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Transposable elements (TEs) represent a substantial fraction of many
eukaryotic genomes, and transcriptional regulation of these factors is
important to determine TE activities in human cells. However, due to
the repetitive nature of TEs, identifying transcription factor (TF)-
binding sites from ChIP-sequencing (ChIP-seq) datasets is challenging.
Current algorithms are focused on subtle differences between TE
copies and thus bias the analysis to relatively old and inactive TEs.
Here we describe an approach termed “MapRRCon” (mapping repeat
reads to a consensus) which allows us to identify proteins binding to
TE DNA sequences by mapping ChIP-seq reads to the TE consensus
sequence after whole-genome alignment. Although this method does
not assign binding sites to individual insertions in the genome, it pro-
vides a landscape of interacting TFs by capturing factors that bind to
TEs under various conditions. We applied this method to screen TFs’
interactionwith L1 in human cells/tissues using ENCODE ChIP-seq data-
sets and identified 178 of the 512 TFs tested as bound to L1 in at least
one biological condition with most of them (138) localized to the pro-
moter. Among these L1-binding factors, we focused on Myc and CTCF,
as they play important roles in cancer progression and 3D chromatin
structure formation. Furthermore, we explored the transcriptomes of
The Cancer Genome Atlas breast and ovarian tumor samples in which
a consistent anti-/correlation between L1 and Myc/CTCF expression
was observed, suggesting that these two factors may play roles in
regulating L1 transcription during the development of such tumors.
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Much of the human genome is derived from retrotransposons,
self-propagating sequences resident within our genome.

Moreover, retrotransposons continually engage in complex host–
parasite relationships during evolution (1–5). In the current hu-
man genome assembly, about 45% of our total DNA has clear-cut
homology to consensus sequences of retroelements (6–8), whereas
other studies suggest the proportion of the human genome derived
from repeats is over 75% (7). Three families of retrotransposons
are still highly active today in the human genome: LINE-1 (L1),
Alu, and SVA. All these elements require a combination of host
factors and ORF1 and ORF2 proteins encoded by the L1 element
to retrotranspose into the genome (5); thus, L1 elements represent
the only autonomous retroelement in the human genome. Be-
cause L1 encodes enzymatic proteins essential for the formation of
new insertions, studying the cellular regulation of autonomous
L1 is critical to better understand the transposons’ impact on the
human genome and transcriptome.
A full-length L1 element is about 6 kb long and consists of a 5′

UTR/promoter, two ORFs (ORF1 and ORF2), and a 3′ UTR
containing a poly(A) tail. Following transcription by RNA poly-
merase II, translation produces ORF1 and ORF2 proteins (ORF1p
and ORF2p). ORF1p is required for L1 retrotransposition
and functions as a chaperone protein or an ssRNA-binding pro-
tein (reviewed in ref. 9). ORF2p has two recognized enzymatic
domains, an endonuclease domain (10) and a reverse transcriptase
domain (11), and both domains play important roles during the

actual insertion step called “target-primed reverse transcription”
(TPRT) (12, 13). Because TPRT happens directly by cleavage and
primer extension of genomic DNA targets, TPRT initiates from
the 3′ end of the L1 RNA and often fails to reach the 5′ end. As a
result most existing L1 insertions are 5′-truncated and therefore
lack a promoter and are transcriptionally inactive.
Importantly, the 5′ UTR promoter of L1 has unique features.

In addition to serving as the 5′UTR, this “downstream” sequence
contains the L1 promoter in its entirety. That is, the L1 promoter
is unique in that all promoter elements are downstream of the
transcription start site (14–16). Adding further complexity, the
promoter actively promotes transcription of both the sense and
antisense strands and thus produces a series of mRNAs that read
into adjacent host DNA (17) and even produces an antisense
strand-encoded “ORF0” protein (17, 18). Because of the unique
architecture of its 5′ UTR promoter, L1 brings along its own
package of regulatory sequences when it retrotransposes into
a new genomic location. Thus, we expect that all L1 transcrip-
tional regulators will bind 5′ regulatory/transcribed sequences.
This allows the identification of L1-interacting factors by screening
for key binders of the 5′ UTR promoter without mapping to
individual L1 copies.

Significance

Retrotransposons replicate through RNA intermediates that are
reverse transcribed and inserted at new genomic locations. LINE-
1 (L1) elements constitute ∼17% of the human genome, making
them the most successful retrotransposons in the human ge-
nome by mass. The activity of L1s was shown first in the
germline or during early embryogenesis. More recent studies
demonstrate a wider prevalence of L1 expression in somatic cells
including neurons, aging cells, and different types of cancer. In
this study, we developed the MapRRCon pipeline and performed
a comprehensive computational analysis of L1 transcriptional
regulators using ENCODE ChIP-seq datasets. We revealed the
binding of various transcription factors, including Myc and CTCF,
to the 5′ UTR promoter of the youngest human L1 family (L1HS)
and their potential functional impact on L1HS expression.
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Despite the importance of studying the transcriptional regula-
tion of L1 and predicting binding sites for transcription factors
(TFs) (19), only a few previous studies have identified critical TFs
binding to the L1 5′ UTR promoter. These include YY1 (20, 21),
RUNX3 (22), p53 (23, 24), SRY (25), MeCP2, Oct4, Sox2, Nanog,
and KLF4 (26–28); all have been demonstrated to regulate
L1 transcription in specific human cells types, such as Sp1 and
Sp3 in rats (29 and reviewed in ref. 30) and Sin3A in mouse ES
cells (31). Evolutional analysis reveals conservation of TF-binding
sites among human-specific L1s, although the mutation rate of the
L1 5′ UTR promoter is higher than that of the L1 ORFs (32),
probably due, at least in part, to the enrichment of CpG dinu-
cleotides. This suggests that possible core regulatory network/
features may exist that control L1 activity in diverse cell types.
Because of L1’s ability to induce genome instability and muta-

