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Abstract

The prediction of the network of protein-protein interactions (PPI) of an organism is crucial for the understanding of
biological processes and for the development of new drugs. Machine learning methods have been successfully applied to
the prediction of PPI in yeast by the integration of multiple direct and indirect biological data sources. However,
experimental data are not available for most organisms. We propose here an ensemble machine learning approach for the
prediction of PPI that depends solely on features independent from experimental data. We developed new estimators of the
coevolution between proteins and combined them in an ensemble learning procedure. We applied this method to a
dataset of known co-complexed proteins in Escherichia coli and compared it to previously published methods. We show
that our method allows prediction of PPI with an unprecedented precision of 95.5% for the first 200 sorted pairs of proteins
compared to 28.5% on the same dataset with the previous best method. A close inspection of the best predicted pairs
allowed us to detect new or recently discovered interactions between chemotactic components, the flagellar apparatus and
RNA polymerase complexes in E. coli.
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Introduction

Protein-protein interactions are involved in most cellular

processes. The knowledge of the complete network of protein

interactions of a given organism (its ‘‘interactome’’) helps to

understand complex biological processes such as signalling

cascades, metabolism or transcription control [1]. It is also useful

for assigning functions to unknown proteins, based on the function

of their interacting partners.

Proteins that interact, whether physically or not, are expected to

be co-evolving: any evolutionary event affecting one protein might

indirectly or directly impact all of its interacting partners (reviewed

in [2]). This hypothesis is at the basis of a number of

computational methods aimed at systematically predicting func-

tional associations between proteins, i.e. proteins belonging to a

cellular complex.

The Phylogenetic Profiles method (PP, [3]) explores the patterns

of presence/absence of proteins in a set of related species: it

assumes that if two proteins interact to perform a given function,

the loss of one of them is followed by the loss of the other one,

leading to similar Phylogenetic Profiles. Genomic Context (GC,

[4]), looks at the conservation of the gene neighbourhoods in

different species: the physical proximity of two genes is expected to

be conserved among species if their products interact. Two other

methods require multiple sequence alignments to be performed.

These are the in silico two-hybrid method (I2H, [5]), where

correlated mutations between proteins are estimated from multiple

alignments of orthologous sequences, and the widely used mirrortree

method [6] where phylogenetic trees are indirectly compared by

estimating the correlation between the pairwise distance matrices

computed from a multiple sequence alignment. Trees with high

similarity (high correlation coefficient between distance matrices)

are expected to represent interacting protein pairs while trees with

low similarity (low correlation coefficient between distance

matrices) represent non-interacting proteins.

In recent years, machine learning approaches have been applied

to protein interaction detection, especially for the identification of

protein-protein interactions in yeast. These new methods are

based on the integration of data from multiple heterogeneous

sources, including experimental ones: protein sequences, protein

interactions derived from high-throughput experiments, gene

expression data, Gene Ontology terms, co-regulation data,

localization data, mRNA expression fluctuations during the yeast

life-cycle, essentiality data, etc. [7–11]. These methods proved to

be very efficient even with a limited number of features considered

[9]. However, because these methods require diverse and

sometimes numerous experimental data, their use was restricted

to S. cerevisiae, as these data are not available for most other

organisms.

Recently, Garcı́a-Jiménez et al. [12] proposed a new learning

method for the detection of PPI based on combined data from

various prediction methods developed independently (PP, GC,

I2H, mirrortree and Gene Fusion (GF)). Even though this new

combined approach, applied to E. coli, gave better results than

each prediction method taken independently, the number of False

Positives (FP) and False Negatives (FN) remained worth consid-
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ering. Moreover, because different prediction methods call for

different types of data and independent implementation, the

computation of all of the features is time-consuming and missing

values are frequent.

In this study, we propose a new approach for detecting proteins

belonging to complexes involved in specific cellular functions.

Apart from the generation of a learning set (a gold-standard

dataset), this method does not rely on experimental data, but solely

on genome sequences. It extracts features related to coevolution

between proteins and uses a machine learning approach to

combine them. We developed new features based on two

published methods, namely PP and mirrortree. Improved version

of the basic Phylogenetic Profiles method have already been

proposed (for example, see [13]). Here we improved it by

computing quality measures inspired by data mining methods, taking

into account the number of species where a given protein is

present, the size of the overlap between the set of species where

orthologs of the proteins are found and the maximum number of

species (i.e. the number of genomes studied). Concerning the

mirrotree method, many improvements have been proposed:

removal of the background similarity between the trees prior to

the mirrortree analysis (tol-mirror, [1,14]), use of the complete

coevolutionary network (context-mirror, [15]), restriction of the

mirrortree method to conserved regions in the protein domain

sequences [16] or supervised learning using the phylogenetic

species tree [17]. In our approach, we developed features based on

the topological comparison between the proteins trees in addition

to the comparison of their distance matrices as is normally done. It

is indeed accepted that a phylogenetic distance matrix does not

completely reflect the topology of a tree, leading to the loss of

potentially important information. Finally, since the comparison

between the individual protein trees and the species tree is crucial,

we also estimated the topological similarity and the similarity

based on distance matrices between each protein tree and the Tree

of Life (ToL).

To challenge the efficiency of our method, we used it to detect

PPI in E. coli since we have a good dataset of its interactome. We

then compared our set of predictions to those obtained using the

mirrortree, tol-mirror and context-mirror methods with the same E. coli

dataset.

We show that new features, directly inspired from old ones

based on coevolution, associated with a powerful combination of

classifiers in a learning procedure, allowed the prediction, with an

unprecedented precision, of the interactions between proteins in

organisms for which experimental data are not available. We

obtained an area under the ROC curve (AUC) of 0.93 with our

method, a value surpassing that of the context-mirror method [15]

(AUC = 0.87). Further, we designed a filtering method to remove

negative pairs in order to increase the ratio of positive over

negative examples. Such a filtering procedure resulted in a very

clean dataset free of almost all negative examples but still

containing half of the positive ones.

