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Infection by the Trypanosoma cruzi parasite causes Chagas disease and triggers multiple
immune mechanisms in the host to combat the pathogen. Chagas disease has a variable
clinical presentation and progression, producing in the chronic phase a fragile balance
between the host immune response and parasite replication that keeps patients in a
clinically silent asymptomatic stage for years. Since the parasite is intracellular and
replicates within cells, the cell-mediated response of the host adaptive immunity plays a
critical role. This function is mainly orchestrated by T lymphocytes, which recognize
parasite antigens and promote specific functions to control the infection. However, little is
known about the immunological markers associated with this asymptomatic stage of the
disease. In this large-scale analysis, the differential expression of 106 immune system-
related genes has been analyzed using high-throughput qPCR in T. cruzi antigen-
stimulated PBMC from chronic Chagas disease patients with indeterminate form (IND)
and healthy donors (HD) from endemic and non-endemic areas of Chagas disease. This
analysis revealed that there were no differences in the expression level of most genes
under study between healthy donors from endemic and non-endemic areas determined
by PCA and differential gene expression analysis. Instead, PCA revealed the existence of
different expression profiles between IND patients and HD (p < 0.0001), dependent on the
32 genes included in PC1. Differential gene expression analysis also revealed 23
upregulated genes (expression fold change > 2) and 11 downregulated genes
(expression fold change < 0.5) in IND patients versus HD. Enrichment analysis showed
that several upregulated genes in IND patients participate in relevant immunological
pathways such as antigen-dependent B cell activation, stress induction of HSP regulation,
NO2-dependent IL12 pathway in NK cells, and cytokine-inflammatory response. The
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antigen-specific differential gene expression profile detected in these patients and the
relevant immunological pathways that seem to be activated could represent potential
biomarkers of the asymptomatic form of Chagas disease, helpful to diagnosis and
infection control.
Keywords: chronic Chagas disease, Trypanosoma cruzi, transcriptional profiling, high-throughput RT-qPCR,
immunological pathway, biomarkers, indeterminate form
INTRODUCTION

Chagas disease, also known as American trypanosomiasis, is
caused by the protozoan parasite Trypanosoma cruzi and is
considered one of the most prevalent neglected tropical
diseases. It affects around 6–7 million people worldwide,
causing approximately 20,000 deaths annually (World Health
Organization, 2020). Although it is endemic in Latin America,
the migratory movements have changed the epidemiological
profile of this infection, representing a serious global health
problem today (Schmunis and Yadon, 2010; World Health
Organization, 2020).

The clinical course ofChagas disease is characterizedbyanacute
and a chronic phase of infection. The acute phase usually subsides
spontaneously after which, if left untreated, the patient will still be
chronically infected (Pérez-Molina and Molina, 2018). The reason
for this fact is that the parasite spreads from the blood to the tissue
that remains hidden, which makes them less accessible for the
immune response (Tarleton, 2001). In the chronic phase, most
patients are asymptomatic, without developing any clinical
symptoms or signs. This is possible due to the existence of a
fragile balance between parasite replication and host immune
response, which may cause patients to remain clinically silent for
a period of 10 to 25 years (Dos Santos Virgilio et al., 2014). This is
known as the indeterminate phase of Chagas disease, characterized
by seropositivity for T. cruzi and absence of cardiac or digestive
symptomswith normal electrocardiography and radiographyof the
chest, esophagus, and colon, all responsible for a good prognosis of
the disease in these patients (Pinto Dias, 1989; World Health
Organization, 2020). The imbalance between the immune system
response and parasite replication is crucial for the disease
progression. Thus, 30%–40% of chronic patients eventually
develop a symptomatic phase (Rassi et al., 2010). About 30% of
them show cardiac alterations, and up to 10% show digestive
megasyndromes and/or neurological disorders (Rassi et al., 2010).
Themost severe cases of cardiac alterations lead to chronic chagasic
cardiomyopathy, associated with high mortality rates in Chagas
disease patients (Morris et al., 1990; Rocha et al., 2003).

The diagnosis of Chagas disease is well defined. Specifically, in
the chronic phase, serological techniques such as indirect
immunofluorescence (IFA), indirect hemagglutination (HAI),
and enzyme-linked immunosorbent assay (ELISA) are applied
for the detection of antibodies against the parasite (Fife and
Muschel, 1959; Camargo, 1966; Camargo et al., 1971; Voller
et al., 1975). However, at present, the development of biomarkers
of pathology or disease progression remains a necessity, which
would represent a major achievement toward improving the
gy | www.frontiersin.org 2
clinical management of patients with Chagas disease (Balouz
et al., 2017).

The pathogenesis of chronic Chagas disease is currently
considered to be multifactorial. In the course of this phase, in
addition to other factors, such as the virulence of the T. cruzi
strain and tissue tropism, inflammation is the main determinant
of the disease progression (Machado et al., 2012; Dutra et al.,
2014; Poveda et al., 2014).

The host’s defense reaction against the parasite involves
mechanical effectors of the innate and adaptive immune
response (Tarleton, 2007), which is mainly characterized by
processes of cell proliferation, production of cytokines, and
induction of cell death mechanisms (De Meis et al., 2009).
During the evolution of Chagas disease, cellular responses are
crucial. Thus, it has been demonstrated that chronic patients
(both indeterminate and cardiac individuals) present in their
bloodstream high frequencies of activated T cells (Dutra et al.,
1994). While in the chronic cardiac form an inflammatory
environment predominates with the production of cytokines
such as TNFa, IFNg, and other cytotoxic molecules involving
CD8+ T cells, in the chronic indeterminate form, a regulatory
immune response, characterized by interleukin 10 and
interleukin 17 production, predominates (Pérez-Molina and
Molina, 2018). Nevertheless, elevated levels of TNFa and IFNg
have also been detected in IND patients compared to healthy
subjects (Ferreira et al., 2003; Requena-Méndez et al., 2013).
However, there is controversy and other authors have described
an opposite correlation between the expression of IFNg and
cardiac disease (Laucella et al., 2004). Besides, in asymptomatic
patients, T. cruzi antigen-specific co-production of TNFa, IFNg,
and IL2 cytokines by CD8+ T cells has been found in high
proportion which decreases as the disease progresses toward
cardiac forms (Mateus et al., 2015). On the other hand, it has
been shown that circulating activated T cells in asymptomatic
and symptomatic subjects express both inflammatory and anti-
inflammatory cytokines, which is consistent with active
immunoregulation in the chronic phase (Dutra et al., 1997;
Cunha-Neto et al., 2005).

Given that the loss of balance between the immune system
response and parasite replication existing in asymptomatic
patients is crucial for the disease progression, to know the
immune mechanisms that lead to the control of the
establishment of the infection and its progression is a priority.

The aim of this work was to elucidate the gene expression
patterns that are involved in chronic Chagas disease patients
with indeterminate form (IND) of the infection. For this
purpose, a high-throughput qPCR was used to analyze, at the
September 2021 | Volume 11 | Article 722984
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same time, the expression level of 106 immune system-related
genes in human peripheral blood mononuclear cell (PBMC)
samples from IND patients and compared to that from healthy
donors coming from non-endemic (HDc) and endemic areas
(HDe) of the disease. The results have provided a large collection
of differential gene expression data in IND patients versus
healthy donors. Comparative analyses of the differentially
expressed genes among IND, HDc, and HDe subjects have
allowed us to the identification in chronic indeterminate
patients of antigen-specific differential gene expression patterns
that involve a large set of immune-related genes which
participate in several relevant immunological pathways. Study
of the differential expression of these genes and the immune
routes in which they are involved will improve our knowledge in
the establishment of the T. cruzi infection and could also
represent new potential biomarkers of the asymptomatic stage
in Chagas disease patients.
MATERIAL AND METHODS

Ethical Considerations
The protocols used in this study were approved by the Ethics
Committees of the Consejo Superior de Investigaciones
Cientıfícas (Spain—Reference: 094/2016) and of the Hospital
Virgen de la Arrixaca (Murcia, Spain—Reference: MTR-05/
2016). The participation of all patients and healthy donors
included in this study was completely voluntary, and
furthermore, a signed informed consent form was obtained
from each of them before their inclusion.

Study Cohort
The adult chronic Chagas disease patients originally from
endemic areas and residents of Spain included in this study
were recruited, diagnosed, and clinically evaluated in the
Hospital Virgen de la Arrixaca from Murcia (Spain). These
patients, who had not received antiparasitic treatment, were
diagnosed out according to the WHO criteria based on two
conventional serological tests (Chagas ELISA, Ortho Clinical
Diagnostics, and Inmunofluor Chagas, Biocientıfíca, Argentina)
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
and characterized as indeterminate (IND) patients due to the
absence of cardiac (G0 following Kuschnir classification) or
digestive manifestations (Supplementary Table 1). In addition,
healthy donors from endemic (n = 14) and non-endemic areas
(n = 20) were included in this study. The data referring to the age,
sex distribution, and country of origin of each of the subjects
included in this study are detailed in Table 1.