genic outcomes, its activity is generally suppressed somatically (33,
34), probably via extensive cytosine methylation at CpGs (35).
However, L1 expression is highly up-regulated in cancer cells, in
line with the common observation of global hypomethylation in
tumors (36, 37). Despite the correlation of L1 activity with cancer
progression observed in most tumor types (37), L1’s role in cancer
initiation and progression remains unclear. In addition, because of
the variability of different cancer cell lines, it is difficult to de-
termine which common factors/pathways drive L1 activity. Thus, a
comprehensive picture of the control of L1 expression is needed to
define common or unique regulators in different cell types. In
addition to cancer cells, human ES cells (hESCs) exhibit a per-
missive environment for L1 retrotransposition (38–42). Compari-
son of the L1 regulatory network in hESCs and cancer cells might
help further identify essential regulators, since cancer cells, which
also tend to be somewhat “dedifferentiated,” may exploit similar
pathways to activate L1 expression.
The ENCODE project (encodeproject.org/ENCODE/) (43) has

produced numerous ChIP-sequencing (ChIP-seq) datasets that map
the genomic locations of TF binding and histone modifications in
various types of tissues and cell lines. In the standard ChIP-seq
pipeline, transposable element (TE)-associated reads are dis-
carded when aligning at multiple locations and thus cannot be un-
ambiguously assigned. For example, previous studies of TF-binding
profiles for human endogenous retroviruses excluded multiple
aligned reads (44). However, those reads are extremely valuable in
understanding retrotransposon-interacting TFs, and a TE-savvy
method is required to analyze the “junk” repetitive (low mapp-
ability) reads from deep-sequencing datasets.
Here, we generated an L1-interacting TF/histone mark land-

scape by analyzing the entire human ENCODE ChIP-seq database.
We developed a method, “MapRRCon” (mapping repeat reads to
a consensus), to specifically identify TFs binding to L1 sequences
and in particular to the L1 5′ UTR promoter. We identified a
remarkably long and diverse list of TFs, possibly reflecting a gen-
eral opening of L1 chromatin in certain cell types and, conse-
quently, promiscuous and nonphysiologic binding of many factors
to the 5′ UTR promoter (45–47). However, we also identified a set
of TFs that are activated in many cell types in which L1 is tran-
scribed and which are known to interact in other contexts. Among
the list of identified binding proteins, the oncoprotein Myc was a
major binder in various cell types, and, importantly, Myc RNA
levels were significantly anticorrelated with those of L1 in breast and
ovarian tumors. Additionally, we observed that CTCF binds to the
5′ UTR promoter and 3′ UTR of L1s, colocalizing with Myc and
RNA polymerase II. siRNA-knockdown experiments further sup-
ported the involvement of both Myc and CTCF in regulating
L1 transcription. This landscape provides a comprehensive resource
of L1 regulators in various cell types and identifies key components
of the remodeled L1 regulatory network in cancer cells.

Results
Exploring Binding Factors to L1HS Using MapRRCon. To optimize
alignment of ChIP-seq reads to L1HS consensus sequence, we
developed MapRRCon, which aligns ChIP-seq datasets to a pre-
determined unmasked reference genome and extracts information

of the target binding at repetitive elements. In this study we spe-
cifically focused on factors binding to human L1 sequences. We first
aligned ChIP-seq data to the human reference sequence hg38
containing annotated L1HS locations. This step not only assigns
uniquely mapped reads to their genomic locations but also ran-
domly distributes reads with multiple genomic hits. In the case of
the youngest human LINE-1 subfamily (L1HS) there are 1,620 an-
notated sites in the reference genome, and most of the reads, being
repetitive, are not uniquely mapped. The reads mapping to these
1,620 sites are extracted based on their genomic locations (unique
or randomly assigned by the alignment algorithm) and filtered to
eliminate possible contamination by other L1 subfamilies or similar
sequences. We removed reads with the following features: more
than three mismatches, any indels, or partial alignments (soft
clipping) (boxes with red lines in Fig. 1A). After extracting and
filtering, these L1 reads were subsequently mapped to the
L1HS consensus sequence to generate a coverage profile. For
each TF, we generate two coverage profiles from both the Input
and ChIP datasets and performed median-based normalization
(Fig. 1A). ChIP-seq peaks within the L1HS consensus sequence are
called using a signal-processing algorithm developed in-house, and a
true peak is defined as being present in the normalized data (Fig. 1B).
This peak-finding method was benchmarked against manual
peak-picking and was highly accurate and robust in detecting
peaks from short-sequence datasets (SI Appendix, Fig. S1).
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Fig. 1. The pipeline of MapRRCon. (A) In this pipeline, ChIP-seq data are
first aligned to the human reference sequence hg38. Both unique reads
(filled gray boxes) and multiply aligned reads (hollow gray boxes) are then
extracted and mapped to the 1,620 annotated L1HS sites based on their
genome coordinates. We exclude reads with partial alignment (soft clip-
ping), more than three mismatches, or any indels (boxes with red lines).
Filtered reads are subsequently mapped to the L1HS consensus sequence to
obtain compiled reads. Finally, we generate coverage profiles for both ChIP
and Input data and then perform median-based normalization (Methods).
The normalized data are used for peak calling. (B) We developed a peak-
calling algorithm that is suitable for short sequences such as L1s. Peaks are
detected by applying a smoothing filter and finding positions where the
smoothed signal has maxima. The peaks are filtered using two thresholds on
the original signal: signal intensity (blue line) minus background intensity
(dotted gray line) larger than 1 and an rmsd ratio between signal and
background larger than 1.3. The width of the peak (red line) is defined by
the location where the signal drops to 25% of its maximum.
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In Silico Screening of TF Factors That Interact with LINE-1 Using
MapRRCon. Using MapRRCon, we screened the entire human
ENCODE database for factors that interact with L1 and iden-
tified dozens of TFs and chromatin marks that associate with the
L1 sequences (Fig. 2). Naturally, the binding patterns obtained
reflect binding to an unknown subset of element copies, since the
sequences are present at multiple genomic locations. Thus, an
important limitation of our study is that we are unable to state
exactly which genomic L1 copies are bound. Nevertheless, this
analysis provides a wealth of other types of information. We
screened 512 TFs in 118 biosamples spanning the entire human
ENCODE ChIP-seq database for TFs as of November 2017.
Remarkably, 165 of these TFs (32% of the TFs tested) showed
clear evidence of sequence-specific binding of L1. This should be
considered a minimum, as many antibodies were tested in a
limited number of biosamples, and expansion to other cell lines,
tissues, or tumors will likely reveal additional binders. Although
the coverage of our analysis is biased toward certain factors that
have been more extensively evaluated using ChIP under various
conditions—while others have limited datasets and some are
absent altogether because no antibody against them exists—
these data provide interesting maps of TF and chromatin mark
landscapes across the L1 population. The majority of these
binding profiles map to the 5′ UTR promoter of L1, as is con-
sistent with two possible interpretations: (i) these might repre-
sent specific transcriptional regulators of L1 or (ii), since L1 is
highly expressed in stem and cancer cell samples, some and per-

