—figure sup-

plement 1A–B), which is consistent with previous analysis of jun mutant clones in the wing disc

(Kockel et al., 1997). Furthermore, in agreement with this, a reporter of canonical JNK signaling

downstream of jun (puc-lacZ [Ring and Martinez Arias, 1993]) is not expressed in the pJNK stripe

Figure 3. Non-canonical JNK signaling regulates wing size. RNAi-mediated knockdown of Jun within the ptc

stripe does not change adult wing size (A-B, red, ptc>junRNAi compared to blue, ptc>). RNAi-mediated

knockdown of jub does change global wing size (C-D, red, ptc>jubRNAi compared to blue, ptc>). Expression of yki

in all wing cells (E-F, red, rn>yki, bskDN compared to blue, rn>) or within the ptc stripe (G-H, red, ptc>bskDN, yki

compared to blue, ptc>) rescues wing size following JNK inhibition. RNAi-mediated knockdown or overexpression

of yki in ptc cells decreases or enlarges wing size, respectively (I-J, red, ptc>ykiRNAi, blue, ptc>, and K-L, red,

ptc>yki, blue, ptc>). (M-N) Inhibition of JNK signaling does not enhance the phenotype of Yki inhibition alone (M,

red, ptc>bskDN, ykiRNAi; blue, ptc>ykiRNAi). (O-P) RNAi-mediated knockdown of fj modifies the Yki growth

phenotype (O, red, ptc>yki, fjRNAi; blue, ptc>yki). For box plots, whiskers represent maximum and minimum

values. ****=p<0.0001. See also Figure 3—figure supplements 1–2.

DOI: 10.7554/eLife.11491.010

The following figure supplements are available for figure 3:

Figure supplement 1. Jun RNAi line validation and loss of kayak phenotypes.

DOI: 10.7554/eLife.11491.011

Figure supplement 2. JNK interacts with Yki to cause global changes in wing size.

DOI: 10.7554/eLife.11491.012
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(Figure 1—figure supplement 1F). Finally, knockdown of fos (kayak, kay) alone or with junRNAi did

not affect wing size (Figure 3—figure supplement 1G–H; rn-Gal4, UAS-kayRNiA#1or2 and rn-Gal4,

UAS-junRNAi#1, UAS-kayRNiA#1or2). Together, these data indicate that canonical JNK signaling through

jun does not function in the pJNK stripe to regulate wing size.

In search of such a non-canonical mechanism of JNK-mediated size control, we considered the

Hippo pathway. JNK signaling regulates the Hippo pathway to induce autonomous and non-autono-

mous proliferation during tumorigenesis and regeneration via activation of the transcriptional regula-

tor Yorkie (Yki) (Bakal et al., 2008; Enomoto and Igaki, 2012; Sun and Irvine, 2011). Recently it

has been shown that JNK activates Yki via direct phosphorylation of Jub (Sun and Irvine, 2013). To

test whether this link between JNK and Jub could account for the role of localized pJNK in organ

size control during development, we performed RNAi-mediated knockdown of jub in the ptc stripe,

and observed adults with smaller wings (Figure 3C–D; ptc-Gal4, UAS-jubRNAi#1or2). Indeed, the

effect of JNK loss on wing size can be partially suppressed in a heterozygous lats mutant back-

ground (Figure 3—figure supplement 2C–D; rn-Gal4, UAS-bskDN, latse26-1/+) and increasing down-

stream yki expression in all wing cells (Figure 3E–F; rn-Gal4, UAS-yki, UAS-bskDN) or just within the

ptc domain (Figure 3G–H; ptc-Gal4, UAS-yki, UAS-bskDN) can rescue wing size following JNK inhibi-

tion. These results suggest that pJNK controls Yki activity autonomously within the ptc stripe, lead-

ing to a global change in cell proliferation. This hypothesis predicts that the Yki activity level within

the ptc stripe influences overall wing size. Consistently, inhibition of JNK in the ptc stripe translates

to homogeneous changes in anterior and posterior wing growth (Figure 3—figure supplement 2A–

B). Similarly, overexpression or inhibition of Yki signaling in the ptc stripe also results in a global

change in wing size (Figure 3I–L and Figure 3—figure supplement 2A–B; ptc-Gal4, UAS-yki; ptc-

Gal4, UAS-ykiRNAi).

It is important to note that the yki expression line used is wild-type Yki, which is still affected by

JNK signaling. For this reason, the epistasis experiment was also performed with activated Yki, which

is independent of JNK signaling (UAS-ykiS111A,S168A,S250A.V5; (Oh and Irvine, 2009). Expression of

this activated Yki in the ptc stripe caused very large tumors and lethality (data not shown). Impor-

tantly, inhibiting JNK in this context did not affect the formation of these tumors or the lethality

(data not shown; ptc-Gal4, UAS-ykiS111A,S168A,S250A.V5, UAS-bskDN). Furthermore, inhibiting both JNK

and Yki together does not enhance the phenotype of Yki inhibition alone (Figure 3M–N and Fig-

ure 3—figure supplement 2E–F; ptc-Gal4, UAS-ykiRNAi, UAS-bskDN and ptc-Gal4, UAS-ykiRNAi,

UAS-puc), further supporting the idea that Yki is epistatic to JNK, instead of acting in parallel

processes.

Mutants of the Yki downstream target four-jointed (fj) have small wings with normal patterning,

and fj is known to propagate Hippo signaling and affect proliferation non-autonomously

(Ambegaonkar et al., 2012; Harvey and Tapon, 2007; Strutt et al., 2004; Villano and Katz, 1995;

Willecke et al., 2008). Although RNAi-mediated knockdown of fj in ptc cells does not cause an obvi-

ous change in wing size, it is sufficient to block the Yki-induced effect on increasing wing size

(Figure 3O–P and Figure 3—figure supplement 2G–H; ptc-Gal4, UAS-yki, UAS-fjRNAiand ptc-Gal4,

UAS-fjRNAi). However, overexpression of fj also reduces wing size, which makes it not possible to test

for a simple epistatic relationship (ptc-Gal4, UAS-fj; Figure 3—figure supplement 2I–J). Overall,

these data are consistent with the notion that localized pJNK regulates wing size not by Jun-depen-

dent canonical JNK signaling, but rather by Jun-independent non-canonical JNK signaling involving

the Hippo pathway.