In this study, a total of 39 samples from 71 IND patients and
30 samples from 34 healthy donors were included. Due to the
quantity of RNA required to carry out the cDNA synthesis for
high-throughput RT-qPCR and the limited number of cells
isolated from the blood sample of particular patients, in some
cases it was necessary to mix cells from some patients. The
collection of new blood samples was not possible in any case
since the patients with Chagas disease were treated immediately
after being diagnosed. Thus, into the cohort of IND patients, 15
samples corresponded to individual samples (38.5%), 16 to a
mixture of 2 patients (41%), and 8 to a mixture of 3 patients
(20.5%). In the case of healthy donors, 20 samples from subjects
from non-endemic areas were tested (all of them individual
samples) together to 10 samples of donors from endemic areas, 6
of which corresponded to individual samples (60%) and 4 to a
mixture of 2 subjects (40%).

Isolation of Peripheral Blood
Mononuclear Cells
Thirty milliliters of peripheral blood from subjects was
aseptically collected through venipuncture into EDTA-coated
tubes. Peripheral blood mononuclear cells (PBMCs) were
isolated 16–18 h after blood collection by density gradient
centrifugation using Lymphoprep™ (Axis Shield) following the
previously described protocol (Marañón et al., 2011). The
purified PBMCs were suspended in heat-inactivated fetal
bovine serum (iFBS) with 10% DMSO and cryopreserved in
liquid nitrogen until use.

Isolation of T. cruzi Soluble Antigens (TcSA)
T. cruzi (SOL strain) soluble antigens (TcSA), employed to
perform in vitro stimulation of PBMCs from patients and
healthy donors, were extracted as previously described
TABLE 1 | Epidemiological and demographic data of the study cohort.

Patient group Origin (%) Age (years) Sex [% female (F)/male (M)]

Mean (± SD) Range

Healthy donors From non-endemic area (n = 20) 100% Spain 37.6 (12.8) 22–56 60% F
40% M

From endemic area (n=14) 28.6% Colombia 37.5 (8.4) 21–54 64.3% F
14.3% Venezuela

7.1% Chile
7.1% Panama 35.7% M
7.1% Ecuador
35.7% ND

Indeterminate patients (n=71) 93% Bolivia 36.7 (9.6) 18–59 70.9% F
1.2% Salvador
1.2% Paraguay 29.1% M

4.7% ND
September 2021
ND, Not determined.
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(Eguiet al., 2017). Briefly, mycoplasma-free rhesus monkey
kidney epithelial cells (LLC-MK2 line; CCL-7, Manassas, VA,
USA) were cultured at a concentration of 4×104 cells/cm2 in T-
75-cm2 tissue culture flasks (Falcon) with RPMI-1640 medium
(Gibco, Life Technologies), supplemented with 2 mM L-
glutamine (Gibco), 10% iFBS, and 50 µg/ml gentamicin
(Thermo Fisher Scientific) at 37°C in a humidified atmosphere
containing 5% CO2. The semi-confluent monolayer of cultured
cells was infected with highly infective trypomastigote forms of
the T. cruzi SOL strain (MHOM/ES/2008/SOL; DTU V) isolated
from T. cruzi-infected mice, at a parasite:cell ratio of 4:1 for 12 h.
After 96–120 h of infection, collection of the trypomastigote and
amastigote forms present in the infected LLCMK-2 cell culture
supernatants began. The recovered trypomastigote and
amastigote forms were collected at 1,258 rcf and washed twice
with phosphate-buffered saline (PBS 1×), Subsequently, these
parasites were resuspended, at a ratio of 1:1 (trypomastigote:
amastigote) and a density of 1×106 parasites/ml in lysis buffer (50
mM Tris–HCl at pH 7.4, 0.05% Nonidet P-40, 50 mM NaCl, 1
mM phenylmethylsulfonyl fluoride (PMSF), 1 mg/ml leupeptin),
and sonicated three times with pulses of 50–62 kHz for 40 s with
time intervals of 20 s. Finally, the soluble total protein extracts
were obtained after centrifugation at 6,700 rcf for 20 min at 4°C.

The protein concentration of the extract was determined
using a micro bicinchoninic acid (BCA) protein assay kit
(Thermo Scientific, Waltham, MA, USA), and the protein
profile was analyzed by SDS-PAGE after Coomassie blue
staining. The antigenic and immunogenic capacities of TcSA
were tested by ELISA and in lymphoproliferation assays using
frozen splenocytes from T. cruzi chronically infected mice.

Thawing and Stimulation of Peripheral
Blood Mononuclear Cells
Cryopreserved PBMCs were thawed in a water bath at 37°C;
transferred to a 15-ml Falcon tube containing 10 ml of RPMI-
1640 with 2 mM L-glutamine, 10% iFBS, and 50 µg/ml of
gentamicin; and centrifuged at 453 rcf for 10 min. After
centrifugation, the PBMCs were again suspended in 2 ml of
supplemented RPMI-1640 medium and the cell number was
determined by manual counting using Trypan blue exclusion
assay. Subsequently, all PBMC samples were plated in 12-well
plates at concentrations of 7.5–8.5×106 cells/ml in a maximum
volume of 3.5 ml/well and cultured for 4 h in an incubator at 37°C
in 5% CO2 to allow equilibration of basal gene expression under in
vitro growth conditions. Finally, the PBMCs from IND and HD
were stimulated with TcSA (10 mg/ml) and cultured for 14–14.5 h at
37°C in 5% CO2.

RNA Isolation, Quantification, and
Quality Analysis
Total RNA isolation from stimulated PBMCs was performed
using the RNeasy Plus Mini Kit (Qiagen), eliminating the
genomic DNA and obtaining mRNA enrichment samples
following the manufacturer’s instructions. The extracted RNA
was quantified by spectrophotometry (NanoDrop 1000, Thermo
Fisher Scientific) and confirmed by fluorometry (Qubit,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
Invitrogen). The quality of the RNA was determined by
analyzing its integrity by microfluidic chip electrophoresis
(2100 Bioanalyzer, Agilent Technologies). All samples showed
to have an RIN (RNA integrity number) between 8 and 10. The
samples were stored at -80°C until use.

Reverse Transcription and High-
Throughput Real-Time Quantitative PCR
Two micrograms of total RNA of each patient sample was used
for cDNA synthesis by reverse transcription using the High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems)
following the manufacturer’s instructions. The resulting cDNA
samples were stored at -20°C until use. High-throughput RT-
qPCR was performed using QuantStudio™ 12K Flex Real-Time
PCR System (Thermo Fisher Scientific) according to the
manufacturer’s protocol, as indicated in Hernandez-Santana
et al. (2016). Custom TaqMan OpenArray Real-Time PCR
Plates included 112 Gene Expression Assays organized in 48
sub-arrays. All primers and probes were commercially available
by Thermo Fisher Scientific. The complete list of genes and the
corresponding probes mapping in each gene are shown in
Supplementary Table 2. All reactions were performed in
triplicate. Cq values produced by this platform are already
corrected for the efficiency of the amplification (Hernandez-
Santana et al., 2016).

Data Analysis and Statistics
The arithmetic average quantitative cycle (Cq) was used for data
analysis. The Cq values for each qPCR run were exported from
QuantStudio™ 12K Flex Real-Time PCR System, as Excel files,
and imported into GenEx software (v.6, MultiD). The expression
stability of the candidate reference genes (RGs) was evaluated
using RefFinder (Xie et al., 2012) (heartcure.com.au), which
integrates the algorithms GeNorm (Vandesompele et al., 2002),
NormFinder (Andersen et al., 2004), and BestKeeper (Pfaffl et al.,
2004), as well as the comparative DCt method (Silver et al., 2006).
Three genes showed the most stable expression (STAT3, IL10RA,
and IFNAR) (all with GeNorm M-value < 0.5) and were used for
normalization to obtain normalized relative quantities (NRQ).

The GraphPad Prism statistical package version 8 (GraphPad
Software Inc., San Diego, CA, USA) and SPSS software (SPSS
Inc., Chicago, IL, USA) were used to perform statistical analyses.
Kolmogorov–Smirnov and Shapiro–Wilk tests (a=0.05) were
used to check data normality, and statistical significance was
determined by a two-tailed Mann–Whitney test or a two-tailed
unpaired t-test, as appropriate, considering p < 0.05 as
statistically significant.