haps most of these may represent opportunistic but not necessarily
biologically relevant bindings reflected in ChIP-seq studies (45–
47). We also identified 26 TFs that do not bind to the 5′ UTR
promoter of L1 but, interestingly, showed highly specific peaks in
the coding regions (ORF1 and ORF2) of the L1 sequence. The
identification of these peaks and factors, which would not have
been identified in classical reporter assays developed to measure
L1 promoter activities (i.e., the L1 5′ UTR promoter driving the
expression of a reporter gene), indicates a strength of MapRRCon
compared with these approaches: its agnosticism toward effects on
expression. Among the internal binders, we found five basic leu-
cine zipper (bZIP) TFs that bind to the same location on the
L1 sequence—the beginning of the ORF2 gene. Interestingly, two
of these bZIPs also bound to the 5′ UTR promoter, suggesting a
possible distinct role for internal binding (Fig. 2A). The internal
colocalization can be explained by bZIP-binding motifs sharing
high similarity with each other and by these TFs often forming
homo- or heterodimers (48) when associated with DNA. There-
fore, we cannot rule out the possibility that some of them are
indirectly recruited to the DNA via protein–protein interactions.
Although it is difficult to interpret the function of the binding of
bZIPs to L1s, our discovery of binding factors from the same
family showing a set of overlapping peaks suggests that our screen
is robust and comprehensive.
In general, we found that more TFs bind L1 sequences in hESCs

than in tissues and primary cells. Also, cancer lines in general
showed high levels of TF binding to L1, consistent with recent
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Fig. 2. Landscape of L1-interacting TFs. (A) We identified a group of TFs (bZIPs) enriched at the beginning of ORF2. Blue lines show the ChIP profiles of each
TF in HepG2 cells, and the vertical red bar indicates the location of known motifs; logos are shown on the Right. (B) Peak enrichment of each cell line is made
by combining all the TF peaks called from each dataset of that cell line, and the distribution is generated using the kernel function. (C) All the binding TFs in
MCF-7 cells are plotted along the L1HS DNA sequence. Red bars indicate a peak location that has been identified repeatedly for multiple TFs in our analysis;
black bars indicate unique peak locations for a specific TF. (D) Heatmap of selected TFs in nine commonly used ENCODE cell lines. The cell lines are sorted based
on their relative L1 expression level from RNA-seq, and the color indicates whether each TF has binding peaks in the L1 promoter. The TFs are ordered by
calculating the Euclidean distance and are hierarchically clustered using Ward’s method. It is clear that TF binding to the 5′ UTR promoter is not highly
correlated with the L1 expression level.
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reports showing very widespread expression of ORF1p in cancer
cells and tumors (37, 49). However, we did observe considerable
variation in TF binding among the cancer lines screened, sug-
gesting substantial binding heterogeneity (SI Appendix, Fig. S2A
and Dataset S1).
We found that 83.6% (138 TFs; 27% of the screened TFs) of

the TFs that bind L1 sequences (165 TFs; 32.2% of the screened
TFs) bind the L1 5′UTR promoter in at least one biosample. We
next examined the distribution of all TFs in each cell line and
found that the binding was highly clustered within a promoter
subregion around position 450 in the 5′ UTR promoter of the
L1HS consensus sequence; this enrichment was even stronger in
H1 hESCs than in other cell lines (Fig. 2B). The clustering of
TFs at the L1 5′ UTR promoter could also be observed when
aligning binding peaks of individual TFs; for example, in MCF-
7 cells the peaks around position 450 could be seen for nearly all
the TFs that bound L1, although peaks for those TFs also existed
in other regions (Fig. 2C). This finding is consistent with previous
research showing that nucleotide positions 390–526 of the L1 5′
UTR promoter are critical for effective L1 transcription (16).
Among the commonly used ENCODE cell lines, a few (MCF-7,

K562, HepG2, and H1-hESCs) showed TF enrichment at the L1
5′ UTR promoter compared with the other cell lines (Fig. 2D).
We first hypothesized that this may reflect the open chromatin
state at the L1 5′ UTR promoter in these cell lines that allowed
higher accessibility for TFs. To test this hypothesis, we quantified
L1 expression levels in a few of the ENCODE cell lines that had
the highest amount of ChIP-seq data, using ENCODE RNA-
sequencing (RNA-seq) datasets and ranking them based on
L1 expression (Fig. 2D). L1 expression did not correlate with the
number of TFs bound to its 5′UTR promoter; for instance, MCF-
7 cells showed the highest L1 expression among these cell lines but
had a low number of TF peaks compared with H1-hESCs, K562,
and HepG2 cells; GM12878 cells also exhibited less TF binding
although L1 expression was high (Fig. 2D and SI Appendix, Fig.
S3A). By comparing the binding profiles with the individual TF
genes’ expression, we excluded the possibility that the TF binding
on L1 was driven by the expression level of the TF under con-
sideration (SI Appendix, Fig. S3B).

Motif Analysis of TF Binding to L1. To uniquely identify TF-binding
sites, we searched for DNA motifs. We therefore analyzed the
overlaps between TF peaks and the appropriate TF DNA motifs.
We used a motif database which combines a few of the known
databases, including Jaspar and TRANSFAC(R), as well as motifs
newly discovered from a subset of ENCODE ChIP-seq datasets
(50). This database analyzed the same sets of ChIP-seq experiments
used for MapRRCon but uses a different set of reads [unique reads
for the Kheradpour and Kellis database (50); multiply aligned reads
for MapRRCon]. Use of the Kheradpour and Kellis database
provided extra power for our motif analysis (Discussion). We asked
whether the colocalization of a TF peak and its DNA motif was
significantly different from random. Randomized sequences were
obtained by shuffling L1HS 1,000 times and calculating the number
of matches between the TF signal profile and motifs found in each
simulated sequence (Fig. 3A, blue dotted lines). After comparing
the number of true matches (Fig. 3A, red dotted lines) with simu-
lated matches, we found that simulated values were significantly
lower in all samples (Fig. 3B). This simulation supports the ability
of our pipeline to robustly identify TF peaks that align perfectly
with expected DNA motifs on L1HS sequence.
We then classified peaks into two groups: (i) TFs with peaks

that colocalize with their own motifs and (ii) TFs with peaks that
do not colocalize with their own DNAmotifs and therefore cannot
be explained simply by direct binding. For this latter class, there
might be indirect binding. Alternatively, the specific TFs may lack
known DNAmotifs (Fig. 3C). We plotted the distribution of peaks
of these two groups (group 1 in red and group 2 in blue in Fig. 3C)
against the distribution of all TF motifs found in L1HS (gray line
in Fig. 3C). The TFs in group 1 were highly promoter-enriched, as
expected from our previous analysis (Fig. 2). The TFs in group