Finally, we analysed in detail the 50 best predicted pairs. We

focused on 3 well-known complexes: chemotactic components, the

flagellar apparatus and RNA polymerase complexes in E. coli,

allowing detection of new links between them by previously

unpublished interactions. Most of these new links are concordant

with text-mining results and one of them is even confirmed by a

binding experiment performed after the creation of the gold

standard dataset used here. This demonstrates the validity of our

method and gives new insights on a complex self-assembling

nanomachine that allows bacteria to move in their environment

and swim up chemical gradients.

Results

Prediction of interacting pairs
We present the results in terms of ROC curve, AUC, recall and

precision curves, using (i) different methods proposed earlier to

predict protein-protein interaction: mirrortree [6], tol-mirror [1,14]

and context-mirror [15] and (ii) our method, using the same dataset

in every case, obtained as described in Material and Methods.

First, the mirrortree and tol-mirror approaches seem to perform

poorly compared to the recent context-mirror method and to the

method we propose here. This is clear from the ROC curves

presented in Figure 1A and the AUC values confirm this result,

with 0.77 and 0.67 for mirrortree and tol-mirror methods respectively,

while the context-mirror and our proposed method give AUCs of

0.87 and 0.93 (sd = 0.0028 for the latter) respectively (Fig. 1B).

Surprisingly, the mirrortree method seemed to give better results

than tol-mirror according to the AUC values. This is unexpected

because tol-mirror was created to improve the predictive power of

the mirrortree method by removing the background similarity

between matrices due to speciation events. When looking at the

beginning of the ROC curve however (zoom in the right-bottom

corner of Fig. 1A), the tol-mirror appears better at the beginning of

the ranking.

The precision curve allows an estimation of how good the

separation between positive and negative examples is along the

sorted list of pairs. Our method gives a precision of 100% for the

first 90 pairs, with a standard deviation of 0 in this interval

(Fig. 1C). This means that there are no mistakes in the ordering of

positive and negative pairs for the first 90 pairs. For the context-

mirror method, the precision is 100% for the 13 first pairs only, and

it then declines quickly to 28.5% for the 200 first pairs. At this cut-

off, our method still shows a mean precision of 95.5%. The recall

curve shows how many pairs have to be explored to retrieve, for

example, 50% of the positive pairs. This happens after 450 pairs

with our method, while for the context-mirror method it requires

exploring further than the 1000th pair (Fig. 1C).

Effect of different classifiers and their combination
The combination of the 8 classifiers (JRIP, PART, J48, RF and

their bagged version bJRIP, bPART, bJ48 and bRF), gave a

prediction efficiency higher than each classifier taken indepen-

dently (Table 1). The bagged version of the classifiers were always

better than their non-bagged version, which is expected [18].

PART and its bagged version were more efficient than the other

classifiers, while JRIP and bJRIP seemed to perform poorly

compared to the others. When combining only the three best

classifiers (bPART, bJ48 and bRF) the AUC was the same as when

using the 8 classifiers, but the precision and recall curves in this

case were lower, emphasizing the fact that the AUC only gives a

global, and thus not accurate, vision of the classification efficiency

of a method. Overall, combining the information from different

classifiers was beneficial. This is because different classifiers have

different biases, and their effect could be minimised by combining

the classifiers.

Contribution of the different classes of features
We investigated the ability of each of the 4 classes of features

(topology, matrix, tree and PP, see Material and Methods) taken

independently to correctly rank the positive and negative pairs of

the E. coli interaction dataset (Table 2).

First, all classes of features are able to produce a ranking of

positive and negative examples better than random (AUC.0.5).

Features of the topology and matrix classes have similar prediction

efficiency (AUC = 0.78 and AUC = 0.80 respectively), while their

Protein-Protein Interaction Prediction
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combination (the tree class) improves the prediction efficiency

(AUC = 0.84, sd = 0.0039). This shows that the features based on

tree topology and those based on matrix comparisons measure

different ‘‘aspects’’ of the coevolution between proteins. The PP

class alone is good at predicting protein-protein interactions, with

an AUC of 0.92 (sd = 0.0036). The AUC is however improved

when combining the tree class and the PP class of features

(AUC = 0.93, sd = 0.0028, last column in Table 2). This reveals

that features based on topology, matrices and PP are able to

extract some independent aspects of the coevolution between

proteins, their combination allowing a clear improvement of the

predictive power of the method.

Filtering out non-interacting pairs
We developed a method for filtering out non-interacting pairs,

that is removing the highest proportion of negative examples but

at the same time disregarding the lowest proportion of positive

ones. A simple solution to this problem would be to remove a pre-

determined number of pairs at the end of the ranked list of pairs.

However this has two limitations: it requires an a-priori on the

number of pairs to remove, and it does not guaranty an optimal

AUC of the remaining pairs, because it does not take advantage of

the prediction of each classifier taken independently. Our

proposed approach uses a threshold (a) associated with the

percentage of classifiers predicting that a pair is not interacting (see

Material and Methods).