Differentially expressed genes between healthy donors from
endemic (HDe) and non-endemic areas (HDc) of Chagas
disease, as well as between chronic Chagas disease patients
with indeterminate form (IND) and healthy donors (HD),
were identified using two parameters: the fold change of gene
expression (FC) and the statistical significance (p-value). FC was
calculated as the ratio between biological groups (HDc and HDe,
IND and HD, or individual samples from IND patients and HD)
and expressed as log2. To display changes, volcano plots were
September 2021 | Volume 11 | Article 722984
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made by plotting the –log10 p-value (determined by a two-tailed
unpaired t-test) on the y-axis, and log2 of FC on the x-axis.
Genes passing both biological significance threshold (log2 of
FC > 1 or < −1, corresponding to FC > 2 or < 0.5) and statistical
significance threshold (–log10 p > 1.3, corresponding to p = 0.05
and (–log10 p > 3, corresponding to p = 0.001) were marked in
red and blue, attending to their upregulation and downregulation,
respectively. Those genes were considered biologically relevant and
used for further biological interpretation. An interaction network
between differentially expressed genes in IND versus HD was
generated using the Retrieval of Interacting Genes Database
(STRING) v.11 (Szklarczyk et al., 2019) available at https://string-
db.org/. Active interactions sources, including experiments,
databases, co-occurrence, gene fusion, neighborhood, and co-
expression as well as species limited to “Homo sapiens,” and an
interaction score > 0.9 were applied to construct PPI networks.

Principal component analysis (PCA) was applied for
multivariate analysis on NRQ values to determine the structure
of the dataset. Differences in scores of plotted principal
components between the groups were confirmed by a two-
tailed Mann–Whitney test or a two-tailed unpaired t-test,
depending on data that had not or had a normal distribution,
respectively, using SPSS 25 (SPSS Inc., Chicago, IL, USA).

Enrichment Analysis
To further investigate on the potential biological processes and
pathways involved in chronic Chagas disease indeterminate form
(IND), gene set enrichment analysis was performed using the
GSEA 4.1.0 computational method (Mootha et al., 2003;
Subramanian et al., 2005). Canonical pathway gene sets
derived from the BioCarta pathway database included in C2:
curated gene sets collection in Molecular Signatures Database
(MSigDB) were used for the analysis (Subramanian et al., 2005;
Liberzon et al., 2011) [parameters set for GSEA were as follows:
permutations = 100,000, permutation type: phenotype (sample
n > 7), enrichment statistic: weighted, metric for ranking genes: t-
test, max size: 500, min size: 3].
RESULTS

To improve the knowledge of the specific immune response
generated during infection in Chagas disease patients, the gene
expression pattern of particular genes involved in the immune
response elicited after T. cruzi infection has been analyzed in these
patients. Thus, expressions of 106 immune system-related genes in
response to T. cruzi proteins have been determined in human
PBMCs fromChagas disease patients at the indeterminate phase of
the disease (n = 39) together to those from healthy donors from
endemic (n=10) andnon-endemic (n=20) areas ofChagas disease.
Total RNA isolated from T. cruzi soluble antigen-stimulated
PBMCs from IND and HD subjects was used for cDNA synthesis
followed by high-throughput RT-qPCR of triplicates, to obtain an
arithmetic average quantitative cycle (Cq) useful for comparative
analyses between patients and healthy donors. The expression
stability of all the included genes was also evaluated. Since the
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
STAT3, IL10RA, and IFNAR genes showed the most stable
expression values (with GeNorm M-values < 0.5), they were used
as reference genes (RGs) for normalization of the data set to obtain
normalized relative quantities (NRQ).

Comparative Analysis of the Gene
Expression Profile Between
Healthy Subjects
To determine whether there were differences in gene expression
level among the healthy donors (HD) related to their origin, the
NRQ values obtained for the 106 analyzed genes in subjects from
endemic (HDe) and non-endemic areas (HDc) of Chagas disease
were analyzed and compared employing GenEx software. As
observed in the heatmap plot shown in Supplementary Figure 1,
no differences were observed in the gene expression values
between subjects from endemic and non-endemic countries
since the different clusters generated by the software included
HDe and HDc subjects indistinctly.

The NRQ values from 106 genes of HDe and HDc subjects
were also employed to determine the structure of the dataset by
principal component analysis (PCA). The obtained results
plotted in Figure 1A indicated that principal component 1
(PC1) and principal component 2 (PC2) accounted for 22%
and 13.7% of the variance among the individuals, respectively. As
observed, HDe and HDc did not exhibit differences on gene
expression values of the genes under study (Figure 1A) as they
presented a very similar distribution and were not separated by
the principal components. These results were confirmed by a
two-tailed Mann–Whitney test or a two-tailed unpaired t-test, as
appropriate, showing that there were no statistically significant
differences between the scores obtained in the two groups for
each component (PC1 p = 0.65, PC2 p = 0.23).

A third differential gene expression analysis based on the fold
change of gene expression (FC) and its statistical significance was
further carried out to elucidate whether there were any
differences in the gene expression level of particular genes
between the healthy donors coming from endemic areas and
those from non-endemic regions. The obtained results,
represented in a volcano plot (Figure 1B) to illustrate both
significance and magnitude of the changes, showed that 5 out of
the 106 studied genes were differentially expressed in the HDe
versus HDc group (log2 fold change (FC) > 1 or < -1) with
statistical significance (p < 0.05). Two genes (FCER1A and
IL12B) were found to be upregulated in HDc when compared
with the HDe subjects (log2 FC > 1, corresponding with a greater
than two-fold change). On the contrary, three genes (CD27, IL6,
and IL17A) were downregulated in HDc versus HDe subjects
(log2 FC < -1, corresponding with a less than half fold change).

Altogether, these results indicate that there were no
significant differences in the expression level of 95.3% of the
genes under study between healthy donors coming from
endemic areas and those living in non-endemic regions,
suggesting that they could be considered as a single group of
healthy donors (HD). Despite that, the five genes differentially
expressed in HDc and HDe were also analyzed considering HDe
and HDc as independent groups of subjects.
September 2021 | Volume 11 | Article 722984
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Identification of Genes Differentially
Expressed in IND and Healthy Subjects
Next, we compared the expression levels of the 106 genes in IND
and HD patients. As a first approach, gene set enrichment analysis
(GSEA) was performed using the GSEA 4.1.0 computational
method (Mootha et al., 2003; Subramanian et al., 2005) using the
NRQ of genes from IND andHD. Figure 2 shows a heat map from
the top 100 genes in IND and HD groups and it reveals a clear
difference in the pattern of gene expression between the groups.
Thus, more than half of the genes (at least 49 of the genes) were
overexpressed in most IND patients (Figure 2). Furthermore, the
expression level of 11 genes was significantly reduced in the
majority of IND patients and other 11 genes showed to be
downregulated in many IND patients (Figure 2). Specifically, the
expression levels of the IL18, CD86, and FCER1A genes were
extremely decreased in practically all IND patients compared to
healthy people. The expression of theCLEC9A andCCR5 geneswas
not detected in almost any individual included in the study.

To determine the structure of the data set and examine the
variation between the IND and HD subjects, the principal
component analysis (PCA) was then performed following the
multivariate analysis of the NRQ values. As shown in Figure 3A,
principal component 1 (PC1) and principal component 2 (PC2)
accumulate the largest percentage of the total variance reaching
25.3% and 13.3%, respectively. In addition, principal component
3 (PC3) explains 7.8% of variance, plotted with PC1 in
Figure 3B. These results together with the 3D graphical
representation shown in Figure 3C indicate that the level of
expression of the genes under study are clearly different between
IND and HD subjects which are located on separate groups,
mainly based on PC1. The observed differences in PC1 scores
between both groups of individuals were confirmed by a two-
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
tailed unpaired t-test which highlighted the existence of a
statistically significant different expression profile in IND
versus HD (p < 0.0001). In turn, a two-tail unpaired t-test was
applied to the scores obtained for PC2 and PC3, confirming that
principal components 2 and 3 did not importantly participate in
the differences observed between the two groups of subjects (PC2
p = 0.134, PC3 p = 0.061).

As shown in Table 2, PC1 depends on the expression of 32
genes with the highest factor loadings. Specifically, 23 genes
showed a positive correlation with PC1: FAS, IL12RB1, BTLA,
TBX21, BCL2, CD40LG, IL2RG, IL12A, CD2, IL12RB2, CD69,
CASP3, IL7, STAT1, CSF1, ICOS, CD28, CD40, TNF, IL18R1,
GATA3, IFNG, and CD83), whereas nine genes showed a
negative correlation with PC1: ITGB2, CCR1, IL18, HAVCR2,
CD86, IFNGR1, IL17RA, IFNGR2, and ITGAX.