2 also clustered mainly in the promoter, suggesting that these TFs
were recruited to the L1 promoter by features other than the
presence of their motifs. The distribution of all motifs identified
on L1HS further validated this hypothesis, as we did not observe
any motif enrichment at the same region (Fig. 3C, gray line). Based
on this analysis, we could not rule out the possibility that some of
the binding motifs may not exist in the database or that other
nonmotif features might contribute to the binding of TFs to L1. We
analyzed the TF protein interactome to identify possible cor-
ecruitment not explained by the presence of DNA motifs in the
L1 sequence. An example of this corecruitment was a small inter-
acting cluster centered on CEBPA protein known to interact with
CEBPB, EP300, and Myc; remarkably, these four TFs occupied the
same L1 promoter subregion in HepG2 cells (Fig. 3D). As we
found motifs for Myc and CEBPB but not for CEBPA or EP300 at
the peak location, the recruitment of CEBPA and EP300 could
potentially be explained by physical interactions with Myc or
CEBPB. Furthermore, there is evidence that CEBPA and CEBPB
can form heterodimers (51), supporting the idea of indirect binding
of the identified L1 TFs to DNA.

Myc Represses L1 Transcriptional Activity.Among the factors bound
to the 5′ UTR promoter of L1s, we focused on Myc oncoprotein,
as it has been shown to be involved in various cellular processes
including growth control, differentiation, and apoptosis and its
overexpression is often observed in tumors (52–55). We found that
Myc preferentially occupied the L1 promoter in several cell lines.
However, Myc binding was cell-type specific, as Myc was
expressed but did not bind L1 promoters in certain cell lines.
Although a few cell lines showed Myc binding at position 450, in
MCF-7 cells, a breast cancer cell line, we identified two additional
strong binding peaks at positions 150 and 700 (Fig. 4A). To test
whether Myc binding has any functional impact on L1 transcription,
we used siRNA to knock down Myc in HEK293 cells containing an
integrated luciferase reporter. The reporter was designed to have
the L1 promoter driving Renilla luciferase and firefly luciferase
from its sense and antisense promoters, respectively (Fig. 4B). As
the knockdown experiments were performed in a high-throughput
manner, we used the robust z-score of a plate-wide median as a
measurement, and the normalization was done within each plate
(Methods). We found that knocking down Myc in HEK293 cells
increased the promoter activity of the L1 5′ UTR promoter in
both orientations (Fig. 4B). This result suggests that Myc acts as a
transcriptional repressor at L1 promoters in these cells.
We asked whether the effect of Myc binding on the L1 pro-

moters was due to the presence of its DNA motifs at the pro-
moters. After scanning the L1HS consensus sequence, we found
six putative Myc-binding motifs located within the 5′ UTR pro-
moter region, corresponding to two known Myc motifs present in
the Kheradpour and Kellis database (“discovery 10” and “known
10”) (Discussion). Interestingly, five of these six motifs are pre-
sent in very close proximity to the Myc-binding peak summits we
defined from MapRRCon analysis in MCF-7 cells (Fig. 4C). To
interrogate the contribution of these six motifs to regulation of
L1 transcription, we generated mutations that had low similarity
scores to the identified Myc motifs and did not create new binding
motifs in the surrounding sequences. All six mutated sequences
were cloned into the L1 5′ UTR promoter upstream of the firefly
luciferase reporter gene. Renilla luciferase driven by a constitutive
promoter was also transfected, and the Renilla signals were used to
normalize transfection efficiency. We measured the firefly signals
after 48 h of transfection and normalized those signals to the
Renilla signals. We observed various effects resulting from dif-
ferent mutations of the Myc motifs. Although no evidence of
complete disruption of Myc binding is seen, consistent with the
knockdown results, we observed elevated promoter activity in
motif A and E mutants; contrarily, motif C and D mutants showed
decreased signals, whereas mutations in motifs B and F did not
alter L1 promoter activity (Fig. 4D). This result suggests that the
multiple Myc-binding sites in the L1 5′ UTR promoter might
cooperate to form a complex regulatory network. In addition,
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because of the overall enrichment of TFs we observed at the pro-
moter (Fig. 2 B and C), mutating Myc-binding motifs may also
disrupt or create sites for other TFs, complicating interpretation
(Discussion). To add another level of complexity, we conducted
similar experiments in the MCF-7 cell line. Strikingly, all the mu-
tants showed a decreased level of L1 5′ UTR promoter-mediated
transcription, suggesting cell-type–specific regulation of L1 expres-
sion. Considering global expression-level differences between the
different cell lines, it is possible that mutating the same sequences
in the L1 5′UTR promoter will have opposite effects in the two cell
lines due to the binding of different TFs and TF interactors.
Based on the findings described above, we hypothesized that the

binding of Myc at the L1 5′ UTR promoter overall represses L1
expression. To test whether this repression was also observed in
patient samples, we examined The Cancer Genome Atlas (TCGA)
dataset for the relationship between the expression of Myc and
L1 in tumors. We selected 77 breast and 127 ovarian tumor samples
from TCGA and analyzed L1 transcription from RNA-seq data. We
applied the principle of MapRRCon analysis (alignment to the
genome followed by alignment to L1HS consensus) to RNA-seq
reads to filter out DNA contaminations. We first aligned RNA-
seq reads to hg38 using STAR (56) and extracted reads aligned
to 1,620 annotated L1Hs locations. These reads were then realigned
to the L1HS consensus sequence using stringent alignment criteria
(Methods). We were able to detect L1 transcripts in almost all breast
and ovarian tumors. We excluded possible genomic contamination
from truncated L1s (the majority of the L1 sequences present in the
genome) and observed no 3′ bias along L1HS reads (SI Appendix,
Fig. S4). Consistent with the knockdown data of Myc, we found that

MYC expression level was significantly anticorrelated with L1 ex-
pression in both breast and ovarian tumors (Fig. 5). In addition,
distinct L1 regulation machinery may exist in different breast cancer
subtypes, as more L1 transcripts were detected in the Her2 subtype
and few were detected in the basal subtype (Fig. 5A). This result
suggests that Myc may be a major regulator of L1 transcription in
cancer development.