Hh sets up pJNK by elevating dTRAF1 expression
While morphogens direct both patterning and growth of developing organs (Tabata and Takei,

2004), a link between patterning molecules and growth control pathways has not been established

(Schwank et al., 2011). pJNK staining is coincident with ptc expression (Figure 1G), suggesting it

could be established by Hh signaling. During development, posterior Hh protein travels across the

A/P boundary, leading to activation of the transcription factor Cubitus interruptus (Ci) in the stripe

of anterior cells (Domı́nguez et al., 1996; Schwartz et al., 1995). To test whether localized activa-

tion of JNK is a consequence of Hh signaling through Ci, we performed RNAi-mediated knockdown

of ci and found that the pJNK stripe is eliminated (Figure 4A–B; ptc-Gal4, UAS-ciRNAi#1or2). Consis-

tently, adult wing size is globally reduced (Figures 4D and 4G). In contrast, we do not observe a

change in pJNK stripe staining following RNAi-mediated knockdown of dpp or EGFR (Figure 2—

Willsey et al. eLife 2016;5:e11491. DOI: 10.7554/eLife.11491 7 of 18

Research Article Developmental biology and stem cells

http://dx.doi.org/10.7554/eLife.11491


Figure 4. Hh signaling through Ci establishes localized pJNK. RNAi-mediated knockdown of Ci in ptc cells

abrogates pJNK (green) staining (A-B, ptc>CiRNAi, RFP compared to ptc>RFP) and results in smaller adult wings

(D, red, ptc>CiRNAi compared to blue, ptc>). Expression of activated Ci in the ptc domain leads to increased pJNK

staining (green) (C, ptc>CiACT, RFP) and a larger wing (E, red, ptc>CiACT compared to blue, ptc>). Inhibition of

JNK signaling in these cells blocks the effect of activated Ci (red, F, ptc>CiACT, bskDN). For the box plot (G),

whiskers represent maximum and minimum values. ***-****=p<0.001–0.0001. Bar: 50 um.

DOI: 10.7554/eLife.11491.013
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Figure 5. Hedgehog signaling establishes pJNK by elevating dTRAF1 expression. (A) ptc cells (green, ptc+) and posterior cells (red, hh+) from third

instar wing discs were dissociated and sorted by FACS. RNA was isolated and hybridized to microarrays. Differentially expressed genes were identified.

(B) Hedgehog pathway genes known to be differentially expressed are identified. Genes upregulated in ptc cells (ptc+) compared to posterior (hh+)

cells are highlighted in green and downregulated in red. Genes with log2 normalized expression �6.5 are considered expressed. (C) JNK pathway gene

dTRAF1 is >5-fold upregulated in ptc cells. (D-I) RNAi-mediated knockdown of dTRAF1 eliminates pJNK (green) staining (E, ptc>dTRAFRNAi#1, RFP, red)

and leads to smaller adult wings (F-I, rn>dTRAFRNAi#1 or ptc>dTRAFRNAi#1). (J) Ci inhibition causes a ~ 30% decrease in dTRAF1 expression in 3rd instar

wing discs, relative to endogenous control Rp49. Whiskers are SD. For box plots, whiskers are maximum and minimum values (H-I). *-****=p<0.05–

0.0001. Bar: 50 um. See also Figure 5—figure supplement 1–2.

DOI: 10.7554/eLife.11491.014

The following figure supplements are available for figure 5:

Figure supplement 1. Transcriptional profiling quality control and additional dTRAF1 validation.

DOI: 10.7554/eLife.11491.015

Figure supplement 2. Inhibiting dTRAF1 can modify an activated Ci phenotype.

DOI: 10.7554/eLife.11491.016
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figure supplement 4A–B). Expression of non-processable Ci leads to increased Hh signaling

(Price and Kalderon, 1999). Expression of this active Ci in ptc cells leads to an increase in pJNK sig-

nal and larger, well-patterned adult wings (Figures 4C,E, and 4G; ptc-Gal4, UAS-CiACT). The modest

size increase shown for ptc>CiACT is likely due to the fact that higher expression of this transgene (at

25˚C) leads to such large wings that pupae cannot emerge from their cases. For measuring wing

size, this experiment was performed at a lower temperature (20˚C, see Experimental Genotypes) so

that the animals were still viable. Furthermore, inhibition of JNK in wings expressing active Ci blocks

Ci’s effects, and resulting wings are similar in size to JNK inhibition alone (Figure 4F–G; ptc-Gal4,

UAS-CiACT, UAS-bskDN). Together, these data indicate that Hh signaling through Ci is responsible

for establishing the pJNK stripe.

To determine the mechanism by which Ci activates the JNK pathway, we compared transcrip-

tional profiles of posterior (red, hh+) and ptc domain cells (green, ptc+) isolated by FACS from third

instar wing discs (Figure 5A; Materials and methods). Of the total 12,676 unique genes represented

on the microarray, 50.4% (6,397) are expressed in ptc domain cells, posterior cells, or both (log2 nor-

malized expression �6.5; Figure 5—figure supplement 1A–D; Supplementary file 1; Materials and

methods). We thresholded on a false discovery rate <0.01 and fold change �1.5 and found that

5.7% (363) of expressed genes were upregulated in ptc cells and 3.8% (242) were downregulated

(Figure 5—figure supplement 1D; Supplementary file 2; Materials and methods). Hh pathway

genes known to be differentially expressed are identified (Figure 5B). We next asked whether any

JNK pathway genes are differentially expressed and found that dTRAF1 expression is more than

five-fold increased in ptc cells (Figure 5C), while other JNK pathway members are not differentially

expressed (Figure 5C; Supplementary file 1; Supplementary file 2).

dTRAF1 is expressed along the A/P boundary (Preiss et al., 2001) and ectopic expression of

dTRAF1 activates JNK signaling (Cha et al., 2003). Thus, positive regulation of dTRAF1 expression

by Ci could establish a stripe of pJNK that regulates wing size. Indeed, we identified Ci binding

motifs in the dTRAF1 gene (Figure 5—figure supplement 1H), and a previous large-scale ChIP

study confirms a Ci binding site within the dTRAF1 gene (Chr2L: 4367100- 4371393; [Biehs et al.,

2010]). Consistently, a reduction in Ci led to a 29% reduction in dTRAF1 expression in wing discs

(Figure 5J; ptc-Gal4, UAS-CiRNAi). Given that the reduction of dTRAF1 expression in the ptc stripe is

buffered by Hh-independent dTRAF1 expression elsewhere in the disc (Preiss et al., 2001), this 29%

reduction is significant. Furthermore, inhibition of dTRAF1 by RNAi knockdown abolished pJNK

staining (Figure 5D–E and Figure 5—figure supplement 1E; ptc-Gal4, UAS-dTRAF1RNAi#1or2).