In order to evaluate the ability of our method to correctly filter

out negative pairs, we plotted the proportion of negative examples

filtered out against the proportion of positive examples lost for

different values of a, from 0.01 (stringent filter) to 1 (no filter at all;

black dots in Fig. 2). A perfect filtering method would give the

pattern represented by the grey horizontal dashed line in Fig. 2:

whatever the proportion of negative pairs removed, no positive

pairs are lost. This would mean that the ranking of positive and

negative pairs is perfect. We also represented the result of the

filtering applied by the context-mirror method by the grey dot in

Fig. 2 (93% of negative examples removed and 67.7% of positive

examples disregarded). For a = 0.01, on average, 99.6% of the

negative pairs are removed and in the same time 48.1% of the

positive pairs are filtered out. So even with a very strong filter, our

method is still less prone to removing positive pairs by mistake

than context-mirror. If a is tuned so that the proportion of negative

examples filtered out is the same as for context-mirror (93%, obtained

for a = 0.93, vertical black dashed bar in Fig. 2), then the

proportion of missing positive examples decreases to 18.5%

(compared with 67.7% for the context-mirror method). Thus, our

method filters out negative pairs without losing too many positive

ones. The effect of the filtering strength on the quality of the

ranking (AUC) for the different groups of features presented in

Table 2 is provided in the next section.

Effect of filtering on the quality of the ranking
The total number of examples analysed has an impact on the

evaluation of the method because it impacts the AUC values.

Thus, we computed the AUC of the ranked list of protein pairs

with different filtering strengths, for values of a between 0.01 and 1

(Figure 3). We see that for very strong or very weak filters, the

AUC is always higher than the one obtained when using the

context-mirror method (dashed horizontal grey line on Figure 3). For

Figure 1. Evaluation of the efficiency of the PPI detection
method proposed here. A. ROC curves of the four methods
compared. Green: mirror; Orange: tol-mirror; Blue: context-mirror; Red:
our method. The ROC curve plotted for our method is the mean of all
30 independent ROC curves obtained. A zoom of the beginning of the
ROC curve is provided in the right-bottom corner. B. AUC values for the
four methods compared. Numbers on top of each bar are the exact AUC
values. The dashed gray line represents the expected AUC for a method
not doing better than random. The error on the last bar represents the
standard deviation over the 30 repetitions of our method. Colours are
the same as in A. C. Comparison of the precision and recall curves for

the context-mirror method (blue lines) and the method we propose
here (red lines). The dashed lines on the curves for our method
represent the standard deviation over the 30 repetitions. Only the first
1000 pairs are represented.
doi:10.1371/journal.pone.0048728.g001
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intermediate levels however (a between 0.3 and 0.6), the AUC

does not appear better with our method than with context-mirror.

This could be seen as a decrease of the efficiency of the method

when a moderate filter is applied because the overall ranking of

positive and negative examples is not better with our method than

with context-mirror in this case. This shows the limitation of using

AUC for estimating the quality of a method. Indeed, whatever the

value of a, the number of positive examples analysed is always

higher than with the context-mirror method (Fig. 2) and also the

precision of the method is unchanged because the filter will never

eliminate pairs that are ranked at the beginning of the sorted list of

pairs. In other words, our method in some cases may produce

more mistakes than the context-mirror method but for pairs of

proteins that are assigned a low score and are thus ranked towards

the end of the sorted list of pairs. However, the precision is always

better (Figure 1C) and the number of positive examples lost is

always smaller (Figure 2).

Effect of filtering on the different groups of features
We compared the effect of filtering on the AUC when using the

different classes of features presented in Table 2 (Figure 4). The

filtering has less impact when all of the features are combined than

when only a subset of them is used. The PP and tree classes of

features have similar behaviour with respect to a. The matrix class

performs better than the topology class for high values of a (.0.7)

but performs worse when a decreases. The combination of

different classes of features thus results in a method whose

behaviour in terms of AUC is almost uniform with respect to

filtering.

New insights into the flagellar system of E. coli
To estimate the efficiency of our approach, we focused on the

nature of the pairs of proteins considered as non-interacting

according to the goldstandard dataset we used (negative pairs).

Among the 50 best predicted pairs, almost 50% of them (23 out of

50) are referenced in the STRING database [19] as possible

interactions (Table S1). Fig. 5 illustrates the importance of

discovering new links associating several clusters inside a set of

protein complexes.

The DNA-directed RNA polymerase core enzyme (subunits

RpoA, RpoB, and RpoC), is known to bind one of the seven sigma

factors (encoded by genes rpoD, rpoE, rpoH, rpoS, rpoN, fecI and fliA,

respectively) depending on physiological conditions. Unexpected-

ly, we detected a link between the housekeeping sigma factor

RpoD (sigma 70) and the heat shock sigma factor RpoH (sigma

32). Such a link would be in accordance with the finding that the in

vitro expression of the rpoH gene was found to require RpoD [20].

The flagellar sigma factor (sigma 28) FliA, is found to connect to

different elements of the flagellar nanomachine. First, there is a

link with the proximal rod section (FlgB, FlgC, FlgF) through the

distal rod FlgG, and another link with the C-ring, FliM being one

constituent of the switch complex that is essential for assembly,

rotation and directional control of the torque-generating stator

complex (MotA and MotB). Secondly, the link detected between

FliA and FlgC (wave-like red line in Fig. 5) could be particularly

important because it is strongly supported by a recent yeast-2-

hybrid experiment revealing a direct interaction between these two

proteins [21]. Moreover, we detected a link between RpoH and

FlgF which is not published in the STRING database. Interest-

ingly, such a link has been demonstrated in Brucella melitensis [22]

where RpoH2 (a homologue of E. coli RpoH) is involved in the

expression of the proximal rod protein FlgF. The two flagellar

components FlgG and FliM that interact with FliA are themselves

found to be connected to two chemotaxis proteins, cheW and

cheA, respectively. The link between the C ring FliM and cheA

could be a supplementary safety to the well known interaction

between FliM and the phosphorylated form of CheY necessary to

induce the switch in the clockwise/counterclockwise rotation of

the flagellum. Indeed, CheY, the response regulator of bacterial

chemotaxis, is phosphorylated by the histidine kinase CheA. It has

been reported [23] that CheA, FliM, and CheZ display

overlapping binding surfaces on CheY. Taken together, the best

predicted pairs seem to be putative but plausible interactions

whose further study may give new insight into protein-protein

interactions in E. coli. More work is needed to investigate all of

these pairs (listed in Table S1).