CTCF Colocalizes with Myc on the L1 Promoter and 3′ UTR. We found
that CTCF protein colocalizes with Myc in multiple cell lines
including MCF-7, HepG2, H1-hESC, and HeLa-S3 cells. MCF-
7 cells, in particular, showed three distinct binding peaks for both
Myc and CTCF on the L1 5′UTR promoter (Fig. 4A). Contrary to
the effect of Myc knockdown, depletion of CTCF by siRNA
treatment reduced L1 promoter activity (Fig. 4B). The same ob-
servation was obtained when analyzing the expression of CTCF
and L1 proteins in TCGA patient data (CTCF exhibited a positive
correlation with L1, although the correlation was not as significant
as the Myc and L1 anticorrelation) (Fig. 5). This positive effect on
expression was in line with studies showing that CTCF sites have
been identified on the promoter of the MYC gene and that CTCF
acts as a repressor for MYC expression (57, 58). Thus, knocking
down CTCF may be a secondary consequence of lower MYC ex-
pression, which in turn increases L1 transcription (Fig. 4B). How-
ever, transcriptional control of MYC by CTCF would not explain
the observed colocalization at L1 promoters. As the well-known
function of CTCF is to act as an insulator protein that blocks the
interaction of enhancers and promoters (59–62), it is possible that
the binding to L1 also creates complex DNA structures, either

A B

C D

Fig. 3. Motifs underlying TF-binding peaks. (A) To test whether the match of motif and TF peaks from ChIP-seq is significantly different from random, we
performed simulation by shuffling the L1HS sequence 1,000 times and looked for motifs in those shuffled sequences. The number of matches between motif and
peak location was counted and compared with the number of true matches (number of matches between the unshuffled L1HS sequence and ChIP-seq peaks). P
values were calculated using the Wilcoxon one-sample signed rank test. (B) The number of true matches (red dots) and simulated matches (blue dots) are plotted
for each TF–cell line pair. The simulated matches are averaged, and P values are indicated by the intensity of redness. (C) The distribution of motifs and peaks is
plotted along the L1HS sequence. The ChIP-seq peaks are categorized into two groups based on whether the specific TF motifs can be found at the peak locations.
(D, Left) A small network of four physically interacting TFs colocalizes at the L1 promoter. Two motifs, c-Myc and CEBPB (black lines), are found under peaks. Color
bars indicate the peak locations for each TF, and gray lines show the ChIP profiles. (Right) The scheme was generated by STRING database v10.5.
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inter- or intramolecularly. Indeed, a previous study analyzing to-
pologically associated domains (TADs) showed that MCF-7 TAD
boundaries are enriched for several oncoproteins, including Myc
(63). This is consistent with our observations about the specific re-
cruitment of CTCF and Myc on L1 and suggests a possible func-
tional interaction between Myc and CTCF. In addition, Cohesin
subunit Rad21, a protein subunit that works together with CTCF (64,
65) to assist long-range interactions, was also found at the L1 pro-
moter with CTCF in multiple cell lines (SI Appendix, Fig. S5A), and
Cohesin subunit Rad21 overexpression in tumor cells has previously
been shown to be associated with increased L1 expression (66).
CTCF bound not only to the 5′ UTR of L1 but also to the L1

3′ UTR (the same recruitment profile was observed for Myc).
This observation made us hypothesize that CTCF may mediate
intermolecular (anchoring two L1 copies by binding their 5′
UTR promoters) or intramolecular (anchoring the 5′ UTR
promoter and 3′ UTR of the same L1) interactions. A previous
study (67) showed that gene loops enhanced transcriptional di-
rectionality at bidirectional promoters by physically bringing to-
gether promoter and terminator and allowing RNA polymerase

to reload onto promoters efficiently after finishing the previous
round of transcription. Although the current resolution of Hi-C
data is insufficient to detect L1 intramolecular interactions, the
formation of gene loops of L1 was consistent with the two fol-
lowing observations: (i) RNA polymerase colocalized with CTCF
at both the L1 promoter and the 3′UTR (SI Appendix, Fig. S5B),
and (ii) knocking down Ssu72, a factor critical for gene-loop
formation (67), decreases the level of L1 transcription to a
similar degree as knockdown of CTCF (SI Appendix, Fig. S5C).
This finding may suggest a mechanism of L1 transcription in
cancer cells, but more studies are necessary to address it better.

MapRRCon Analysis of Histone Marks of L1HS. We also tested
MapRRCon in analyzing ChIP-seq datasets of histone marks. After
analyzing 14 histone marks in 115 biosamples, we noticed that a
few active transcription/open chromatin histone marks (H3K9ac,
H3K27ac, H3K4me2, H3K4me3, and H3K4me1) were more rep-
resented among our sample cohort, with a slight enrichment in
immortalized cells and stem cells, which had higher L1 expression
than tissue and primary cell samples. However, we observed a high
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Fig. 4. c-Myc and CTCF colocalize at the L1 5′ UTR to regulate L1 promoter activity. (A) The coverage of c-Myc and CTCF ChIP-seq signals is plotted along L1HS
in seven cell lines. The four cell lines in the upper plots show binding peaks for both TFs, whereas the three cell lines in the lower plots do not. (B, Upper) The
diagram illustrates the reporter construct, which is a L1 promoter sequence attached to a luciferase reporter at both ends. Wavy lines indicate sense and
antisense transcripts. Renilla luciferase measures the forward promoter activity, and firefly luciferase measures the reverse promoter activity. (Lower) The
luciferase signal is normalized to the plate median (Methods) for each knockdown. *P > 0.01, **P > 0.001, ***P ≤ 0.001. (C) The ChIP-seq signal of c-Myc and
CTCF is plotted on the L1HS along with the locations of sequences that are highly similar to their identified motifs. The similarity is indicated by color gradient;
the sequences that are similar to c-Myc discovery motif 10 (disc10) and known motif 10 (known10) are marked (see text). (D) L1 5′ UTR promoter activities in
different c-Myc motif mutants measured by reporter assay. (Upper) The reporter construct in which a L1 5′ UTR promoter drives firefly luciferase is shown. The
letters A–F indicate the six motifs we identified in the L1 5′ UTR promoter and the locations of their matched sequences. (Lower) The bar graph shows the fold
change of reporter signals normalized to wild type (dotted line). *P < 0.05, **P ≤ 0.05, ***P ≤ 0.001.
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degree of variability in L1 histone marks among cancer cell sam-
ples, as is consistent with a diversity of regulatory networks in
different cells. It was also notable that three hESC lines showed
very consistent patterns across all histone marks, as did neural
progenitor cells, which also reportedly exhibit high L1 expression
(68–70). Repressive markers such as H3K9me3 were generally
absent from L1s. We also identified an enrichment of H2A.Z
(encoded by the H2AFZ gene) on L1HS specifically in hESCs and
in a few other high L1-expressing cell lines, including breast cancer
and prostate cancer cell lines (i.e., MCF-7 and PC-3, respectively)
(SI Appendix, Figs. S2B and S6 and Dataset S2). This mark is also
reportedly associated with mouse L1 promoters and exhibited for-
ward feedback regulation with Myc in breast cancer cells (71, 72).