In spite of the levels of expression of the genes under study being
clearly different between the IND and HD groups of subjects, the no
influence of pooling samples of some INDpatients was analyzed. For
this purpose, PCAanalyseswere also carried out considering samples
from IND patients which came from independent subjects from
those which had beenmixed as two independent groups. The results,
shown in Supplementary Figure 2A, revealed that all IND samples
maintained the same distribution independently if they came from
individual patients (38.5% of the samples) if they had been mixed.
The existence of no differences in the gene expression level between
the IND patients was also supported by statistical analysis applied to
the scores obtained in the two groups for each principal component
(Supplementary Figure 2). As expected, when these data were
compared to those from HD (Supplementary Figure 2B), the level
of expression of the genes under study showed to be clearly different
between INDandHD, as it was previously observed inFigure 3. The
differential geneexpression level in IND versusHDof thegenesunder
A B

FIGURE 1 | Comparative analysis of gene expression of 106 genes in healthy donors from non-endemic (HDc, n = 20) and endemic (HDe, n = 10) areas of Chagas
disease. (A) Principal component analysis (PCA) of NRQ (normalized relative quantities) values of gene expression of 106 analyzed genes in HDc (blue circles) and
HDe (red triangles). Principal components 1 (PC1) and 2 (PC2) are plotted on the x and y axes, respectively, and the proportion of variance captured for both
components is given as a percentage. (B) Volcano plot of the differential expression level of the 106 analyzed genes between samples of HDc and HDe subjects.
The x-axis represents log2 of the expression fold change between HDc and HDe (Log2 FC), where FC is calculated as the ratio between two groups (HDc/HDe). The
y-axis corresponds to the statistical significance, expressed as the negative logarithm of the p-value (-Log10 p-value). The purple horizontal lines indicate the cutoffs
for the statistical significance values p = 0.05 and p = 0.001. The black vertical lines represent the log2 of FC of −1 and 1 (corresponding to FC of 0.5 and 2,
respectively) which were used as biological thresholds to identify differentially expressed genes. The negative values correspond to downregulated genes (blue dots)
and the positive values to the upregulated genes (red dots). Black dots comprising between the established thresholds represent non-differentially expressed genes
between HDc and HDe.
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Gómez et al. Immune Response of cChD Patients
studywas quantified using the fold change of gene expression (FC) as
described in Material and Methods and FC data and statistical
significance represented in a volcano plot. The comparative
analysis shown in Figure 4 indicated that 34 out of 106 genes
under study were differentially expressed in IND and HD subjects
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 7
with statistical significance (-log10 p-value > 1.3, equivalent to p-value
< 0.05). Twenty-three of these genes (BCL2, BTLA, CD27, CD274,
CD40, CD40LG, CSF1, CSF2, FAS, IDO1, IFNG, IL12A, IL12B,
IL12RB2, IL2, IL27, IL5, IL5RA, IL6, IL7, STAT1, TBX21, and TNF)
were significantly upregulated in IND versusHD subjects, exhibiting
FIGURE 2 | Heat map of the top 100 genes determined by GSEA analysis in IND and HD subjects. The values of the gene expression level of each gene are
represented as colors, ranging from dark red to dark blue, based on the highest and lowest normalized relative quantities (NRQ) values of each gene, respectively.
The genes represented in vertical order from the top to the bottom are FAS, BTLA, CASP3, CD40LG, CD28, IL12A, CD69, ICOS, IL7, BCL2, TBX21, IL2RG,
IL12RB1, CD40, IL12RB2, CSF1, STAT1, IFNG, CD274, CSF2, TNF, CD2, IL23A, CD83, IL6, IL2RA, GATA3, CD80, IL18R1, TNFSF10, CD3E, B3GAT1, PDCD1,
CTLA4, FCER2, ITGAL, IL1B, ICOSLG, ITGA4, GZMB, IDO1, IL27, GZMH, LAG3, CD27, IL5RA, IL2, IL5, IL12B, STAT3, IFNGR2, HAVCR2, ITGAX, CCR1, IFNGR1,
IL18, CD86, ITGB2, IL17RA, TGFBR1, FCER1A, ICAM1, TNFRSF1A, IL6R, TGFBR2, CLEC9A, TNFRSF14, MKI67, GZMM, GZMA, GZMK, IL10RA, SELL, IL4R,
CD8A, CD4, IL7R, IL10RB, CD160, FNAR1, CD48, XCR1, NOS2, FOXP3, KLRG1, CXCR3, CD58, PDCD1LG2, NCAM1, FASLG, TGFB1, IL17A, LGALS9, IL23R,
IL10, CR2, PRF1, TGFB2, CCL5, and CCR5.
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an expression greater than a two-fold change (log2 FC > 1, red dots).
These differences were statistically significant for all genes, with p <
0.001 for 22 out of 23 genes and p < 0.05 for the IL12B gene. On the
contrary, 11 genes (CCR1, CD86, CLEC9A, FCER1A, HAVCR2,
IFNGR1, IFNGR2, IL18, ITGAX, ITGB2, XCR1) showed to be
significantly downregulated in IND patients when compared to
HD [log2 FC < -1, corresponding with less than a half-fold change
(blue dots)] with statistical significance in all cases (p < 0.05 for
CLEC9A andXCR1genes andp<0.001 for theotherninegenes listed
in Figure 4).

Quantification of the differences observed in the gene expression
of the 34 differentially expressed genes in IND versusHDwas further
analyzed considering the log2 of fold change values. As shown in the
bar plot representation shown in Supplementary Figure 3, 34 genes
were upregulated at least twice (red bar) or downregulated by half
(blue bar) in IND versus HD. The CD27, CSF2, IFNG, IL5, and IL6
genes showed the highest differential expression levels as they were
overexpressedmore than four times (FC> 4) in IND versusHD(log2
FC values > 2). In addition, the FAS and IL12A genes showed to be at
least three times (FC > 3) upregulated in IND than in HD (log2 FC
values > 1.5). On the other hand, the expression levels of the CCR1,
ITGAX, and ITGB2 genes were approximately one-third lower (log2
FC values < -1.5, corresponding to FC < 0.35, which means -1/FC =
-2.86) in IND compared to HD and the expressions of the CD86,
CLEC9A, FCER1A, and IL18 genes were one-fourth decreased (log2
FC < -2, assuming an FC lower than 0.25) in IND patients when
compared to the healthy subjects (Supplementary Figure 3).
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8
Analysis of the Differentially Expressed
Genes Among Healthy Subjects Coming
From Endemic and Parasite-Free Areas of
Chagas Disease
Since statistically significant differences in the expression level of
five genes (FCER1A, IL12B, IL6, IL17A, and CD27) were detected
between HDc and HDe subjects, we were interested in analyzing
in detail how the expression level of these genes in IND patients
was and in determining if there was any relationship with that
observed in healthy subjects. Thus, comparative analyses of the
gene expression levels were carried out for each particular gene
among IND, HDc, and HDe subjects. As observed in Figure 5,
the results showed statistically significant differences in the
expression level of these genes among the groups of subjects.
Thus, the high expression level of the FCER1A gene detected in
the HDc subjects (mean NRQ = 13.3) was reduced in the HDe
group (NRQ= 4.5) with p < 0.01 and particularly diminished in
IND patients (NRQ = 0.5) with p < 0.0001 when compared to
any of the HDc and HDe subjects. The expression of IL12B was
upregulated in HDc (NRQ = 0.8) versus HDe (NRQ = 0.1) with
p < 0.05 and overexpressed in IND (NRQ = 1.2) with statistical
significance when compared to HDe healthy individuals (p <
0.0001). Important statistically significant differences (p <
0.0001) were also seen in the expression level of the IL6 gene
which was overexpressed in IND patients (NRQ = 1.3) when
compared to HDc (NRQ = 0.1) and HDe (NRQ = 0.3).
Differences in the expression level of the IL17A gene between
A

B

C

FIGURE 3 | Principal component analysis (PCA) applied on NRQ values of 106 analyzed genes from IND patients (IND, dark rhombus) and healthy donors (HD, blue
circles). (A) PCA score plot of principal components 1 (PC1) and 2 (PC2) on the x and y axes, respectively. (B) PCA score plot of principal components 1 (PC1) and
3 (PC3) on the x and y axes, respectively. (C) 3D graphic representing the three principal components 1, 2, and 3 (PC1, PC2, and PC3). The proportion of variance
captured for principal components is given as a percentage and indicated on the axis next to the corresponding principal component.
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IND (NRQ = 0.5) and HDc (NRQ = 0.4) or between IND and
HDe (NRQ = 1.1) had no statistical significance. Since no
expression of the CD27 gene was detected in HDc, the CD27
level of expression in HDe (NRQ = 0.3) and particularly its
overexpression in IND patients (NRQ = 0.7) led to the difference
in the level of expression in IND with respect to the HDc that had
statistical significance (p < 0.001) (Figure 5). Altogether, these
results suggest that only differences in the gene expression level
of the FCER1A and IL6 genes were detected in IND versus both
HDc and HDe.