Table 1. Comparison of the 8 classifiers and of their combination.

Non-bagged classifiers

JRIP PART J48 RF

AUC (mean) 0.67 0.86 0.8 0.83

AUC (sd) 0.0131 0.015 0.024 0.0081

Bagged classifiers

bJRIP bPART bJ48 bRF ALL

AUC (mean) 0.79 0.92 0.9 0.91 0.93

AUC (sd) 0.0083 0.0048 0.0062 0.0028 0.0028

doi:10.1371/journal.pone.0048728.t001

Table 2. Prediction efficiency of the different classes of
features.

Classes of features

topology1 matrix2 tree3 PP4 ALL5

AUC (mean) 0.78 0.80 0.84 0.92 0.93

AUC (sd) 0.0054 0.0045 0.0039 0.0036 0.0028

1Features included: Icong, IcongA and IcongB.
2Features included: mirror, mirrorA, mirrorB and tol – mirror.
3Features included: Icong, IcongA, IcongB, mirror, mirrorA, mirrorB and tol – mirror.
4Features included: all Phylogenetic Profile features in Table 4.
5Features included: all features in Tables 3 and 4.
doi:10.1371/journal.pone.0048728.t002
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Controlling for redundancy
We wanted to confirm that the high accuracy of prediction that

we had with our method was not simply due to the dataset being

highly redundant, with homologous proteins having homologous

interacting partners. Thus, we predicted protein interactions using

only sequence similarity and computed the ROC curve and the

AUC after ranking the predicted pairs according to their e-values

(see Material and Methods for details of the method used). Using

only sequence similarity, we obtained an AUC between 0.52 and

0.53, depending on the method used for detecting homologous

sequences.

This value is very close to what would be expected if the ranking

was done randomly (AUC = 0.5). These tests show that sequence

similarity alone does not provide sufficient information to predict

protein-protein interactions, and consequently that the high

accuracy we obtained with our proposed method cannot be

accounted for by redundancy in the data.

Discussion

We have designed a new machine learning method for the

prediction of protein-protein interactions and used it to predict

interacting proteins in the model organism Escherichia coli. Our

method is conceptually based on coevolution of protein partners

and uses features inspired by two methods developed earlier:

mirrortree [6,24] and PP [3]. First, we developed features based on

the topological comparison of the protein trees in addition to the

comparison of their distance matrices, as for previously proposed

methods [1,6,14,15,17,24]. We insist that distance matrices could

not totally reflect their tree topology, i.e. phylogenetic relationships

between the species present in the compared trees, although they

contain information on the branch lengths that may be important

to detect coevolution. The second type of features we developed

was designed to better exploit the concept of Phylogenetic Profiles.

Improvements to the initial PP method were proposed previously

[13]. Here, we used quality measures normally used in data mining

approaches in order to detect coevolution based on pattern of

presence/absence of proteins in the different species.

It is difficult to estimate the independent contribution of each

feature to the predictive power of a method such as the one we

propose here. However, (i) the combination of features based on

topology alone and matrix alone gave better prediction (higher

AUC) than each group of features taken independently, proving

that different aspects of coevolution between proteins can be

extracted depending on the way the trees are compared. (ii) Quality

measures contributed to increase the predictive power of the method

and confirmed that extended computations based on PP could give

more information than the classical PP method as initially

proposed by Pellegrini et al. [3]. We believe that all these new

features should be considered seriously in future work on PPI

detection. Globally, compared to the best method proposed to

date (the context-mirror method, [15]), our method ranks positive

and negative pairs more efficiently (AUC of 0.93 compared to 0.87

with the context-mirror method for the same dataset) and also filters

out negative pairs with more accuracy, by losing fewer positive

ones.

Figure 2. Effect of filtering out negative pairs on the proportion of positive ones lost. A perfect filtering method would produce the
dashed grey line. The large grey dot represents the effect of the filter present in the context-mirror method. The small black dots represent what we
obtain by varying the value of a from 0.01 (top right) to 1 (bottom left). The black dotted lines show the proportion of positive examples that are lost
when our filtering method is tuned so that the proportion of negative examples filtered out is the same as the one of the context-mirror method. The
horizontal and vertical error bars on black dots represent the standard deviation of the mean over 30 repetitions.
doi:10.1371/journal.pone.0048728.g002
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It is important to note that the method we propose here and the

three methods we compare with, including context-mirror, are

conceptually and methodologically different. While our method is

based on a machine learning approach, so that a dataset of known

interactions is required for training the model, the other methods do

not rely on such a process. Comparing the performance of

machine learning methods like ours and ab-initio methods can still

be done, but one has to keep in mind that their requirements and

range of applicability are not the same.

The combination of the outputs of the 8 classifiers was made

using an ensemble learning method. Each classifier is trained to

predict if two proteins are interacting or not, and a degree of

confidence is associated to each prediction. Ensemble learning is

known to behave better than single classifiers [25,26], and our

results seems to confirm the previous results observed for ensemble

learning. Moreover, and importantly, it allowed us to develop a

way of filtering out negative pairs by tuning the a parameter. We

believe that this is an important aspect of this work. Depending on

whether the goal of the PPI detection is either to score the

maximum number of pairs and to reconstruct the complete

network of interaction, or to obtain a reduced list of pairs in which

one wants to be sure of having only positive ones, the a parameter

can be changed, from no filter (a = 1) to a strict filter. We see that

with a very strong filter (a = 0.01), more than 99% of the negative

pairs were removed with concomitant loss of only half of the

positive ones. This means that we were able to go from a dataset

including 0.817% of positive pairs to a dataset made almost

exclusively of positive ones.