Discussion
Our study provides a valuable resource of potential L1 regulators
and their binding regions at L1 sequences in a large number of cell
types. This database can be further expanded as additional ChIP-seq
datasets are generated. We developed the MapRRCon pipeline to
screen factors interacting with L1 sequences and also used it to
analyze RNA-seq data to lower or eliminate DNA contamination
from the analysis. This method not only identified known binders
such as YY1 (20, 21), Nanog (26, 27), Sin3A (31), RUNX3 (22),
and SP1 (29) (SI Appendix, Fig. S7) but also reported 175 additional
TFs that bind within the L1HS sequence, the great majority of
which had not previously been identified as L1 regulators. We
further validated the effect of two factors, Myc and CTCF, on
L1 transcription using siRNA-knockdown reporter assays. We also
explored the correlation of their expression levels with L1 expres-
sion in tumors and thus provided support for the hypothesis they are
important regulators controlling L1 expression in cancer cells. This
resource may provide insight into and knowledge about L1 regu-
latory networks in various cancer types.
MapRRCon analysis is not restricted to L1HS sequences but can

be easily adapted both to other host species and to other types of
repetitive sequences such asAlu. Although the term “MapRRCon” is
designed to emphasize the mapping to consensus sequences, the
genome-wide prealignment is an important step for reducing back-

ground. Due to the rapid genomic evolution of retrotransposons and
the historical proliferation of related but extinct subfamilies of ele-
ments (1, 73–75), it is critical to map the reads to the unmasked
human reference genome first, to avoid overly aggressive mapping of
reads caused by direct alignment to L1HS. We have compared the
reads mapped to the consensus sequences with or without prealigning
for both ChIP-seq and RNA-seq datasets and found that prealign-
ment greatly increased the signal-to-noise ratio. The elimination of
this high noise was not essential for strong binders (e.g., Myc), as we
could still observe their enrichment even when we mapped reads
directly to the consensus; however, the peak-to-noise ratio was sig-
nificantly reduced. Limitations of the method include the inability to
map to specific copies. Previous studies have shown that the local
chromatin environment and upstream flanking sequences can influ-
ence L1 transcription in a cell-type–specific manner (49, 76), in-
dicating that additional flanking-region binders might indirectly
regulate L1 transcription; such TFs will be missed by MapRRCon.
Although this study aims to reveal factors that bind retro-

transposition-competent L1s, most of which belong to the L1HS
family, we cannot exclude the possibility that a subset of reads
that map to L1HS may come from other closely related L1
families. For instance, the L1PA1 consensus sequence is very closely
related to L1HS (∼1 bp difference per 600 bp), making them vir-
tually indistinguishable during read alignment. Comparing the
consensus sequences of the L1PA1–L1PA7 families with L1HS, we
observed that TF-binding sites are clustered in relatively conserved
regions in the L1HS 5′ UTR promoter (SI Appendix, Fig. S8A),
suggesting evolutionary conservation in recruiting TFs to L1s.
MapRRCon analysis depends largely on L1HS annotations

made by RepeatMasker (www.repeatmasker.org/). To determine
whether these 1,620 L1HS sequences specifically belong to the
L1HS family, we performed phylogenetic analysis on the 332
RepeatMasker-annotated full-length L1HS sequences along with
consensus sequences identified by RepeatMasker as belonging to a
family within the range L1HS to L1PA7. The phylogenetic tree
showed that most of these elements cluster with the L1HS, L1PA1,
or L1PA2 5′ UTR promoter sequences; however, 41 elements
clustered with older L1 families (L1PA3–LAPA12) (SI Appendix,
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Fig. S8B). This indicates that MapRRCon is likely unable to de-
finitively distinguish whether TFs are bound to L1HS versus L1PA1/
L1PA2; however, many fewer “contaminating reads” belonging to
families more ancient than L1PA3 are included using our standard
parameter settings.
To study the evolutionary conservation of TF binding to L1s,

we applied MapRRCon to a subset of datasets from hESCs using
the L1PA2–L1PA7 consensus sequences. We observed a signif-
icant decrease in the number of bound TFs on L1PA4–L1PA7
compared with L1HS, L1PA2, and L1PA3, among which L1PA6
and L1PA7 are largely free of peaks in their 5′ UTR promoter
regions (SI Appendix, Fig. S9A and Dataset S3). Even among the
more closely related families, L1HS clearly stands out with the
highest peak values. Comparing the binding profiles, we found
that most L1HS peaks are also seen in L1PA2 but with decreased
signal. For instance, Myc binding is strongest at L1HS and dis-
appears as evolutionary distance increases (SI Appendix, Fig. S9B),
further confirming that most of the TFs found bind younger/active
L1 family members.
The motif database (50) exploited here used 427 ENCODE