Finally, these animals have smaller wings without obvious pattern defects (Figure 5F–I and Fig-

ure 5—figure supplement 1F–G). Conversely, overexpression of dTRAF1 causes embryonic lethality

(ptc-Gal4, UAS-dTRAF1), making it not possible to attempt to rescue a dTRAF1 overexpression wing

phenotype by knockdown of bsk. Nevertheless, it has been shown that dTRAF1 function in the eye is

Bsk-dependent (Cha et al., 2003). Finally, inhibition of dTRAF1 modulates the phenotype of acti-

vated Ci signaling (ptc-Gal4, UAS-dTRAF1RNAi, UAS-CiACT; Figure 5—figure supplement 2).

Together, these data reveal that the pJNK stripe in the developing wing is established by Hh signal-

ing through Ci-mediated induction of dTRAF1 expression.

Localized pJNK controls antenna and leg size
Finally, we detected localized centers of pJNK activity during the development of other imaginal

discs including the eye/antenna and leg (Figures 6A and 6G). Inhibition of localized JNK signaling

during development caused a decrease in adult antenna size (Figures 6B–C and 6F; dll-Gal4, UAS-

bskDN) and leg size (Figures 6H–I and 6L; dll-Gal4, UAS-bskDN). Conversely, increasing JNK signal-

ing during development resulted in pupal lethality; nevertheless, overall sizes of antenna and leg

discs were increased (Figures 6D–E and 6J–K; dll-Gal4, UAS-egr). Together, these data indicate

that localized JNK signaling regulates size in other organs in addition to the wing, suggesting a

more universal effect of JNK on size control.

Intrinsic mechanisms of organ size control have long been proposed and sought after

(Bryant and Simpson, 1984; Vogel, 2013). Our study reveals that in developing Drosophila tissues,

localized, organ-specific centers of JNK signaling contribute to organ size in an activity level-depen-

dent manner. Such a size control mechanism is qualitatively distinct from developmental morphogen

mechanisms, which affect both patterning and growth (Zecca et al., 1995). Aptly, this mechanism is

still integrated in the overall framework of developmental regulation, as it is established in the wing
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by the Hh pathway (Figure 6M). Our data indicate that localized JNK signaling is activated by Ci-

mediated induction of dTRAF1 expression. Furthermore, we discovered that it is not canonical Jun-

dependent JNK signaling, but rather non-canonical JNK signaling that regulates size, possibly

through Jub-dependent regulation of Yki signaling, as described for regeneration (Sun & Irvine,

2013) (Figure 6M). As the human dTRAF1 homolog, TRAF4, and Hippo components are amplified

in numerous cancers (Camilleri-Broët et al., 2006; Harvey et al., 2013), these findings provide a

new mechanism for how the Hh pathway could contribute to tumorigenesis. More importantly, these

findings offer a new strategy for potential cancer therapies, as reactivating Jun in Hh-driven tumors

could lead tumor cells towards an apoptotic fate.

Figure 6. Modulation of localized JNK signaling within the developing antenna or leg changes organ size. pJNK (green) staining of wildtype antenna/

eye (A) and leg (G) third instar discs. Inhibition of JNK in the developing antenna (B-C, F, dll>bskDN) or leg (H-I, L, dll>bskDN) leads to a smaller adult

organ. Increased JNK activation within the antenna (D-E, dll>egr, RFP, red) or leg disc (J-K, dll>egr, RFP, red) causes an increase in disc size. (M) Model

of how localized JNK signaling regulates wing size during development. Engrailed (En) controls Hh signaling, leading to a stripe of active Ci along the

A/P boundary. Ci increases transcription of dTRAF1, activating JNK (pJNK, green). JNK acts in a non-canonical, Jun-independent manner to regulate

Yki or Yki-dependent signaling. As the human dTRAF1 homolog, TRAF4, and Hippo components are amplified in numerous cancers, these findings

provide a new mechanism for how the Hh pathway could contribute to tumorigenesis (Camilleri-Broët et al., 2006; Harvey et al., 2013). For box

plots, whiskers represent maximum and minimum values (F, L). ****=p<0.0001. Bar: 100 um

DOI: 10.7554/eLife.11491.017
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Materials and methods

Drosophila stocks and husbandry
Fly crosses were maintained at 25˚C on standard cornmeal-molasses media unless otherwise indi-

cated (see Experimental Genotypes). When possible, crosses were established so that every experi-

mental animal had an in-vial Gal4 alone control. For experiments that necessitated precise

developmental staging, 2 hr egg lays were conducted on apple juice agar plates with yeast paste.

For all other experiments, females were allowed to lay eggs on standard media for 24 hr, after which

they were removed and progeny were considered as 12 +/- 12 hr after egg lay. The following stocks

were utilized: (1) Canton-S (02) y, hepr75, FRT10.1/FM7iGFP (Glise et al., 1995) (2) Ubi-GFP,

FRT10.1;; hs-FLP, MKRS/TM6B (3) UAS-puc (III) (Martı́n-Blanco et al., 1998) (4) w; ap-GAL4, UAS-

src-RFP; Sb/TM6B (5) w; ptc-GAL4, UAS-src-RFP; Sb/TM6B (6) UAS-bskRNAi(II and III) VDRC 34138

(Perez-Garijo et al., 2013) and BDSC 32977 (7) w, UAS-bskDN (X) (8) w;; UAS-bskDN/TM6B (9) w;; rn-

GAL4/TM6B (10) y, UAS-p35; Adv/CyO; Sb/TM6B (11) w; Sp/CyO; UAS-egr/MKRS (12) UAS-diap1

(III) BDSC 6657 (13) UAS-bskAY (II) BDSC: 6407 (14) UAS-CiRNAi(II and III) BDSC 31236 and 31236 (15)