Reducing the size of the dataset is very important for going

deeper into the detection of ‘‘direct’’ physical interaction between

proteins. As in previous methods, our approach considers that any

two proteins present in the same complex form a positive pair and

proteins not involved in a complex are negative ones. Thus, our

method cannot differentiate between direct and indirect physical

interactions. Disentangling these two types of interaction is a

difficult task that has been subject to much work in the recent

years. Having reliable candidates for putative direct interactions is

at the basis of a class of computational methods aimed at

predicting the 3-dimensional structure of protein complexes, called

‘‘docking’’. Our work could therefore be seen as a promising first

step for the detection of direct interactions and the subsequent

docking of proteins, by limiting the number of interactions to be

tested. These methods are indeed computationally very intensive,

so reducing the number of pairs that are tested is beneficial.

To check whether our method was promising we chose to study

a high quality dataset of experimentally demonstrated interactions

between known proteins, the E. coli interactome. Our method is

designed to be based on coevolution, without having to deal with

the incorrect assignment of each pair in each class (pos or neg).

We tested it with proteins that are known to interact in functional

complexes (co-complexed proteins) as opposed to proteins that

belong to gene regulatory or metabolic networks. Proteins

belonging to the same complex are expected to coevolve more

strictly than proteins involved in the same pathway. Indeed,

methods that predict PPI based on coevolution have traditionally

been better in detecting co-complexed proteins than proteins

sharing a pathway (see [15]), and we believe that coevolution alone

is not sufficient for detecting proteins sharing the same pathway.

By focusing on the 50 first predicted pairs, we were able to

propose new interactions between chemotactic, flagellar and RNA

Figure 3. Effect of the filtering strength (a) on the AUC after sorting of the pairs. a goes from strong filtering (a = 0.01) to no filtering (a = 1).
The horizontal dashed grey line represents the AUC value of the context-mirror method. The vertical dashed grey line represents the value of a for
which the number of negative pairs in the dataset is the same as for context-mirror.
doi:10.1371/journal.pone.0048728.g003
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polymerase complexes. Some of these interactions were confirmed

by recent experimental results and others were in accordance with

results obtained in other closely related species. This confirms the

validity of our approach and its ability to correctly detect co-

complexed proteins. A closer look at well ranked negative protein

pairs might permit in the future to gain new insights into the

function of specific protein complexes whose structure and

function is not yet completely understood.

Figure 4. Effect of the filtering strength (a) on the AUC after sorting of the pairs using the different groups of features presented in
Table 2. a goes from strong filtering (a = 0.01) to no filtering (a = 1).
doi:10.1371/journal.pone.0048728.g004

Figure 5. New insights into the flagellar system of E. coli. Chemotactic components, flagellar apparatus and RNA polymerase complexes of E.
coli, connected by previously unknown interaction links. Green lines: previously known interaction; Red lines: previously unknown interactions;
Dotted red lines: interactions for which no text-mining evidence is present in the STRING database; Wave-like red line: interaction verified by
experimental work after the gold standard dataset was created [21]; plain red lines: putative interactions according to STRING text-mining data. The
value associated with each solid red line is the STRING score for the text-mining evidence.
doi:10.1371/journal.pone.0048728.g005
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Materials and Methods

General principle of the method
For each protein in the E. coli genome, orthologous sequences in

115 other prokaryotic genomes were retrieved (see [15] for a list of

genomes). The sequences were then aligned, leading to 2177

multiple alignments. Each protein was then compared to each

other in a pairwise manner. The array of species where a given

protein is present represents its phylogenetic profile. The

comparison between proteins was performed either by the

comparison of their phylogenetic profiles (right part in Figure 6)

or by the comparison of their phylogenetic trees (left part in

Figure 6). These two types of comparison led to a total of 35

features (Tables 3 and 4) used as input for a learning procedure

that learns 8 classifiers and combines them in a way that allows

obtaining an optimal sorting of the protein pairs. The dataset and

tree reconstruction method used are provided in Material and

Methods, along with the learning method. In order to estimate

how effective our method was for predicting PPI and to compare it

with previous methods, we sorted all the pairs according to their

score (see Material and Methods) and computed on this ranked list

the precision, recall and ROC curves, as well as the area under the

ROC curve (AUC). The same attributes were computed using

three other methods (PP, mirrortree and context-mirror) on the same

dataset (see SI Material and Methods).

Gold standard datasets
We applied our method to the prediction of the E. coli

interactome. Interacting proteins in E. coli were retrieved from the

Ecid database [27]. We focused on pairs of proteins interacting in

complexes because they are expected to be more prone to

coevolution than proteins present in the same pathways or proteins

being co-regulated. We extracted from the Ecid database protein

pairs coming from the EcoCyc database [28] and representing

proteins interacting in well-known complexes whose curation had

been done manually. Using this reliable dataset, we ensure a

minimum amount of False Positives and False Negatives, allowing

an evaluation of the quality of the method and not of the quality of

the data on which it is applied.

A pair of proteins was considered positive (pos) if the two

proteins were part of the same complex and negative otherwise

(neg). This led to a total of 628 positive pairs (0.82% of the

complete dataset) and 76 202 negative pairs (99.18% of the

complete dataset), for a total of 76 830 pairs analysed.

Tree reconstruction and comparisons
We used the same set of E. coli proteins as used by Juan et al.