ChIP-seq datasets to perform de novo motif discovery, based on
a subset of the ChIP-seq data analyzed here. Importantly, motif
discovery was restricted to uniquely mapped reads, while most of
our analyzed reads were not evaluated. It is possible that some
DNA motifs assigned to specific TFs were identified because the
considered TF colocalized with other proteins responsible for
direct DNA binding. In our case, we found that one Myc motif
(“discovery motif 10”) was very similar to known CTCF motifs
but was distinct from other Myc motifs. In our analysis, this motif
resides at the strongest Myc/CTCF peak summit. We therefore
conclude that Myc discovery motif 10 actually represents a
CTCF motif. This observation may partly explain the effect of
mutating individual Myc motifs (Fig. 4D) and supports the idea
that small sequence changes in the L1 5′ UTR promoter can
alter the binding of multiple factors, as we probably also mutated
CTCF-binding sites in addition to Myc-binding sites.
One of the major concerns when quantifying L1 expression

from RNA-seq datasets is genomic DNA contamination, which
can produce a nontrivial background, as L1 insertions exist in
great abundance compared with single-copy genes. By applying
MapRRCon (extracting reads from the RepeatMasker-annotated
L1HS insertions first and then aligning to the consensus sequence)

to the RNA-seq analysis, we found that genomic contamination is
largely reduced, as seen by decreased 3′ coverage bias on the
L1HS consensus (SI Appendix, Fig. S4). Furthermore, because (i)
the hg38 reference is itself a consensus sequence and (ii) many
individual L1 insertions are still nonfixed due to their ongoing
retrotransposition activity, allowing four mismatches in each read
helps account for polymorphisms of L1HS insertions. However,
there are still obstacles that both MapRRCon and traditional
methods are unable to overcome, such as the inability to distin-
guish reads that arise from readthrough transcripts.
In summary, this resource provides a wealth of information on

TFs that bind to a highly repetitive human sequence, L1. In
terms of cell types in which such binding is observed, it is striking
that little binding is seen in normal tissues and primary differ-
entiated cells, as is consistent with the lack of evidence for
L1 mRNA expression. Conversely, ES cells, cancer cells, and
tumors show extensive evidence of both expression and binding
of multiple TFs. The fact that roughly one-third of all TFs seem
to bind the L1 sequence specifically, as judged by ChIP-seq
peaks, is exciting but mystifying. A subset of these likely repre-
sents some type of spurious binding. However, we present here
an initial analysis of some key factors, including the CEBP
proteins, p300 acetyltransferase, Myc, and CTCF, that strongly
supports the direct involvement of some or all of these factors in
the control of L1 expression. We anticipate that many new
findings on the relationship between host TFs and the control of
TE activity will be revealed by expanding these studies to other
TFs, host species, and transposable element types (Fig. 6). Finally,
the remarkable repertoire of TFs that bind these elements in
cancer cells raises an interesting question: Could the binding of
large quantities of TFs by open TE chromatin, made accessible by
global changes in DNA and histone modifications, shape tumor-
igenic transcriptional states?

Methods
MapRRCon Pipeline. The MapRRCon analysis pipeline comprises six major steps:
(i) optional: preparation of the sequencing reads; (ii) sequence alignment to
the reference genome; (iii) read extraction based on annotated L1 genomic
locations; (iv) sequence alignment to the L1Hs consensus sequence; (v) two-
step normalization and quality control; and (vi) peak calling. To process
ENCODE ChIP-seq datasets, we downloaded ENCODE ChIP-seq data from the
ENCODE website (https://www.encodeproject.org) using the following search
filters: Assay = ChIP-seq; Project = ENCODE; Organism = Homo sapiens;

MapRRCon analysis
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Fig. 6. A TF landscape provides information on L1
regulation. The structure of L1 is shown in boxes con-
taining the 5′ UTR (red), ORF1 and ORF2 (orange), and
the 3′ UTR (blue). L1 expression is often suppressed in
somatic cells and tissues by DNA methylation or other
cellular factors. Upon tumorigenesis or induction of
pluripotency, L1 sometimes becomes expressed due to
the change in the genetic environment. This reac-
tivation of L1 depends on multiple TFs and chromatin
remodelers and is cell-type specific. The L1 activity will
further influence gene expression, chromatin structure,
and genome instability. me, DNA methylation; TSD,
target site duplication.
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Available data = fastq/bam. For any experiment, if unfiltered BAM files
(aligned reads) were available, we used them directly in step 3; otherwise,
we used FASTQ files (raw reads) and started from step 1. We matched
ChIP and Input datasets based on experiment accession numbers and
removed ChIP data that did not have associated Input data. After map-
ping the extracted reads to L1HS, we excluded datasets that had no
L1 reads and also removed locations that had coverages less than 10 for
each generated profile.

i) Low-quality base pairs and adaptor sequences of single-end or
paired-end reads are trimmed using Trimmomatic (77). This step is
optional in the pipeline, as quality controls are also performed in
steps 3 and 5.

ii) The processed reads are aligned to the hg38/GRCh38 (December 2013)
human reference genome assembly using BWA-MEM (78); the align-
ment options followed the ENCODE standard ChIP-seq analysis pipeline.

iii) Reads aligned to 1,620 RepeatMasker-annotated L1HS sites are extract-
ed using an in-house–developed Java script. Meanwhile, reads contain-
ing the following features are filtered out: (i) more than three
mismatches if the read length is shorter than 50 bp or more than four
mismatches if the read length is longer than 50 bp; (ii) reads that con-
tain insertions or deletions; and (iii) reads that contain soft clipping
(partial match). Importantly, this step is not limited to annotated L1HS
locations; it is also able to take any genomic intervals (in UCSC.bed file
format) and extract reads that belong to the input regions. In addition,
we also provide an option to specify the number of allowed mismatches
to fit more diverse purposes.

iv) Extracted reads are aligned to the L1 consensus sequence using BWA-
MEM with default parameter setting. The coverage distribution of the
aligned reads at each position of the L1 consensus sequence is gener-
ated using BEDTools (79) genomecov with option −d.

v) Two-step normalization is performed using an in-house–developed R
script. The read coverage at each position was first normalized by the
number of reads mappable to the reference genome (this number can
be obtained in the output file of step iii) and then is normalized against
the measured background (Input DNA). The median coverage of all base
positions on the L1 consensus sequence in the ChIP sample is calculated.
The same division is also performed for the Input sample, followed by
subtraction of the Input sample from the ChIP sample at each position.
We also excluded positions that have coverage less than 10 in the ChIP
or Input distribution.