UAS-Ci5m/TK-GFP (“UAS-CiACT”) (Price and Kalderon, 1999) (16) pucE69/TM6B (“puc-lacZ”)

(Ring and Martinez Arias, 1993) (17) UAS-dTRAF1RNAi(X and III) VDRC 21213 and 21214 (18) UAS-

junRNAi (III) BDSC 31595 and VDRC 10835 (19) UAS-kayRNAi#1 (III) BDSC 33379 and 31322 (20) UAS-

jubRNAi(III and II) BDSC 32923 and 41938 (21) y,w;; latse26-1/TM6B (22) yw; UAS-yki.GFP; Sb/TM6B

BDSC 28815 (Oh and Irvine, 2008) (23) UAS-ykiRNAi/TM3 BDSC 31965 (24) UAS-fjRNAi/TM3 BDSC

28009 (25) UAS-fj.V5 (III) BDSC 44252 (26) w; dll-Gal4, UAS-src.RFP/CyO (27) UAS-dppRNAi(III) BDSC

25782 (28) UAS-EGFRRNAi(III) BDSC 25781 (29) UAS-ykiS111A.S168A.S250A.V5 (III) BDSC 28817

Imaginal disc staining
Antibody staining was performed according to standard procedures for imaginal discs. The following

antibodies were used: rabbit PhosphoDetectTM anti-SAPK/JNK (pThr183, pTyr185) (1:100, Calbio-

chem, immunogenic sequence is 100% identical to D. melanogaster bsk/JNK), rabbit anti-ACTIVEÒ

JNK (1:100, Promega, immunogenic sequence is 100% identical to D. melanogaster bsk/JNK), rabbit

anti-cleaved-caspase 3 (1:250, Cell Signaling), mouse anti-betagalactosidase (1:500, Sigma), rabbit

anti-pERK (1:75, Cell Signaling), rabbit anti-pSMAD (1:75, Cell Signaling), rabbit anti-phosphorylated

histone 3 (1:250, Cell Signaling), goat Alexa-488-conjugated anti-rabbit IgG (1:250, Invitrogen), goat

Alexa-488-conjugated anti-mouse IgG (1:250, Invitrogen), goat Alexa-555-conjugated anti-rabbit

IgG (1:250, Invitrogen). EdU staining was performed according to established protocol (Gouge and

Christensen, 2010) using the Click-iT EdU cell proliferation assay kit (Invitrogen), Grace’s Media

(Invitrogen) and a 10 min EdU incubation.

Imaginal disc imaging
Imaginal discs to be imaged by confocal microscopy were mounted in Vectashield mounting media

with DAPI (Vector Labs). Confocal images were taken with a Zeiss LSM510 Meta confocal micro-

scope or a Leica TCS SP8 STEAD 3X confocal microscope with 405nm, 488nm, 561nm, and 633nm

lasers. Both microscopes gave similar results. Measurements of disc size were performed from

images of at least fifteen discs using NIH Image-J software.

Western blot analysis
Whole Canton-S and hepr75/Y larvae were lysed in standard RIPA buffer with protease and phospha-

tase inhibitors. Proteins were separated by SDS-PAGE using a 4–15% acrylamide gel (BioRad), trans-

ferred for 1 hr at 4˚C, and probed with primary antibodies: rabbit anti-pJNK (Calbiochem, 1:1000)

and mouse anti-alpha tubulin (Sigma, 1:4000). HRP-conjugated secondary antibodies (anti-rabbit

and anti-mouse) were used at 1:5000. ECL (Pierce) was used for detection with film.

Adult organ imaging
Adult wings, legs, or antenna were dissected in 70% ethanol, mounted in Permount mounting media

(Fisher Scientific), and imaged with a Leica DFC300FX camera on a Leica MZ FLIII stereomicroscope.

Measurements of wing size were performed from images of twenty to sixty female flies using NIH

Image-J software. Wing images were false-colored and overlayed to scale using Adobe Photoshop
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CS3 software. Cell size was measured by dividing the number of hairs (1 hair/cell) by a set area using

Adobe Photoshop CS3 software. Mean EdU signal was measured in Adobe Photoshop CS3. Meas-

urements of antenna or leg size were performed from images of at least twenty male flies for each

genotype using NIH Image-J software.

Statistical analysis
To determine whether differences in area were statistically significant, two-sided student’s t-tests

were performed using raw data values, matched for temperature and sex. Box plots were generated

where whiskers represent maximum and minimum, a plus sign indicates the mean, a horizontal line

within the box indicates the median, and the box represents the 25–75% quartile range. Both

parametric and non-parametric analyses were performed, and p-values less than 0.05 were consid-

ered significant. Data are presented as relative to the mean of the matched Gal4-alone control.

Gene expression profiling
For each of three biological replicates, 200 pairs of wing imaginal discs were dissected from third

instar larvae of the genotypes hh-Gal4; UAS-mCD8GFP or ptc-Gal4; UAS-mCD8GFP. Discs were

stored in Schneider’s Drosophila Media (21720, Invitrogen) plus 10% FBS (10438, Invitrogen) on ice

for less than two hours prior to cell dissociation. Discs were washed twice with 1 ml cell dissociation

buffer (Sigma, C-1544). Elastase (Sigma, E-0258) was diluted to 0.4 mg/ml in fresh cell dissociation

buffer once discs were ready. Discs were incubated for 20 min at room temperature in 0.4 mg/ml

elastase with stirring by a magnetic micro stirring bar. Undissociated tissue was spun out, cell viabil-

ity was measured using the Beckman Vi-CELL Cell Viability Analyzer (>80%), and cells were immedi-

ately isolated using the BD FACSAria II system within the Stanford FACS facility. Dead cells labeled

with propidium iodide (P3566, Invitrogen) were excluded during FACS, and purity of sorted cells

was greater than 99% by post-sorting FACS analysis. Total RNA was extracted from sorted cells

(RNeasy, Qiagen), quality was assessed with the Agilent Bioanalyzer 2100 (RIN > 7.0), and microarray

analysis was performed in the Stanford Protein and Nucleic Acid Facility (Affymetrix D. mel Gene-

Chip Genome 2.0 microarrays).