Searching for the Immunological
Pathways Implicated in the Establishment
of T. cruzi Infection in Chagas
Disease Patients
To search for immunological routes implicated in the T. cruzi
chronic infection in Chagas disease patients, the known
interactions that take place between the protein-coding genes
that showed to be upregulated and downregulated in IND
patients when compared to healthy donors were subsequently
analyzed. The genes fulfilling both statistical and biological
significance thresholds (p-value < 0.05 and log2 FC > 1 or > -1,
respectively) were considered biologically relevant and were used
for further biological interpretation. Consequently, a protein–
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 9
protein interaction (PPI) network was constructed using the
STRING platform, requiring the highest confidence in the
predicted interactions. The obtained results, plotted in
Supplementary Figure 4, showed that 34 proteins encoded by
the set of differentially expressed genes in IND versus HD
subjects had a high degree of interaction reaching up to 29
interactions (edges) (from the three expected edges), with a PPI
enrichment p-value < 1.0e-16. Moreover, some of these proteins
were grouped according to the most relevant biological pathways
in which they are involved based on the pathways belonging to
the KEGG and Reactome databases. As summarized in Table 3,
the results of STRING showed that 6 of these proteins participate
in Interleukin-2 family signaling (HSA-451927) with a false
discovery rate (FDR) of 5.37e-09; 10 proteins in Th1 and Th2
cell differentiation (HSA-04658, FDR 1.3e-14); 6 proteins in
Interleukin-12 family signaling (HSA-447115, FDR 2.2e-08); 14
proteins in Jak-STAT signaling pathway (HSA-04630, FDR
4.77e-19); 7 proteins in Th17 cell differentiation (HSA-04659,
FDR 3.02e-09); and 7 proteins in natural killer cell-mediated
cytotoxicity (HSA-04650, FDR 9.75e-09).

A graphical representation, shown in Figure 6, including the
aforementioned pathways was obtained in STRING as
subnetworks for subsequently highlighting the upregulated and
downregulated protein-coding genes in IND patients. As shown
in Figure 6A, the CSF2, HAVCR2, IL2, IL5, IL5RA, and STAT1
proteins were involved in the IL2 family signaling (Figure 6A,
brown nodes); IFNG, IL12A, IL12B, IL12RB2, IL27, and STAT1
in the IL12 family signaling pathway (Figure 6A, green nodes);
IFNG, IFNGR1, IFNGR2, IL12A, IL12B, IL12RB2, IL2, IL5,
STAT1, and TBX21 in the Th1 and Th2 cell differentiation
route (Figure 6B, blue nodes); BCL2, CSF2, IFNG, IFNGR1,
IFNGR2, IL12A, IL12B, IL12RB2, IL2, IL5, IL5RA, IL6, IL7, and
STAT1 proteins in the Jak-STAT signaling pathway network
(Figure 6B, red nodes); IFNG, IFNGR1, IFNGR2, IL2, IL6,
STAT1, and TBX21 in the Th17 cell differentiation pathway
(Figure 6B, yellow nodes); and CSF2, FAS, IFNG, IFNGR1,
IFNGR2, ITGB2 and TNF proteins included in natural killer cell-
mediated cytotoxicity (Figure 6B, purple nodes). In all cases, the
genes encoding the referred proteins were overexpressed in the
IND versus HD subjects, with exception of the ITGB2, HAVCR2,
IFNGR1, and IFNGR2 genes which were downregulated.

Gene Set Enrichment Analysis
To dissect the immunological pathways associated with the
differentially expressed genes in IND versus HD, a gene set
enrichment analysis (GSEA) was employed using the NRQ
values and the Molecular Signatures Database (MSigDB)
BioCarta gene set collection (Subramanian et al., 2005;
Liberzon et al., 2011). Enrichment plots were obtained from
selected pathways to illustrate the positive or negative correlation
between the specific gene set upregulated or downregulated in
IND and HD for each pathway. As shown in Figure 7, GSEA
showed a positive correlation in the IND phenotype for several
immunological pathways since many genes involved in these
routes were overexpressed in IND patients versus HD. Thus, the
differentially enriched routes in IND showed to be the antigen-
dependent B cell act ivation (BIOCARTA_ASBCELL
TABLE 2 | Genes with factor loading of principal component 1 (PC1) higher than
0.6 or lower than -0.6 obtained in the principal component analysis (PCA)
including IND and HD subjects.

Gene Factor Loading for PC1

FAS 0.887
IL12RB1 0.812
BTLA 0.808
TBX21 0.808
BCL2 0.793
CD40LG 0.789
IL2RG 0.78
IL12A 0.776
CD2 0.771
IL12RB2 0.755
CD69 0.747
CASP3 0.74
IL7 0.736
STAT1 0.734
CSF1 0.732
ICOS 0.728
CD28 0.715
CD40 0.705
TNF 0.69
IL18R1 0.642
GATA3 0.619
IFNG 0.609
CD83 0.608
ITGB2 -0.64
CCR1 -0.643
IL18 -0.691
HAVCR2 -0.697
CD86 -0.698
IFNGR1 -0.736
IL17RA -0.741
IFNGR2 -0.759
ITGAX -0.763
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FIGURE 4 | (Comparative) analysis of the differential gene expression level of the 106 analyzed genes in chronic Chagas disease patients with the indeterminate
form of the disease (IND) (n = 39) and healthy donors (HD) (n = 30). The x-axis represents log2 of the expression fold change between IND and HD (Log2 FC), where
FC is calculated as the ratio between two groups (IND/HD). The y-axis corresponds to the statistical significance, expressed as the negative logarithm of the p-value
(-Log10 p-value). The purple horizontal lines indicate the cutoffs for the statistical significance (corresponding to p = 0.05 and p = 0.001). The black vertical lines
represent the log2 FC of −1 and 1 (corresponding to FC of 0.5 and 2, respectively) used as biological thresholds established to identify differentially expressed genes.
The negative values correspond to downregulated genes (blue dots) and the positive values to the upregulated genes (red dots) in IND patients compared to HD.
Black dots represent non-differentially expressed genes.
FIGURE 5 | Comparative analysis of the expression levels of FCER1A, IL12B, IL6, IL17A, and CD27 genes measured as mean normalized relative quantities (NRQ)
in patients with chronic Chagas disease with indeterminate form of the disease (IND) and healthy donors from endemic (HDe) and non-endemic (HDc) areas of
Chagas disease. Statistically significant differences determined by the two-tailed Mann–Whitney test or two-tailed unpaired t-test, as appropriate, are indicated (*p <
0.05, **p < 0.01, ***p < 0.001, and ****p < 0.0001).
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_PATHWAY, Figure 7A), stress induction of HSP regulation
(BIOCARTA_HSP27_PATHWAY, Figure 7B), NO2-dependent
IL12 pathway in NK cells (BIOCARTA_NO2IL12_PATHWAY,
Figure 7C), and cytokine and inflammatory response
(BIOCARTA_INFLAM_PATHWAY, Figure 7D) gene sets,
with normalized enrichment scores (NES) of 1.53, 1.58, 1.36,
and 1.23 plus FDR q-values of 0.21, 0.22, 0.34, and
0.63, respectively.

The number of genes that showed to be upregulated in IND
patients was next analyzed, taking into account the proportion of
upregulated genes from the total number of genes in the GSEA
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
pathways. To extend the analysis, it was also taken into
consideration the identity of the overexpressed genes that
showed to have a log2 FC higher than 1 and those which
participated in principal component 1. As it is observed,
Table 4 integrates the results obtained in GSEA and in PCA
and the genes differentially expressed in IND patients versus HD
for each one of the four BioCarta pathways (with factor loading
of PC1 > 0.6 or log2 FC > 1). Specifically, 10 out of 15 genes
included in the “Antigen dependent B cell activation” BioCarta
pathway were analyzed in this study. Five of them (CD28, CD40,
CD40LG, FAS, and IL2) were upregulated in the IND phenotype
A

B

FIGURE 6 | STRING protein–protein interaction (PPI) subnetworks. Representation of the proteins encoded by differentially expressed genes in IND and HD, which
are described to be involved in specific pathways. PPI networks were constructed setting the confidence score threshold at the highest level (0.9) and active
interaction sources, including data from published experiments, databases, co-occurrence, gene fusion, neighborhood, and co-expression, species limited to “Homo
sapiens.” The colored nodes correspond to proteins involved in each biological pathway: (A) interleukin-2 family signaling (HSA-451927) (brown) and interleukin-12
family signaling (HSA-447115) (green) from the Reactome Pathways Database and (B) Th1 and Th2 cell differentiation (HSA-04658) (blue), Jak-STAT signaling
pathway (HSA-04630) (red), Th17 cell differentiation (HSA-04659) (yellow), and natural killer cell-mediated cytotoxicity (HSA-04650) (purple) from the KEGG Pathways
Database. The arrows indicate whether the genes encoding these proteins were found to be upregulated (red) or downregulated (blue) in the IND versus HD group.
TABLE 3 | Main biological pathways involved in the STRING protein network of differential expressed genes (DEG) between IND and HD subjects.