[15]. The authors kindly gave us the 2 177 protein sequences from

the E. coli genome as well as their orthologous protein sequences

from a set of 115 fully sequenced prokaryotic genomes (see [15] for

a description of the orthologous relationships retrieval). For each

one of the 2 177 groups of orthologous protein sequences, we used

the program MUSCLE [29] for the multiple alignments of each

protein sequence with its orthologous sequences, we cleaned the

alignments by removing poorly aligned positions and divergent

regions using the program Gblocks [30] and we used the program

phyml [31] to recontruct the phylogenetic trees. Then for each

pair of proteins, all the features presented in Tables 1 and 2 were

computed. Proteins present in less than 7 species were excluded

from the analysis and pairs of proteins with less than 7 species in

common were not considered. This value of 7 was chosen because

the Icong index used afterwards to test the topological congruence

between the trees was not designed for pairs of trees with less than

7 leaves [32].

Construction of the Tree of Life
For each of the 115 species considered in this study, the 16S

rRNA sequence was retrieved from the Ribosomal Database

Project (RDP) web server [33]. The MUSCLE [29], Gblocks [30]

and phyml [31] programs were then used successively on these

sequences in order to get the phylogenetic Tree of Life (ToL).

Description of features based on tree comparison (tree
class)

Features in this first group were computed after each multiple

alignment had been converted into a phylogenetic tree (left part of

Figure 6). Two features, mirrortree and tol-mirror, were computed as

proposed initially by their authors. For the mirrortree metric, each

tree was converted into a pairwise distance matrix by summing the

lengths of the branches separating two leaves in the tree (i.e.,

patristic distance matrices). The tree similarity was then evaluated

by computing the linear correlation coefficient between the two

matrices. The second classical method is tol-mirror as proposed by

Pazos et al. [1]: the distance matrices extracted from the trees are

modified in order to remove the background similarity between

the trees due to the speciation of the species themselves. We

followed the protocol proposed in the original article [1], using the

distance matrix extracted from the Tree of Life (ToL) to correct

the protein distance matrices extracted from the protein trees. The

third and fourth features, mirrorA and mirrorB were obtained by

computing the linear correlation coefficient between each

individual protein tree (after transformation into a distance matrix)

and the ToL. Note that the mirrortree approach we used here is

similar to the one used in [15] (the trees are reconstructed from the

the multiple sequence alignments and are subsequently trans-

formed into distance matrices by summing the branch length

between each pair of species) and thus differs from the initial

description of mirrortree [6] where no tree is built and the compared

distance matrices are directly computed from the multiple

sequence alignments. The fifth feature is the topological similarity

between the protein trees compared, estimated by the Icong index

[32]. This index is based on the calculation of the Maximum

Agreement Subtree (MAST) metric between two trees compared.

It represents the probability that the observed MAST of the two

trees compared is obtained by chance alone. This measure does

not take branch lengths into account but provides some

information on the phylogenetic relationships between the species

in the trees, information that can be partly lost by the conversion

of trees into distance matrices. The two last features (IcongA
and

IcongB
) were the topological congruences between each protein tree

and the Tree of Life calculated using the Icong index described

previously. In total, 7 features based on the original mirrortree

method were computed.

Description of features based on Phylogenetic Profiles
comparison (PP class)

This second group of features does not require the construction

of phylogenetic trees. Instead, the phylogenetic profile of each

protein is obtained by looking at the pattern of presence/absence

of orthologues of each protein in the other genomes. It is usually

the case that if two proteins have similar phylogenetic profiles, they

are likely to be interacting. However, the number of genomes in

which these proteins have an orthologous protein relative to the

total number of genomes we are looking at seems extremely

important. The Phylogenetic Profile problem is similar to the

problem of comparing the intersection between two sets in

mathematics. Consider protein family A is present in a set of NA

species and protein family B is present in NB species. The idea of
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PP is to say that if NA and NB are identical sets, then the proteins

are certainly in interaction. This is true only if NA and NB are

smaller than O, the total number of species considered (otherwise

it would represents ubiquitous proteins). However, it is rare to find

two protein families with exactly the same phylogenetic profile.

Then different metrics exist that can estimate the degree of overlap

between the two sets, taking into account the size of each set, the

size of the intersection and the size of the complete set. Transposed

to our problem, 25 features are computed (Table 2) representing

16 different quality measures (some of them being asymmetrical).

For each pair (A, B) of proteins, these measures are calculated

using as inputs: the number of species where protein A and protein

B have an ortholog (nAB), the number of species where protein A

has an ortholog but protein B has not (nA�BB), the number of species

where protein B has an ortholog but protein A has not (n�AAB) and

the total number of species studied (n~card Oð Þ, right part of

Figure 6). Note that 9 of these quality measures are not

symmetrical (they treat differently A and B). These measures are

duplicated in order to apply them in both directions.

Figure 6. Basic description of the construction of the features based on coevolution used in this study.
doi:10.1371/journal.pone.0048728.g006
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Feature types and encoding
The features we used in this study are all related to coevolution

and are of two types: those based on the comparison of

phylogenetic trees (tree class, Table 3) and those based on the

comparison of the Phylogenetic Profiles (PP class, Table 4). Figure 6

describes the way the different features were obtained from the

multiple alignments of two proteins A and B. The tree class can be

separated into two subclasses, namely the matrix class where the

distance between the trees is computed by the linear correlation

coefficient between the pairwise distance matrices extracted from

the trees, and the topology class where topological distance between

the trees is computed using the Icong index [32]. A detailed

description of these features is provided in SI Material and

Methods. In addition to the features based on tree comparisons

and phylogenetic profile comparisons, we also included as features

for each protein pair: the number of species where protein A has

an ortholog (nA), the number of species where protein B has an

ortholog (nB), and the number of species where protein A and

protein B have one ortholog (nAB). Note that these values are those

used for the computation of the features based on PP comparison

(Table 4).

Principle of the learning method
We used a 3 fold cross-validation (3CV) approach to test the

ability of our method to correctly predict interacting pairs in the E.

coli genome. The complete set of positive (pos) and negative (neg)

examples (protein pairs) was separated into three groups contain-

ing each the same proportion of examples in the pos and neg
classes. Two groups were used for the training part of the method,

and the remaining group was used for testing. Each of the three

groups is alternatively used as the test-group. This allows us to

score the entire data set. This operation was repeated 30 times to

ensure that the method was reproducible and thus reliable.