vi) ChIP-seq peaks within the L1 consensus sequence are called using an in-
house–developed signal-processing algorithm (provided as a Python script),
and a true peak is defined as present in the normalized data. The signal
background was estimated by calculating the rmsd of the signal in a sliding
window (width = ±80 bp) across L1Hs, and the rmsd of the background
was estimated from the distribution of rmsds by finding the rmsd where
the distribution dips to 20% of its maximum (i.e., disregarding large rmsd
values that correspond to peaks for the background estimation). To find
peaks, the signal is smoothed using a smoothing filter (Hanning filter with
width = ±80 bp) and differentiated to find local maxima, i.e., where the
derivative of the smoothed signal is zero and the second derivative is
negative. The peaks are filtered using two thresholds on the original un-
smoothed signal: signal minus background intensity larger than 1 and an
rmsd ratio between signal and background larger than 1.3. The algorithm
is insensitive to the choice of width of smoothing filter and the width of
window for rmsd calculations within a range of 40–120 bp. Information
about the peaks, including peak location, height above background, width
(defined as where the signal drops to 25% of its maximum), and signal-to-
noise ratio, is extracted from the original signal ratio.

RNA-Seq Analysis. BAM files of 77 breast tumor and 127 ovarian tumor
samples were downloaded from the Genomic Data Commons Data Portal
(https://portal.gdc.cancer.gov/), which had been aligned to hg38 using a
TCGA-harmonized pipeline. Reads mapped to 1,620 RepeatMasker-annotated
L1HS regions were extracted from the BAM files. Reads containing the follow-
ing features were filtered out: secondary alignments, clipping alignments, indels,
or more than four mismatches. BAM files containing the L1 reads subset were
converted to FASTQ files using SAMtools (80). Converted FASTQ files were
subsequently aligned to the L1HS consensus sequence using STAR (56). We
used the same parameter settings for this realignment step as for the
TCGA-harmonized pipeline. Read counts of L1HS were then generated
using HTSeq-count. We calculated fragments per kilobase of transcript per
million mapped reads (FPKM) values and performed samplewise normali-
zation. For the cell line RNA-seq data, FASTQ files from ENCODE were first

aligned to hg38 with the TCGA-harmonized pipeline, and then the pro-
cedure described above was followed.

Motif Analysis. The Position Weight Matrix (PWM) of each TF was down-
loaded from Motif Browser (compbio.mit.edu/encode-motifs/) (50). The
motif similarity score was calculated by the following steps: (i) the weights
of each position in the target sequence were extracted from the PWM; (ii)
we summed up the extracted weights at each position and divided the value
by the maximum of summed weights. We considered sequences that have a
similarity score ≥0.9 as true DNA motifs in our analysis.

Cell Culture and Stable Cell Lines. The luciferase 293T-REx reporter cell line and
HEK293T andMCF-7 cells weremaintained in DMEM supplementedwith 10%
FBS and 4 mM L-glutamine. The luciferase 293T-REx reporter cell line stably
expresses the 5′ UTR of L1rp (L1 element in retinitis pigmentosa) flanked by
Renilla luciferase in the forward orientation and firefly luciferase in the
antisense orientation. The construction of the luciferase 293T-REx reporter
cell line was previously described in ref. 81, and the MCF-7 cell line was a
generous gift from Benjamin G. Neel at NYU Langone Health, New York. The
HEK293T cell line used was reported previously (82). The luciferase 293T-REx
reporter cell line was used in the siRNA experiments; HEK293T and MCF-7 cells
were used in the motif-mutant reporter assay.

Motif Mutant Constructs. We identified six putative Myc-binding regions in
the L1 5′ UTR promoter sequence according to their high similarity score (>0.9)
to Myc motifs. To disrupt the motifs, we shuffled each of the six sequences
together with its 5-bp flanking regions to maintain the same nucleotide
composition. Among the mutated sequences generated for each region, we
selected the one that had the lowest similarity score and proceeded with ex-
perimental validation. The wild-type reporter was generated by inserting a
DNA fragment containing the L1rp 5′ UTR promoter driving firefly luciferase in
the forward direction. The mutant L1 5′ UTR promoter sequences (plus 40-bp
homology arms) were synthesized using the BioXp 3200 System (SGI-DNA) and
ligated into the pcDNA5/FRT (Thermo Fisher Scientific) between the KpnI and
BstXI restriction sites using Gibson Assembly master mix (New England Biolabs).
The Renilla construct (transfection control) was generated by cloning the
Renilla sequence into the pCEP4 mammalian expression vector (Thermo Fisher
Scientific) under the CMV promoter at the HindIII site.

Luciferase Reporter Assay. HEK293T cells (0.075 million) and MCF-7 cells
(0.004 million) were plated in each well of a 96-well plate. The next day these
cells were cotransfectedwith the Renilla construct andwith each of the reporter
constructs using FuGENE HD transfection reagent (Promega) according to the
manufacturer’s recommendations. Replicates were done within the same plate.
Forty-eight hours after transfection, we lysed the cells and measured the lu-
ciferase activity with the Dual-Glo system (Promega). Firefly signal was first
normalized to the Renilla signal within a well and then to the wild-type well.

Knockdown Experiments. The luciferase 293T-REx reporter cell line was used
for the knockdown experiments. We plated 2,500 cells in each well of a 384-
well plate; at the same time, cells were transfected with siRNA control or
siRNA against specific proteins (Life Technologies). DharmaFECT transfection
reagent (0.1 μL per well) (Dharmacon) was used for siRNA transfection.
Forty-eight hours after knockdown, the firefly and Renilla luciferase activi-
ties were measured with the Dual-Glo system. This experiment was designed
in a format ideal for a whole-genome siRNA knockdown screen, and the
robust z-score of the values in each well was calculated.

Data Access. All ChIP-seq and cell line RNA-seq datasets are available on the
ENCODE website (https://www.encodeproject.org) (43). All the RNA-seq data-
sets of breast and ovarian tumors are available on the Genomic Data Com-
mons Data Portal (https://portal.gdc.cancer.gov/). The MapRRCon analyzed
results on L1HS and closely related elements are freely available to access and
visualize via a web tool (maprrcon.org). The lists of TF/histone mark peaks
were uploaded as Datasets S1–S3. In-house scripts related to MapRRCon
pipeline step 3, 5, 6 can be downloaded from the MapRRCon website.
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