Database Pathway Description Number of DEG FDR

Reactome pathways HSA-451927 Interleukin-2 family signaling 6 5.37e-09

KEGG pathways HSA-04658 Th1 and Th2 cell differentiation 10 1.3e-14

Reactome pathways HSA-447115 Interleukin-12 family signaling 6 2.2e-08

KEGG pathways HSA-04630 Jak-STAT signaling pathway 14 4.77e-19

KEGG pathways HSA-04659 Th17 cell differentiation 7 3.02e-09

KEGG pathways HSA-04650 Natural killer cell-mediated cytotoxicity 7 9.75e-09
Sep
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when compared to HD. From a total of 14 genes that are
integrated in the “Stress induction of HSP regulation” BioCarta
pathway, we found that four genes (FAS, CASP3, BCL2, and
TNF) out of five included in the array were overexpressed in IND
versus HD. Regarding the “Cytokines and inflammatory
response” BioCarta pathway, an increased expression of 8 (IL2,
TNF, CSF1, CSF2, IFNG, IL5, IL6, and IL7) out of the 14 genes
included in the array from a total 29 genes that are integrated in
this route was also detected. In addition, four genes (IFNG, CD2,
IL12RB1, and IL12RB2) out of nine genes analyzed in the array
from the 15 genes included in the “N02-dependent IL-12
pathway in NK cells” pathway were found to be upregulated in
IND patients versus HD subjects. Of the total of 17 genes that
were overexpressed in IND versus HD in one or more than one
selected pathways, four of them (CSF2, IL2, IL5, and IL6) reached
a log2 of FC > 1 and p < 0.05; in the IND versusHD subjects, four
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
genes (CASP3, CD2, CD28 and IL12RB1) had factor loading with
PC1 > 0.6 (the principal component responsible for the
differences between both groups), and nine genes (BCL2,
CD40, CD40LG, CSF1, FAS, IFNG, IL12RB2, IL7, and TNF)
fulfilled the criteria for both tests. As expected, the
overexpression of these 17 genes in IND versus HD was also
stated when the same analysis was carried out considering only
the samples from IND which came from independent subjects
(Supplementary Table 3).
DISCUSSION

Infection by the T. cruzi parasite triggers multiple immune
mechanisms in the host to combat the pathogen which can be
sustained for decades maintaining the subject in an
A B

DC

FIGURE 7 | Gene set enrichment analysis (GSEA) plots of representative gene sets from (A) antigen-dependent B cell activation pathway
(BIOCARTA_ASBCELL_PATHWAY), (B) stress induction of HSP regulation (BIOCARTA_HSP27_PATHWAY, (C) NO2-dependent IL12 pathway in NK cells
(BIOCARTA_NO2IL12_PATHWAY), and (D) cytokines and inflammatory response (BIOCARTA_INFLAM_PATHWAY) signature in IND and HD subjects. The green
curve denotes the enrichment score (ES) curve. Parameters set for GSEA were as follows: Molecular Signatures Database (MSigDB) BioCarta gene set collection,
permutations = 100,000, permutation type: phenotype, enrichment statistic: weighted, metric for ranking genes: t-test, max size: 500, min size: 3. NES, normalized
enrichment score; FDR, false discovery rate q-value.
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indeterminate stage of the disease. Along this time, there exists a
fragile balance between the replication of the parasite and the
host immune response (Dos Santos Virgilio et al., 2014) that,
when broken, leads to the progression of the disease.
Understanding the molecular mechanisms of pathogenesis and
characterizing how the immune system responds to infection
result to be essential toward disease control.

In this study, an extensive real-time quantitative PCR (qPCR)
analysis has been performed to identify global changes in gene
expression profiles of 106 immune system-related genes in IND
patients in response to parasite-specific proteins. For
comparative analyses, healthy subjects were included in the
study taking into consideration the influence of the donor
origin, from either endemic or non-endemic areas of Chagas
disease. The genes were selected based on their relevance as part
of immunological processes which have been described as
associated with the control of infection caused by intracellular
pathogens. Thus, several genes were selected and analyzed, based
on their nature and involvement in biological or immunological
functions such as cytokines, chemokines, and their receptors;
adhesion molecules; phenotype markers; transcription factors;
cytotoxic molecules; inhibitory receptors and their ligands;
dendritic cell markers; molecules involved in apoptosis and
senescence; costimulatory molecules; and other molecules with
immunological involvement.

The first approach was focused on the analysis of the
expression profile of the 106 immune-related genes among the
healthy donors in response to TcSA stimulation. The expression
pattern represented as a heat map together with the principal
component analysis failed to differentiate the immune response
observed in healthy individuals coming from endemic areas from
those of non-endemic regions of Chagas disease. Furthermore,
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 13
the statistical analyses confirmed that there were no statistically
significant differences between the scores of the principal
components represented between both groups of subjects (PC1
p = 0.65, PC2 p = 0.23). On the other hand, differential gene
expression analysis revealed that only 4.7% of the genes analyzed
(5 out of 106) were differentially expressed between both groups
of healthy subjects with statistical significance. These genes were
interleukins IL6, IL12B, and IL17A and the phenotype markers
FCER1A and CD27. These findings indicate that there are no
differences in the gene expression level of most of the genes
under study among healthy donors of different geographical
origin. Therefore, all healthy subjects were considered as a single
group of subjects in subsequent comparative analyses.

When the gene expression level of 106 immune system-
related genes from IND patients was compared to that from
healthy subjects, remarkable differences were detected. The NRQ
expression values represented in a heat map revealed clear
differences in a large group of genes accounting for more than
half of the genes under study, with the majority being
overexpressed in IND versus HD.

The structure of the dataset was determined by PCA analysis,
which can be interpreted as a measure of differential gene
expression between IND and HD subjects. PCA analysis
showed differential gene expression between IND and HD
subjects, depending on PC1-correlated genes. The 23 genes
positively correlated with PC1 (with factor loading (FL) > 0.6)
correspond to cytokines/interleukins and receptors (CSF1, IFNG,
IL12A, IL12RB1, IL12RB2, IL18R1, IL2RG, IL7, and TNF),
costimulatory molecules (CD2, CD40, CD40LG, CD69, ICOS),
transcription factors (GATA3, STAT1, TBX21), molecules
involved in apoptosis (BCL2, CASP3, FAS), one phenotype
marker (CD28), one inhibitory receptor (BTLA), and one
TABLE 4 | List of genes differentially expressed in IND and HD subjects which have shown to be involved in the BioCarta pathways antigen-dependent B cell activation
(BIOCARTA_ASBCELL_PATHWAY), stress induction of HSP regulation (BIOCARTA_HSP27_PATHWAY), cytokines and inflammatory response (BIOCARTA_INFLAM_PATHWAY),
and NO2-dependent IL 12 pathway in NK cells (BIOCARTA_NO2IL12_PATHWAY) enriched in IND phenotype according to GSEA analysis.

Antigen-dependent B cell
activation (n = 15)

Stress induction of HSP
regulation (n = 14)

Cytokines and inflammatory
response (n = 29)

NO2-dependent IL 12 pathway
in NK cells (n = 15)

Gene 5 DEG/10 analyzed 4 DEG/5 analyzed 8 DEG/14 analyzed 4 DEG/9 analyzed Log2

FC >1
FL for

PC1 > 0.6

CD28 ↑ ×
CD40 ↑ × ×
CD40LG ↑ × ×
FAS ↑ ↑ × ×
IL2 ↑ ↑ ×
CASP3 ↑ ×
BCL2 ↑ × ×
TNF ↑ ↑ × ×
CSF1 ↑ × ×
CSF2 ↑ ×
IFNG ↑ ↑ × ×
IL5 ↑ ×
IL6 ↑ ×
IL7 ↑ × ×
CD2 ↑ ×
IL12RB1 ↑ ×
IL12RB2 ↑ × ×
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dendritic cell marker (CD83). Only nine genes showed a negative
correlation with PC1 (FL < -0.6) and were cytokines/interleukins
and receptors (IFNGR1, IFNGR2, IL17RA, IL18), adhesion
molecules (ITGAX , ITGB2), one inhibitory receptor
(HAVCR2), one dendritic cell marker (CCR1), and one
costimulatory molecule (CD86).