Learning algorithms
We used a combination of 4 classical supervised classification

algorithms to predict positive (pos) and negative (neg) classes.

These algorithms are present in the most recent version of weka

[34] (Weka version 3-6-4 was used in this work) and are of two

types: Rules (PART and JRIP) and Decision trees (J48 and

RandomForest (RF)). The bagged version of each classifier was

also used (bPART, bJRIP, bJ48 and bRF) leading to a total of 8

classifiers. The combination of these classifiers is presented in the

next section.

Combination of the classifiers
Each classifier predicts, by default, the class pos if the

probability associated with this class is greater than or equal to

0.5 and the class neg otherwise. Both the number of classifiers that

are in agreement for assigning a specific pair to a given class and

the probabilities associated with the predictions are indicators of

the ‘‘confidence’’ that one can have in the prediction. We

exploited this confidence in order to compute a global score and

thus a rank associated to each example predicted.

This score is calculated as follows:

S xð Þ~Spos xð Þ
�

Sneg xð Þ

where x represents the example to predict and Spos(x) (resp. Sneg(x))

the score associated to example x for the pos class (resp. neg). The

calculation of the scores is detailed hereafter:

Spos xð Þ~
Ppos|enpos if nposw0

1 otherwise

�

Sneg xð Þ~
Pneg|enneg if nnegw0

1 otherwise

�

with

npos ~
P
c[C

1Pc xð Þ§0:5

Ppos ~ P
c[C

Pc xð Þ|1Pc xð Þ§0:5

8<
:

and

nneg ~
P
c[C

1Pc xð Þv0:5

Pneg ~ P
c[C

1{Pc xð Þð Þ|1Pc xð Þv0:5

8<
:

where C represents the set of classifiers and Pc(x) represents the

‘‘confidence’’ that x is assigned to class pos by classifier c. npos (resp.

nneg) represents the number of classifiers that assign x to class pos
(resp. neg) when considering 0.5 as the threshold that separate the

two classes.

As a consequence, a pair for which all classifiers assign the class

pos with a high probability will have a high score, while a pair for

which all classifiers assign the class pos but with a low probability

(only slightly higher than 0.5) will be assigned a lower score.

Table 3. List of Tree comparisons features computed in this study.

Name Description/formula References

mirror Tree similarity between proteins A and B computed as the correlation between their pairwise distance
matrices

[6,24]

mirrorA Tree similarity between protein A and the Tree of Life (ToL) with the mirror method [6,24]

mirrorB Tree similarity between protein B and the ToL with the mirror method [6,24]

tol – mirror Tree similarity between proteins A and B based on the mirror method after correction of their pairwise
distance matrices to remove the background similarity due to speciation of the species themselves

[1]

Icong Topological similarity between the trees of proteins A and B as estimated by the size of the maximum
agreement subtree (MAST) between the two trees

[32]

IcongA Topological similarity (Icong index) between the tree of protein A and the ToL [32]

IcongB Topological similarity (Icong index) between the tree of protein B and the ToL [32]

doi:10.1371/journal.pone.0048728.t003
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Precision, Recall, ROC and AUC to evaluate the quality of
the ranking

We give here a brief definition of the attributes used in this study

to evaluate the quality of the ranking of positive (pos) and negative

(neg) protein pairs

N Precision is the ratio of the number of True Positive pairs

(TP) that have been retrieved to the total number of pairs

predicted as positives (TP+FP). This can be computed for each

cut-off in the list of ranked pairs, by considering that this cut-

off represents the separation between positive and negative

examples. Doing so for each possible cut-off (from pair 1 to the

total number of pairs) allows a curve to be drawn representing

the quality of the ranking. If the ranking is perfect, then all the

interacting pairs (positive examples) will have the highest scores

and thus this curve will remain at the value 1.0 until the cut-off

Table 4. List of Phylogenetic Profiles features computed in this study.

Name Description/formula References

nA, nB and nAB confidence nAB

nA

[36]

recall nAB

nB

[37]

lift nnAB

nAnB

[38]

dice 2|nAB

nAznB

[39]

pearson nnAB{nAnBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nAnBn�AAn�BB
p [40]

GI
log

nABn

nAnB

� �
[41]

IQC
2|

P ABð Þ{P Að ÞP Bð Þ
P Að ÞP �BBð ÞzP �AA

� �
P Bð Þ

[42]

confidenceCentered 1 nnAB{nAnB

nnA

[43]

confidenceCentered 2 nnAB{nAnB

nnB

[43]

leastContradiction 1 nAB{nA�BB

nB

[44]

leastContradiction 2 nAB{n�AAB

nA

[44]

jaccard 1 nAB

nA�BBznB

[45]

jaccard 2 nAB

n�AABznA

[45]

loevinger 1 1{
nnA�BB

nAn�BB

[46]

loevinger 2 1{
nn�AAB

n�AAnB

[46]

tec 1 nAB{nA�BB

nAB

tec 2 nAB{n�AAB

nAB

LAP 1 nABz1

nAz2

[47]

LAP 2 nABz1

nBz2

[47]

GAN 1 2 � nAB

nA

{1
[48]

GAN 2 2 � nAB

nB

{1
[48]

Zhang 1 P ABð Þ{P Að Þ|P Bð Þ
max P ABð Þ|P �BBð Þ,P A�BBð Þ|P Bð Þð Þ

[49]

Zhang 2 P ABð Þ{P Að Þ|P Bð Þ
max P ABð Þ|P �AA

� �
,P �AAB
� �

|P Að Þ
� � [49]

Pearl 1
P ABð Þ|D

P ABð Þ
P Að Þ{P Bð ÞD

[50]

Pearl 2
P ABð Þ|D

P ABð Þ
P Bð Þ{P Að ÞD

[50]

doi:10.1371/journal.pone.0048728.t004
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reaches the actual number of positive pairs and decrease

linearly afterwards.