Identification of differentially expressed genes
All analyses were conducted in R version 3.1.1 (2014-07-10). Expression values were determined

using the affy package (Gautier et al., 2004), available from BioConductor (http://bioconductor.

org). The automatically downloaded Drosophila 2.0 CDF environment was utilized. Probe level data

from the CEL files were imported using the function ReadAffy and converted to expression values

using the function rma with default settings. This method implements robust multi-array average

(RMA) for background correction followed by quantile normalization. PM correction was not per-

formed. Probe level expression values were combined into probe set expression measures using

medianpolish, the standard summary method employed in RMA (Irizarry et al., 2003). Expression

values are log2 transformed.

Post-normalization microarray quality assessment was conducted using the arrayQualityMetrics

package (Kauffmann et al., 2009), available from BioConductor. Default settings were used, with

ptc domain (ptc+) versus posterior (hh+) as the covariate in intgroup. Biological replicates cluster

together in a dendrogram of inter-array difference, estimated as the mean absolute difference

between the data of the arrays (Figure 5—figure supplement 1A), indicating that biological effects

are stronger than any batch effects. Similarly, principle components analysis also separates biological

replicates into two clusters (Figure 5—figure supplement 1B). Outliers were not detected by either

of these methods.

Probe sets were mapped to genes using the drosophila2.db annotation package (version 3.0.0),

available from BioConductor. 14,481 of 18,952 (76.4%) probe sets map to gene isoforms—12,676

(87.5%) of which correspond to unique genes (some genes are mapped by �1 probe set). In order

to minimize technical artifacts, probe sets mapping to the same gene were not combined.

Based on the distribution observed in the density plot of normalized probe set expression values,

probe sets (genes) with median log2 expression value �6.5 in at least one condition (ptc+ and/or hh

+) were considered to be expressed (Figure 5—figure supplement 1C). According to these criteria,

7,228 of 18,952 probe sets (38.1%) are expressed. This corresponds to 6,854 of 14,481 gene
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isoforms (47.3%), which corresponds to 6,397 of 12,676 unique genes (50.4%, Figure 5—figure sup-

plement 1D, Supplementary file 1).

To identify probe sets (genes) differentially expressed between ptc+ and posterior (hh+) samples,

we used the samr package, an R implementation of significance analysis of microarrays

(Tusher et al., 2001). This package is available from CRAN (http://cran.r-project.org/). Only

expressed probe sets mapping to genes (6,854) were considered in this analysis. Differentially

expressed probe sets were identified with the function SAM, using a two class unpaired response

type, the t-statistic as the test statistic, and a false discovery rate (FDR) threshold of 0.01. The maxi-

mum number of possible permutations (720) was used. To ensure these results are biologically

meaningful, we further trimmed this list to probe sets with a minimum 1.5 fold change between ptc+

and hh+ cells. Based on these criteria, 624 of 6,854 probe sets (9.1%) are differentially expressed,

with 376 (5.5%) upregulated in ptc+ samples and 248 (3.6%) downregulated in ptc+ samples (Fig-

ure 5—figure supplement 1D, Supplementary file 2). A gene was considered differentially

expressed if any mapped probe set was differentially expressed. Therefore, of the 6,397 unique

expressed genes, 604 (9.4%) are differentially expressed, 363 (5.7%) upregulated and 242 (3.8%)

downregulated. One gene, Tie, was mapped by probe sets both up- and down-regulated. The quan-

tile-quantile plot in Figure 5—figure supplement 1D was prepared using the samr.plot function.

Real-time polymerase chain reaction
Total RNA was extracted from third instar wing discs from ptc-Gal4 or ptc-Gal4, UAS-CiRNAi animals

using a standard TriZol extraction. RNA was reverse transcribed using the iScript cDNA Synthesis Kit

(Bio-Rad) according to manufacturer’s instructions. dTRAF1 expression was quantified relative to

Rp49 (RpL32- FlyBase, endogenous control) by real-time PCR performed in triplicate using the SYBR

Green fast kit (Applied Biosystems) and an Applied Biosystems machine according to the manufac-

turer’s instructions. The following primers were used: dTRAF1, 5’-GCACTCCATCACCTTCACAC-3’

and 5’-TAGCTGATCTGGTTCGTTGG-3’; Rp49, 50-GGCCCAAGATCGTGAAGAAG-30 and 50-ATTTG

TGCGACAGCTTAGCATATC-30.

Transcription factor binding site analysis
The Drosophila Ci positional weight matrix from the BioBase TRANSFAC database was queried

against the Drosophila melanogaster genome with a p-value <0.0001 (chosen based on known Ci

binding sites within ptc) using FIMO (MEME) and aligned back to the UCSC genome browser.

Experimental genotypes
Crosses were maintained at 25˚C unless otherwise indicated
Figure 1: (B-C) Canton-S (D-E) y, hepr75, FRT10.1 /Y (F) y, hepr75, FRT10.1/Ubi-GFP, FRT10.1;; hs-

FLP, MKRS/+ (G) w/+; ptc-GAL4, UAS-src.RFP/+ (H) w; ptc-GAL4, UAS-src.RFP; UAS-puc 29˚C (I) w;

ptc-GAL4, UAS-src.RFP/UAS-bskRNAi 29˚C
Figure 1—figure supplement 1: (A-C, G-H) Canton-S, (D-F) pucE69/+ (I) w; ap-Gal4/+; UAS-puc/

+ (J) w; ptc-Gal4, UAS-src.RFP/+ (K) w/yv, UAS-bskRNAi#1/UAS-src.RFP; rn-Gal4/+ 29˚C (L) w/yv; ptc-

Gal4, UAS-src.RFP/+; UAS-bskRNAi#2/+

Figure 2: (A) w/+;; rn-Gal4/+ (B) w/w, UAS-bskDN;; rn-Gal4/UAS-bskDN (C) Blue: w/+;; rn-Gal4/+

Red: w/w, UAS-bskDN;; rn-Gal4/UAS-bskDN (D) Blue: w/+;; rn-Gal4/+ 29˚C Red: w; UAS-bskRNAi#1/+;

rn-Gal4/+ 29˚C (E) Blue: w/+;; rn-Gal4/+ 29˚C Red: w;; rn-Gal4, UAS-puc/UAS-puc 29˚C (F) Blue: w/

+; ptc-Gal4, UAS-src.RFP/+; Sb/+ Red: w, UAS-bskDN/w; ptc-GAL4, UAS-src.RFP/Sp; UAS-bskDN/Sb