Differential analysis of gene expression revealed that the
expression level of a large number of genes varied between
infected and non-infected subjects. Specifically, 32% of the genes
were expressedmore than twice or less thanhalf (log2FC>1or< -1)
with statistical significance (p < 0.05) in IND versusHD. For 91% of
the genes, very significant differences were detected (p < 0.001). The
majority of the differentially expressed genes were upregulated in
IND (67.6%) particularly cytokines/interleukins and receptors
(CSF1, CSF2, IFNG, IL12A, IL12B, IL12RB2, IL2, IL27, IL5,
IL5RA, IL6, IL7, and TNF), costimulatory molecules (CD40,
CD40LG), transcription factors (STAT1, TBX21), molecules
involved in apoptosis (BCL2, FAS), inhibitory receptor (BTLA,
CD274), phenotype marker (CD27), and enzymes (IDO1). The
downregulated genes in IND were classified as cytokines/
interleukins and receptors (IFNGR1, IFNGR2, IL18), adhesion
molecules (ITGAX, ITGB2), inhibitory receptors (HAVCR2),
dendritic cell markers (CCR1, CLEC9A, XCR1), phenotype
markers (FCER1A), and costimulatory molecules (CD86).

When the differences observed in gene expression level
between IND and HD were quantified, the greatest differences
(greater than four times more or less expression in IND versus
HD) were found for nine genes. Four of these genes showed to be
downregulated in IND patients (CD86, CLEC9A, FCER1A, and
IL18). The expression of the CLEC9A gene was not detected in
any IND while the FCER1A, IL18, and CD86 mRNA levels were
5.5, 22, and 9 times lower in IND than in HD, respectively. The
remaining five genes (CD27, CSF2, IFNG, IL5, and IL6) were
upregulated in IND exhibiting the greatest differences (6.5 to 32
times more). It should be noted that the expression of the IFNG
gene (IFNg) suffered the greatest variation between IND and HD
showing an FC value greater than 5, which corresponds to a 32-
fold time higher expression in IND patients than in HD. IFNg is
important for orchestrating the development of adaptive
immunity, contributing to the differentiation of CD4+ Th1 and
CD8+ T cells required for controlling the parasite proliferation
that occurs during acute infection (Cerbán et al., 2020). Thus, the
control of T. cruzi infection is related to IFNg activation leading
to intracellular clearance of parasites (Kulkarni et al., 2015). The
expression of the TNF gene was also found to be upregulated in
IND patients versus healthy donors, which is consistent with
previous studies that report the detection of high levels of IFNg
and TNF in IND patients (Ferreira et al., 2003; Requena-Méndez
et al., 2013), suggesting a relevant role of these molecules in the
control of T. cruzi infection. In addition to IFNg and TNF, the
control of T. cruzi infection has been associated with the cytokine
profile produced by Th1 cells (Petray et al., 1993; Rodrigues et al.,
1999; Tarleton et al., 2000; Kumar and Tarleton, 2001; Hoft and
Eickhoff, 2005).

Regarding the five genes differentially expressed in subjects
coming from endemic and non-endemic areas, three of them
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
(IL12B, IL6, and CD27) were upregulated and one (FCER1A)
downregulated with statistical significance in IND versus HD
when they were analyzed as a single group. Although IL17A
mRNA was overproduced in healthy donors from endemic areas,
the observed differences were not significant when its expression
level by IND was compared to that from healthy donors, both as
a single group (HD) and as separate groups of individuals (HDc
and HDe).

To gain insights into immunological processes to which the
differential gene expression profiles observed between IND and
HD were associated, a protein–protein interaction (PPI) network
was built using the 34 differentially expressed genes using the
STRING website. Analysis of the PPI network showed that the
differentially expressed genes between IND versus HD subjects
encode proteins that have a high degree of interaction (PPI
enrichment p-value < 1.0e-16). The most significant biological
processes and pathways in which the differentially expressed
genes take part were associated with immune response including
inflammatory responses, interleukin-2 family signaling, Th1 and
Th2 cell differentiation, interleukin-12 family signaling, JAK-
STAT signaling pathway, and Th17 cell differentiation and
natural killer cell-mediated cytotoxicity pathways. According to
STRING analysis, 20 out of 34 differentially expressed genes
(59%) were involved in one or more of these six immune system-
related pathways with very low false discovery rate (FDR) values
(ranging from 4.77e-19 to 2.2e-08), an indication of the reliability
of the predictions.

STAT1 played a central role in five of the highly enriched
pathways. The observed STAT1 upregulation in IND patients
supports previous studies that report the activation of STAT1
signaling pathway in host cells after infection with T. cruzi
leading to a significantly elevated STAT1 expression (De Avalos
et al., 2002). It has been described that STAT1 plays a major role in
the first line of defense against invasion of T. cruzi trypomastigotes
(Stahl et al., 2014).Moreover, it has been reported that STAT1 is a
key mediator of IFNg intracellular signaling and knockout of this
protein leads to susceptibility to several intracellular microbes
(Kulkarni et al., 2015). The protective effect of IFNg against both
the entry of trypomastigotes into host cells and the intracellular
multiplication of amastigotes was based on the activation of STAT1
by tyrosine phosphorylation (Stahl et al., 2014). These results are
consistentwith the upregulationof both STAT1 and IFNGobserved
in the present work in IND patients, suggesting the relevant role of
these molecules to control T. cruzi infection at this stage.
Furthermore, upregulation of IL12A, IL12B, and IL12RB2 genes
has been detected in IND patients, which participate in
“Interleukin-12 family signaling,” “Th1 and Th2 cell
differentiation,” and “JAK-STAT signaling” according to
STRING. IL12 acts on activated T lymphocytes, driving its
differentiation to the Th1 subclass. This cytokine is characterized
as a potent inducer of IFNG production by NK cells and different
subsets of T cells (Gately et al., 1994), which is consistent with the
differential expressionof IFNG thatwedetected in the INDpatients.
Besides, anti-IL12 antibodies increase susceptibility to infection,
highlighting its important role in the control of parasitemia
(Aliberti et al., 1996). The results shown here also suggest the
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possible activation of the “Interleukin-2 family signaling” pathway,
detecting an upregulation of this cytokine in INDpatients. As it has
been reported,T. cruzi antigen-specific co-production of IFNg, IL2,
andTNFabyCD8+Tcells hasbeen found inagreater proportion in
asymptomatic patients, their proportion being decreased according
to the progression of the severity of the heart Chagas disease (Lasso
et al., 2015; Mateus et al., 2015).

Notably, the differentially expressed genes in IND were also
involved in the “Th17 cell differentiation,” as obtained from
STRING. Th17 cells correspond to a subset of CD4+ T cells
known to play a central role in the pathogenesis of many
autoimmune diseases, as well as in the defense against some
extracellular bacteria and fungi (Ishigame et al., 2009; Lin et al.,
2009; Milner et al., 2010; Zielinski et al., 2012). However, their
role in intracellular infections has been questioned (Cai et al.,
2016). In contrast to this paradigm, the protective role of Th17
cells in the control of parasitemia and survival of T. cruzi-
infected mice has been reported (Miyazaki et al., 2010; Cai
et al., 2016). Moreover, the Th17 profile has been considered a
protective factor in preventing myocardial damage in human
Chagas disease (Magalhães et al., 2013; Sousa et al., 2017). Our
results support this finding and suggest that this pathway may be
activated in order to control parasitemia and prevent disease
progression in IND patients.

Several gene sets were found to be enriched in IND subjects
according to their gene expression levels: “antigen-dependent B cell
activation,” “stress induction ofHSP regulation,” “NO2-dependent
IL12 pathway in NK cells,” and “Cytokines and inflammatory
response.” The enrichment was related to the upregulation
observed in a number of genes, which were also found either
correlated with PC1 (therefore driving the separation of IND and
healthy subjects in the PCA analysis) or showing a statistically
significant differential gene expression in the volcano plot (FC > 1
andp<0.05). Seventeen geneswere included in this classification, of
which 52.9% fulfilled both criteria.