N Recall is the ratio of the number of True Positive pairs that

have been retrieved (TP) to the total number of positive pairs

(TP+FN). As for the precision, the recall can be computed for

each possible cut-off in the ranked list of pairs. It starts from 0

and, if the ranking is perfect, is expected to increase linearly to

1 (when the cut-off equals the actual number of positive pairs)

and remain at 1 thereafter.

N ROC stands for the Receiver Operating Characteristic. It is a

plot of the sensitivity (True Positive Rate, TPR) versus the

False Positive Rate (FPR). A method able to perfectly separate

positive and negative examples would lead to a ROC curve

starting from position [0,0], going straight to the coordinates

[0,1] along the y-axis (TPR) and then reaching the position

[1,1]. Conversely, a method that would not do better than

random for ordering negative and positive examples would

lead to a ROC curve close to the diagonal. The Area under the

ROC Curve (AUC) can also be computed. It has the value 1

for a perfect prediction and the value 0.5 for a prediction not

better than random.

Filtering out negative pairs
The machine learning method we propose here also allows

filtering out the pairs that have a small score, thus enriching the

final dataset in positive examples. We set a threshold for the Pneg

value, only for pairs s.t. npos = 0 so that if Pneg#a, the pair was kept,

otherwise we removed it.

Here we used a = 1 (no filter) for the overall evaluation of the

method. We then varied the value of a from 0.01 to 1 in order to

evaluate the effect of the strength of the filter on the trade-off

between the proportion of negative examples filtered and the

proportion of positive examples lost.

Exploration of the best predicted pairs
We used the final sorted list of pairs to investigate the nature of

negative pairs that were ranked highly (were assigned a high score)

with our method. These represent protein pairs that have features

in common with known co-complexed proteins. We focused on the

50 first predicted pairs (listed in Table S1). We used the STRING

database [19] to look for possible evidence of interaction,

restricting the use of STRING to text-mining evidence (proteins

co-mentioned in Pubmed abstracts) and experimental evidence,

because co-occurrence across genomes and neighbourhood

conservation are evidence that are not independent from the

phylogenetic profile used in our method.

Comparison with other methods
Two out of the 35 features used in our approach are classical

methods for detecting PPI. These are the mirrortree and the tol-mirror

methods. We compared our results with those obtained using these

methods independently, by comparing the ROC curves and the

area under the ROC curve (AUC) after the ranking of the pairs. In

addition, we compared our approach with the context-mirror method

proposed by Juan et al. [15] that appears to be the best method to

date for predicting PPI in E. coli. The principle of this method is to

evaluate the similarity of each pair of protein trees in the light of

the complete network of similarity between protein trees, using a

linear correlation coefficient between the distance matrices

extracted from the protein trees as an indicator of the similarity

between trees. We used the program developed by the authors to

perform this analysis, using as an input the same dataset as we used

for testing our own approach. We used the default p-value

threshold (p#1025) and considered the default levels proposed by

the program: 1, 5, 10 and 25. For the AUC and ROC

computations, we looked for the best r cut-off (see [15] for details)

to get the maximum AUC, so that we could compare our method

with the best results obtainable with the context-mirror method. The

best AUC was obtained when filtering for r.0.6. For the context-

mirror method, we also evaluated the quality of the ranking of the

pairs by the precision and recall curves prior to the filtering based

on r and compared it to the precision and recall curves with our

method.

Controlling for redundancy in the dataset
Similar (homologous) proteins might have the same protein

interactors so that a redundant dataset could artificially explain a

highly accurate prediction. In order to control for redundancy in

the dataset, we predicted PPI using only sequence similarity. For

each of the 2 177 proteins in the E. coli proteome, we found its best

homolog (if any) in the other 2 176 proteins, using either

HMMER3 (http://hmmer.janelia.org/, [35]) or BlastP (NCBI-

BLAST version 2.2.26, http://blast.ncbi.nlm.nih.gov/Blast.

cgi?PAGE = Proteins) with default parameters. Using a leave-

one-out approach we assigned to each pair of proteins the label

(positive or negative interaction) of their correponding pair of

homologous proteins, if present. Finally, if p1 and p2 are two

proteins and pp1 and pp2 are their corresponding homologous

sequences, we assigned to the pair p1-p2 a score computed as:

S~max e-value p1,pp1ð Þ,e-value p2,pp2ð Þð Þ

where the e-value is the sequence similarity score as returned by

HMMER or BlastP. We then ranked all the pairs based on this

score and computed the area under the ROC curve (AUC) for this

new prediction. We expect a high value of the AUC if the dataset

is highly redundant and a small value of AUC otherwise.

Supporting Information

Table S1 List of the 50 best ranked negative pairs
detected in this study.

(PDF)
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Société Vaudoise en Sciences Naturelles 44: 223–270.
46. Loevinger J (1947) A systematic approach to the construction and evaluation of

tests of ability. Psychological Monographs 61: 1–49.
47. Good IJ (2003) The Estimation of Probabilities: An Essay on Modern Bayesian

Methods. The MIT Press Classics Series.

48. Ganascia JG (1987) Charade: A rule system learning system. In: IJCAI. pp. 345–
347.

49. Zhang T (2000) Association rules. Knowledge Discovery and Data Mining
Current Issues and New Applications 1805.

50. Pearl J (1988) Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufmann.

Protein-Protein Interaction Prediction

PLOS ONE | www.plosone.org 13 November 2012 | Volume 7 | Issue 11 | e48728