(G) w, UAS-bskDN/w, UAS-p35;; rn-GAL4/UAS-bskDN 29˚C (H, P, R) w/+; ptc-GAL4, UAS-src.RFP/+ (I,

Q, S) w; ptc-GAL4, UAS-src.RFP/+, UAS-egr/+ (M) w/+;; rn-Gal4/+ (N) w/w, UAS-bskDN; Sp/+; rn-

Gal4/UAS-bskDN

Figure 2—figure supplement 1: (A) Left: w/+;; rn-Gal4/+ 25˚C Right: w/w, UAS-bskDN;; rn-Gal4/

UAS-bskDN25˚C (B) Blue: w/+; ptc-Gal4, UAS-src.RFP/+; Sb/+ Red: w/+; ptc-Gal4, UAS-src.RFP/+;

Sb/UAS-GFP (H, J) w, UAS-bskDN/w; ap-Gal4, UAS-src.RFP/+; UAS-bskDN/+ 29˚C (L) w/+;; rn-Gal4/+

29˚C (M) w/w, UAS-bskDN;; rn-Gal4/UAS-bskDN 29˚C (N) w/+; UAS-bskAY/+; rn-Gal4/+

Figure 2- figure supplement 2: (A) w/+; ptc-Gal4, UAS-src.RFP/+ 6 days AEL (B) w/+; ptc-Gal4,

UAS-src.RFP/+; UAS-egr/Sb 6 days AEL (D) w/+; ptc-Gal4, UAS-src.RFP/+ (E) w/UAS-hid; ptc-Gal4,
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UAS-src.RFP/+ (G) w, UAS-bskDN/w; ptc-Gal4, UAS-src.RFP/+; UAS-egr/UAS-bskDN (H) w/+; ptc-

Gal4, UAS-src.RFP/UAS-diap1; UAS-egr/Sb (I) w/w, UAS-p35; ptc-Gal4, UAS-src.RFP/+; UAS-egr/Sb

Figure 2—figure supplement 3: (A, D) w; ap-GAL4/UAS-src.RFP (B) w; ap-GAL4/UAS-src.RFP;

UAS-EGFRRNAi/+ (C, F) w/w, UAS-bskDN; ap-GAL4/UAS-src.RFP; UAS-bskDN/+ (E) w; ap-GAL4/UAS-

src.RFP; UAS-dppRNAi/+ (J) w/+;; rn-Gal4/+ (K) w;; UAS-dppRNAi/rn-Gal4 (L) w/w, UAS-bskDN;; rn-

Gal4/UAS-bskDN

Figure 2—figure supplement 4: (A) w/yv; ptc-Gal4, UAS-src.RFP/+; UAS-EGFRRNAi/+ (B) w/yv;

ptc-Gal4, UAS-src.RFP/+; UAS-dppRNAi/+

Figure 3: (A) Blue: w/+; ptc-Gal4, UAS-src.RFP/+ Red: w/+; ptc-Gal4, UAS-src.RFP/+ UAS-junR-

NAi#1/+ (C) Blue: w/+; ptc-Gal4, UAS-src.RFP/+ 29˚C Red: w/+; ptc-Gal4, UAS-src.RFP/+; UAS-jubR-

NAi#1/+ 29˚C (E) Blue: w/+;; rn-GAL4/+ 29˚C Red: w/w, UAS-bskDN; UAS-yki.GFP/+; rn-GAL4/UAS-

bskDN 29˚C (G) Blue: w/+; ptc-Gal4, UAS-src.RFP/+ 29˚C Red: w/w, UAS-bskDN; ptc-Gal4, UAS-src.

RFP/UAS-yki.GFP; UAS-bskDN/+ 29˚C (I) Blue: w/+; ptc-Gal4, UAS-src.RFP/+ Red: w/+; ptc-Gal4,

UAS-src.RFP/+; UAS-ykiRNAi#1/+ (K) Blue: w/+; ptc-Gal4, UAS-src.RFP/+ 29˚C Red: w/+; ptc-Gal4,

UAS-src.RFP/UAS-yki.GFP 29˚C (M) Blue: w/+; ptc-Gal4, UAS-src.RFP/+; UAS-ykiRNAi#1/+ Red: w/

UAS-bskDN; ptc-Gal4, UAS-src.RFP/+; UAS-ykiRNAi#1/ UAS-bskDN (O) Blue: w/+; ptc-Gal4, UAS-src.

RFP/UAS-yki.GFP 29˚C Red: w/+; ptc-Gal4, UAS-src.RFP/UAS-yki.GFP; UAS-fjRNAi/+ 29˚C
Figure 3—figure supplement 1: (A) w/+; ap-Gal4, UAS-src.RFP/+; pucE69/+ (B) w/+; ap-Gal4,

UAS-src.RFP/UAS-junRNA#1i; pucE69/+ (C) Blue: w/+;; rn-Gal4/+ Red: w/+; UAS-junRNAi#1/+; rn-Gal4/

+ (E) Blue: w/+; ptc-Gal4, UAS-src.RFP/+ Red: w/+; ptc-Gal4, UAS-src.RFP/UAS-junRNAi#2 (G) Blue:

w/+;; rn-Gal4/+ Red: w/+;; rn-Gal4/UAS-kayRNAi Green: w/+; UAS-junRNAi/+; rn-Gal4/UAS-kayRNAi

Figure 3—figure supplement 2: (C) Blue: w/+;; rn-Gal4/+ Red: w/w, UAS-bskDN; UAS-bskDN/+;

rn-Gal4/latse26-1 (E) w; ptc-Gal4, UAS-src.RFP/+; UAS-ykiRNAi#1/UAS-puc (G) Blue: w/+; ptc-Gal4,

UAS-src.RFP/+ 29˚C Red: w/+; ptc-Gal4, UAS-src.RFP/+; UAS-fjRNAi/+ 29˚C (I) Blue: w/+; ptc-Gal4,

UAS-src.RFP/+ Red: w/+; ptc-Gal4, UAS-src.RFP/UAS-fj; Sb/+

Figure 4:(A) w/+; ptc-Gal4, UAS-src.RFP/+ (B) w/yv; ptc-Gal4, UAS-src.RFP/+; UAS-CiRNAi/+ (C)

w/+; ptc-Gal4, UAS-src.RFP/+; UAS-CiACT/+ (D) Blue: w/+; ptc-Gal4, UAS-src.RFP/+ 20˚C Red: w/yv;

ptc-Gal4, UAS-src.RFP/+; UAS-CiRNAi/+ 20˚C (E) Blue: w/+; ptc-Gal4, UAS-src.RFP/+ 20˚C Red: w/+;

ptc-Gal4, UAS-src.RFP/+; UAS-CiACT/+ 20˚C (F) Blue: w/+; ptc-Gal4, UAS-src.RFP/+; UAS-CiACT/+