Regarding the enriched routes, the activation in these patients of
antigen-dependentB cells was a consequence of the upregulation of
CD28, CD40, CD40LG, FAS, and IL2 genes. CD40 interaction with
CD40L and CD28 interaction with CD80 provide positive
costimulatory signals that stimulate B cell activation,
proliferation, and differentiation to memory cells (BioCarta—
http://www.gsea-msigdb.org/gsea/msigdb/cards/BIOCARTA_
ASBCELL_PATHWAY). Inflammation as a protective response to
infection is also observedwith the enrichment in the “cytokines and
inflammatory response” pathway as a result of IL2, TNF, CSF1,
CSF2, INFG, IL5, IL6, and IL7 gene upregulation.

The finding that “NO2-dependent IL12 Pathway in NK cells”
is enriched in IND patients, who remain asymptomatic and
therefore control disease progression, suggests that activation of
this pathway may be essential to fight the parasite. A previous
study reported that the resistance against T. cruzi is based on the
release of IL12 by infected macrophages, which induces IFNg
production from T and NK cells (Cerbán et al., 2020). In
macrophages, IFNg functions by activating inducible nitric
oxide synthase (iNOS) and NADPH oxidase for the
production of nitric oxide (NO), reactive oxygen species
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(ROS), and reactive nitrogen intermediates (RNI) as
peroxynitrite (ONOO-), which are critical for the trypanocidal
activity (Gazzinelli et al., 1992; Vespa et al., 1994; Guiñazú
et al., 2007).

GSEA analysis also revealed an enrichment in IND patients of
the “stress induction of HSP regulation” pathway gene set as a
consequence of upregulation of the FAS, BCL2, CASP3, and TNF
genes included in this route. The activation of these genes, all
four involved in apoptosis processes, was expected in Chagas
disease patients, given intracellular infection with T. cruzi.
However, the activation of the “Stress induction of HSP
regulation” pathway (BIOCARTA_HSP27_PATHWAY)
further suggests that the expression of these genes could be
activating heat shock proteins. Heat shock proteins, and
particularly Hsp27, have shown to have a strong protective
effect on cells, mainly due to its vital function at apoptosis
regulation (Garrido et al., 2003; Wang et al., 2014).
Interestingly, Hsp27 has shown to have the ability to decrease
ROS levels, allowing cells to increase their resistance to oxidative
stress (Garrido et al., 1997; Rogalla et al., 1999; Arrigo et al.,
2005), so this pathway could also be acting as a mechanism for
controlling the presence of ROS in the cell of these patients. This
fact seems to result to be essential since it has been shown that
when these cytotoxic species are produced in excess or for
sustained periods of time or when there is an inadequate
antioxidant response, they can accumulate and may contribute
to the pathogenesis of Chagas disease (Zacks et al., 2005).

The results shown here indicate that infection with T. cruzi
induces changes in the expression profile of several genes that
seem to be implicated in relevant immunological pathways.
These protein-coding genes may result to be useful biomarkers
of the indeterminate form of Chagas disease and may act as new
therapeutic targets in hosts useful in preventing the progression
to the chronic symptomatic phase. The results indicate that the
innovative strategy employed here can be applied for future gene
expression analyses of more genes involved in the identified
pathways and in the identification of new pathways. All this will
undoubtedly elucidate the immune response produced in Chagas
disease patients and the immunological pathways activated in
asymptomatic and symptomatic Chagas disease patients.
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Requena-Méndez, A., López, M. C., Angheben, A., Izquierdo, L., Ribeiro, I.,
Pinazo, M. J., et al. (2013). Evaluating Chagas Disease Progression and Cure
Through Blood-Derived Biomarkers: A Systematic Review. Expert Rev. Anti
Infect. Ther. 11, 957–976. doi: 10.1586/14787210.2013.824718

Rocha, M. O. C., Ribeiro, A. L. P., and Teixeira, M. M. (2003). Clinical
Management of Chronic Chagas Cardiomyopathy. Front. Biosci. 8, 44–54.
doi: 10.2741/926

Rodrigues, M. M., Ribeirão, M., Pereira-Chioccola, V., Renia, L., and Costa, F.
(1999). Predominance of CD4 Th1 and CD8 Tc1 Cells Revealed by
Characterization of the Cellular Immune Response Generated by
Immunization With a DNA Vaccine Containing a Trypanosoma Cruzi
Gene. Infect. Immun. 67, 3855–3863. doi: 10.1128/iai.67.8.3855-3863.1999

Rogalla, T., Ehrnsperger, M., Preville, X., Kotlyarov, A., Lutsch, G., Ducasse, C.,
et al. (1999). Regulation of Hsp27 Oligomerization, Chaperone Function, and
Protective Activity Against Oxidative Stress/Tumor Necrosis Factor by
Phosphorylation. J. Biol. Chem. 274, 18947–18956. doi: 10.1074/
jbc.274.27.18947

Schmunis, G. A., and Yadon, Z. E. (2010). Chagas Disease: A Latin American
Health Problem Becoming a World Health Problem. Acta Trop. 115, 14–21.
doi: 10.1016/j.actatropica.2009.11.003

Silver, N., Best, S., Jiang, J., and Thein, S. L. (2006). Selection of Housekeeping
Genes for Gene Expression Studies in Human Reticulocytes Using Real-Time
PCR. BMC Mol. Biol. 7:33. doi: 10.1186/1471-2199-7-33

Sousa, G. R., Gomes, J. A. S., Damasio, M. P. S., Nunes, M. C. P., Costa, H. S.,
Medeiros, N. I., et al. (2017). The Role of Interleukin 17-Mediated Immune
Response in Chagas Disease: High Level is Correlated With Better Left
Ventr icu lar Funct ion . PloS One 12, e0172833. doi : 10 .1371/
journal.pone.0172833

Stahl, P., Ruppert, V., Schwarz, R. T., and Meyer, T. (2014). Trypanosoma Cruzi
Evades the Protective Role of Interferon-Gamma-Signaling in Parasite-
Infected Cells. PloS One 9, e110512. doi: 10.1371/journal.pone.0110512

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., et al. (2005). Gene Set Enrichment Analysis: A Knowledge-Based
Approach for Interpreting Genome-Wide Expression Profiles. Proc. Natl.
Acad. Sci. 102, 15545–15550. doi: 10.1073/PNAS.0506580102

Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., et al.
(2019). STRING V11: Protein-Protein Association Networks With Increased
September 2021 | Volume 11 | Article 722984

https://doi.org/10.1002/eji.1830221006
https://doi.org/10.1002/eji.1830221006
https://doi.org/10.1016/j.ijpara.2007.03.010
https://doi.org/10.1016/j.ijpara.2007.03.010
https://doi.org/10.1371/journal.pone.0163219
https://doi.org/10.1371/journal.pone.0163219
https://doi.org/10.1128/IAI.73.8.4934-4940.2005
https://doi.org/10.1128/IAI.73.8.4934-4940.2005
https://doi.org/10.1016/j.immuni.2008.11.009
https://doi.org/10.1111/imm.12438
https://doi.org/10.4049/jimmunol.166.7.4596
https://doi.org/10.4049/jimmunol.1500459
https://doi.org/10.1086/381682
https://doi.org/10.1093/bioinformatics/btr260
https://doi.org/10.1371/journal.ppat.1000703
https://doi.org/10.1007/s00281-012-0351-7
https://doi.org/10.1093/infdis/jis724
https://doi.org/10.1016/j.micinf.2011.05.010
https://doi.org/10.1371/journal.pntd.0003432
https://doi.org/10.1097/COH.0b013e328335ed3e
https://doi.org/10.4049/jimmunol.0900047
https://doi.org/10.4049/jimmunol.0900047
https://doi.org/10.1038/ng1180
https://doi.org/10.1161/01.CIR.82.6.1900
https://doi.org/10.1016/S0140-6736(17)31612-4
https://doi.org/10.1016/0165-2478(93)90151-Q
https://doi.org/10.1016/0165-2478(93)90151-Q
https://doi.org/10.1023/B:BILE.0000019559.84305.47
https://doi.org/10.1023/B:BILE.0000019559.84305.47
https://doi.org/10.1590/s0037-86821989000300007
https://doi.org/10.1371/journal.pone.0091154
https://doi.org/10.1016/S0140-6736(10)60061-X
https://doi.org/10.1586/14787210.2013.824718
https://doi.org/10.2741/926
https://doi.org/10.1128/iai.67.8.3855-3863.1999
https://doi.org/10.1074/jbc.274.27.18947
https://doi.org/10.1074/jbc.274.27.18947
https://doi.org/10.1016/j.actatropica.2009.11.003
https://doi.org/10.1186/1471-2199-7-33
https://doi.org/10.1371/journal.pone.0172833
https://doi.org/10.1371/journal.pone.0172833
https://doi.org/10.1371/journal.pone.0110512
https://doi.org/10.1073/PNAS.0506580102
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles
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