20˚C Red: w/UAS-bskDN; ptc-Gal4, UAS-src.RFP/+; UAS-CiACT/UAS-bskDN 20˚C
Figure 5: (D) w/+; ptc-Gal4, UAS-src.RFP/+ 29˚C (E) w/+; ptc-Gal4, UAS-src.RFP/+; UAS-

dTRAF1RNAi#1/+ 29˚C (F) Blue: w/+;; rn-Gal4/+ 29˚CRed: w/+;; UAS-dTRAF1RNAi#1/rn-Gal4 29˚C (G)

Blue: w/+; ptc-Gal4, UAS-src.RFP/+ 29˚C Red: w/+; ptc-Gal4, UAS-src.RFP/+; UAS-dTRAF1RNAi#1/+

29˚C
Figure 5—figure supplement 1: (E) UAS-dTRAF1RNAi#2/Y; ptc-Gal4, UAS-src.RFP/+; Sb/+ 29˚C

(F) Blue: w/+; ptc-Gal4, UAS-src.RFP/+ 29˚C Red: w/UAS-dTRAF1RNAi#2; ptc-Gal4, UAS-src.RFP/+

29˚C
Figure 5—figure supplement 2: (A) Blue: w/+; ptc-Gal4, UAS-src.RFP/+ 20˚C Red: w/+; ptc-

Gal4, UAS-src.RFP/+; UAS-CiACT/UAS-dTRAF1RNAi#1 20˚C
Figure 6: (A, G) Canton-S (B, D, H, J) w; dll-Gal4, UAS-src.RFP/+ (C, I) UAS-bskDN/Y; dll-Gal4,

UAS-src.RFP/+; UAS-bskDN/+ (E, K) w; dll-Gal4, UAS-src.RFP/+; UAS-egr/+
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José Carlos Pastor-Pareja, http://orcid.org/0000-0002-3823-4473

Tian Xu, http://orcid.org/0000-0002-2160-0027

Additional files
Supplementary files
. Supplementary file 1. Genes expressed in posterior (hh+) and/or ptc domain wing disc cells.

DOI: 10.7554/eLife.11491.018

. Supplementary file 2. Differentially expressed genes between posterior (hh+) and ptc domain wing

disc cells.

DOI: 10.7554/eLife.11491.019

References
Akiyama T, Gibson MC. 2015. Decapentaplegic and growth control in the developing Drosophila wing. Nature
527:375–378. doi: 10.1038/nature15730

Ambegaonkar AA, Pan G, Mani M, Feng Y, Irvine KD. 2012. Propagation of Dachsous-Fat planar cell polarity.
Current Biology 22:1302–1308. doi: 10.1016/j.cub.2012.05.049

Bakal C, Linding R, Llense F, Heffern E, Martin-Blanco E, Pawson T, Perrimon N. 2008. Phosphorylation networks
regulating JNK activity in diverse genetic backgrounds. Science 322:453–456. doi: 10.1126/science.1158739

Basler K, Struhl G. 1994. Compartment boundaries and the control of Drosopfiffa limb pattern by hedgehog
protein. Nature 368:208–214. doi: 10.1038/368208a0

Biehs B, Kechris K, Liu S, Kornberg TB. 2010. Hedgehog targets in the Drosophila embryo and the mechanisms
that generate tissue-specific outputs of Hedgehog signaling. Development 137:3887–3898. doi: 10.1242/dev.
055871
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Pérez-Garijo A, Fuchs Y, Steller H. 2013. Apoptotic cells can induce non-autonomous apoptosis through the TNF
pathway. eLife 2:e01004–e01004. doi: 10.7554/eLife.01004

Preiss A, Johannes B, Nagel AC, Maier D, Peters N, Wajant H. 2001. Dynamic expression of Drosophila TRAF1
during embryogenesis and larval development. Mechanisms of Development 100:109–113. doi: 10.1016/
S0925-4773(00)00506-2

Willsey et al. eLife 2016;5:e11491. DOI: 10.7554/eLife.11491 17 of 18

Research Article Developmental biology and stem cells

http://dx.doi.org/10.1038/sj.onc.1209762
http://dx.doi.org/10.1128/MCB.23.22.7982-7991.2003
http://dx.doi.org/10.1002/aja.1001410112
http://dx.doi.org/10.1126/science.272.5268.1621
http://dx.doi.org/10.1038/embor.2012.185
http://dx.doi.org/10.1016/0022-1910(65)90179-4
http://dx.doi.org/10.1387/ijdb.072459ag
http://dx.doi.org/10.1016/0012-1606(71)90047-9
http://dx.doi.org/10.1038/newbio245251a0
http://dx.doi.org/10.1093/bioinformatics/btg405
http://dx.doi.org/10.1016/0092-8674(95)90123-X
http://dx.doi.org/10.1038/nrc2070
http://dx.doi.org/10.1038/nrc3458
http://dx.doi.org/10.1093/emboj/cdf306
http://dx.doi.org/10.1093/emboj/cdf306
http://dx.doi.org/10.1016/j.cub.2006.04.042
http://dx.doi.org/10.1016/S0955-0674(98)80143-9
http://dx.doi.org/10.1093/biostatistics/4.2.249
http://dx.doi.org/10.1093/bioinformatics/btn647
http://dx.doi.org/10.1101/gad.11.13.1748
http://dx.doi.org/10.1038/cdd.2013.30
http://dx.doi.org/10.1101/gad.12.4.557
http://dx.doi.org/10.1242/dev.01949
http://dx.doi.org/10.1038/icb.1963.64
http://dx.doi.org/10.1242/dev.015255
http://dx.doi.org/10.1038/onc.2009.43
http://dx.doi.org/10.1038/onc.2009.43
http://dx.doi.org/10.1242/dmm.000950
http://dx.doi.org/10.7554/eLife.01004
http://dx.doi.org/10.1016/S0925-4773(00)00506-2
http://dx.doi.org/10.1016/S0925-4773(00)00506-2
http://dx.doi.org/10.7554/eLife.11491


Price MA, Kalderon D. 1999. Proteolysis of cubitus interruptus in Drosophila requires phosphorylation by protein
kinase A. Development 126:4331–4339.

Ring JM, Martinez Arias A. 1993. Puckered, a gene involved in position-specific cell differentiation in the dorsal
epidermis of the Drosophila larva. Development:251–259.

Ryoo HD, Gorenc T, Steller H. 2004. Apoptotic cells can induce compensatory cell proliferation through the JNK
and the wingless signaling pathways. Developmental Cell 7:491–501. doi: 10.1016/j.devcel.2004.08.019

Schwank G, Tauriello G, Yagi R, Kranz E, Koumoutsakos P, Basler K. 2011. Antagonistic growth regulation by
Dpp and Fat drives uniform cell proliferation. Developmental Cell 20:123–130. doi: 10.1016/j.devcel.2010.11.
007

Schwartz C, Locke J, Nishida C, Kornberg TB. 1995. Analysis of cubitus interruptus regulation in Drosophila
embryos and imaginal disks. Development 121:1625–1635.

Silber SJ. 1976. Growth of baby kidneys transplanted into adults. Archives of Surgery 111:75–77. doi: 10.1001/
archsurg.1976.01360190077014

Srivastava A, Pastor-Pareja JC, Igaki T, Pagliarini R, Xu T. 2007. Basement membrane remodeling is essential for
Drosophila disc eversion and tumor invasion. Proceedings of the National Academy of Sciences of the United
States of America 104:2721–2726. doi: 10.1073/pnas.0611666104

Stronach B. 2005. Dissecting JNK signaling, one KKKinase at a time. Developmental Dynamics 232:575–584. doi:
10.1002/dvdy.20283

Strutt H, Mundy J, Hofstra K, Strutt D. 2004. Cleavage and secretion is not required for Four-jointed function in
Drosophila patterning. Development 131:881–890. doi: 10.1242/dev.00996

Sun G, Irvine KD. 2011. Regulation of Hippo signaling by Jun kinase signaling during compensatory cell
proliferation and regeneration, and in neoplastic tumors. Developmental Biology 350:139–151. doi: 10.1016/j.
ydbio.2010.11.036

Sun G, Irvine KD. 2013. Ajuba family proteins link JNK to hippo signaling. Science Signaling 6:ra81. doi: 10.1126/
scisignal.2004324

Tabata T, Kornberg TB. 1994. Hedgehog is a signaling protein with a key role in patterning Drosophila imaginal
discs. Cell 76:89–102. doi: 10.1016/0092-8674(94)90175-9

Tabata T, Takei Y. 2004. Morphogens, their identification and regulation. Development 131:703–712. doi: 10.
1242/dev.01043

Tusher VG, Tibshirani R, Chu G. 2001. Significance analysis of microarrays applied to the ionizing radiation
response. Proceedings of the National Academy of Sciences of the United States of America 98:5116–5121.
doi: 10.1073/pnas.091062498

Twitty VC, Schwind JL. 1931. The growth of eyes and limbs transplanted heteroplastically between two species
of Amblystoma. Journal of Experimental Zoology 59:61–86. doi: 10.1002/jez.1400590105

Villano JL, Katz FN. 1995. Four-jointed is required for intermediate growth in the proximal-distal axis in
Drosophila. Development 121:2767–2777.

Vogel G. 2013. Mysteries of development. How do organs know when they have reached the right size? Science
340:1156–1157. doi: 10.1126/science.340.6137.1156-b

Weber U, Paricio N, Mlodzik M. 2000. Jun mediates Frizzled-induced R3/R4 cell fate distinction and planar
polarity determination in the Drosophila eye. Development 127:3619–3629.

Willecke M, Hamaratoglu F, Sansores-Garcia L, Tao C, Halder G. 2008. Boundaries of Dachsous Cadherin activity
modulate the Hippo signaling pathway to induce cell proliferation. Proceedings of the National Academy of
Sciences of the United States of America 105:14897–14902. doi: 10.1073/pnas.0805201105

Wolpert L. 1978. The development of the pattern of growth. Postgraduate Medical Journal 54 Suppl 1:15–24.
Wu M, Pastor-Pareja JC, Xu T. 2010. Interaction between RasV12 and scribbled clones induces tumour growth
and invasion. Nature 463:545–548. doi: 10.1038/nature08702

Xu T, Rubin GM. 1993. Analysis of genetic mosaics in developing and adult Drosophila tissues. Development
117:1223–1237.

Zecca M, Basler K, Struhl G. 1995. Sequential organizing activities of engrailed, hedgehog and decapentaplegic
in the Drosophila wing. Development 121:2265–2278.

Willsey et al. eLife 2016;5:e11491. DOI: 10.7554/eLife.11491 18 of 18

Research Article Developmental biology and stem cells

http://dx.doi.org/10.1016/j.devcel.2004.08.019
http://dx.doi.org/10.1016/j.devcel.2010.11.007
http://dx.doi.org/10.1016/j.devcel.2010.11.007
http://dx.doi.org/10.1001/archsurg.1976.01360190077014
http://dx.doi.org/10.1001/archsurg.1976.01360190077014
http://dx.doi.org/10.1073/pnas.0611666104
http://dx.doi.org/10.1002/dvdy.20283
http://dx.doi.org/10.1002/dvdy.20283
http://dx.doi.org/10.1242/dev.00996
http://dx.doi.org/10.1016/j.ydbio.2010.11.036
http://dx.doi.org/10.1016/j.ydbio.2010.11.036
http://dx.doi.org/10.1126/scisignal.2004324
http://dx.doi.org/10.1126/scisignal.2004324
http://dx.doi.org/10.1016/0092-8674(94)90175-9
http://dx.doi.org/10.1242/dev.01043
http://dx.doi.org/10.1242/dev.01043
http://dx.doi.org/10.1073/pnas.091062498
http://dx.doi.org/10.1002/jez.1400590105
http://dx.doi.org/10.1126/science.340.6137.1156-b
http://dx.doi.org/10.1073/pnas.0805201105
http://dx.doi.org/10.1038/nature08702
http://dx.doi.org/10.7554/eLife.11491

