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Abstract: Chemical investigations on the Dongsha Atoll soft coral Lobophytum crassum 

led to the purification of a new seco-cembranoid, secocrassumol. The structural elucidation 

was established by extensive NMR, HRESIMS and CD data. The absolute configuration at 

C-12 was determined as S using a modified Mosher’s acylation. Secocrassumol differs 

from previously known marine seco-cembranoid in that it possesses an unprecedented 

skeleton functionalized at C11-C12 bond cleavage. Secocrassumol showed antiviral 

activity against human cytomegalovirus (HCMV) with an IC50 value of 5.0 μg/mL. 
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1. Introduction 

Marine soft corals have evolved characteristic metabolic and physiological capabilities to produce 

secondary metabolites that may function in defense, food capture, interference competition, and even 

possibly the acquisition and selection of symbiotic zooxanthellae [1]. The first cembrane-type 
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diterpenoid was obtained in 1951 from the oleoresin of Pinus albicaulis [2]. Marine cembranoids are 

the representative compounds from soft corals, having been first discovered from gorgonians by the 

Ciereszko lab in 1960 [3]. For more than 60 years, hundreds of cembranoids possessing almost every 

structural modification have been reported from virtually all alcyonarians and gorgonians [4]. Prior 

studies have shown that members of the genus Lobophytum produce a rich harvest of cembranoids 

endowed with diversified macrocyclic skeletons [4–25]. Previous bioassay results of these metabolites 

have been shown to exhibit diverse biological activities such as cytotoxicity [11,13,15–19,23],  

anti-inflammatory properties [20–22], antimicrobial activities [20], and HIV-inhibitory activities [17]. 

During the course of our initial investigation of bioactive metabolites from the soft coral L. crassum  

(von Marenzeller, 1886), six cembranoids (lobocrassolide, lobocrasol, crassumols A–C and  

13-acetoxysarcophytoxide) and two á-tocopherols (crassumtocopherols A and B) were discovered and 

some of these have been shown to possess cytotoxic properties [18,23–25]. Our continuing chemical 

investigations of this organism led to the isolation of secocrassumol (Figure 1). Secocrassumol 

apparently derives from a cembranoid precursor through cleavage of the C11-C12 bond. The plausible 

biosynthetic pathway for formation of secocrassumol is postulated in Scheme 1. Furthermore, it was 

evaluated in vitro for cytotoxicity against A-459 (human lung carcinoma), P-388 (mouse lymphocytic 

leukemia), and HT-29 (human colon adenocarcinoma) cancer cell lines as well as antiviral activity 

against HCMV (human cytomegalovirus) cells. 

Figure 1. The structure of secocrassumol and crassumol C. 

 

Scheme 1. The plausible biosynthetic pathway for formation of secocrassumol. 
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2. Results and Discussion 

The chromatographic separation of the EtOAc extract (20 g) of the soft coral L. crassum using Si-60 

and ODS gel columns in combination with semi-preparative reversed-phase C18 HPLC resulted in the 

purification of secocrassumol (see Experimental Section), which was obtained as a colorless oil. The 

HRESIMS exhibited a pseudo molecular ion peak at m/z 417.2256 [M + Na]+ (calcd. for C22H34O6Na, 

417.2253), consistent with the molecular formula of C22H34O6, requiring six degrees of unsaturation. 

The IR spectrum demonstrated a broad absorption band at 3434 cm−1 (OH stretching) diagnostic of a 

secondary hydroxy group, which was associated to C-12 on the basis of the HMBC correlations from 

Me-20 to C-12 and C-13 (Figure 2). The IR spectrum revealed the presence of an ester (1742 cm−1) 

moiety, which was further identified by the 1H·NMR signals at δH 2.09 (3H, s) and 13C NMR signals at 

δC 170.4 (qC) and 20.9 (CH3) (Table 1). The existence of two quaternary carbons [δC 133.0 (qC, C-1) 

and 128.4 (qC, C-15)], an oxygenated methine [δH 5.09 (dd, 1H, J = 9.2, 0.8 Hz) and δC 84.4 (C-2)] 

and an oxygenated methylene [δH 4.54 (dd, 1H, J = 11.6, 5.6 Hz) and 4.45 (br d, 1H, J = 11.6 Hz); δC 

78.1 CH2], as well as the long-range COSY correlations between H-2 and H2-16 exhibited the presence 

of a 2,5-dihydrofuran ring (Figure 2). In addition, the 13C NMR signals at δC 126.0 (CH, C-3) and 

138.2 (qC, C-4) assigned a trisubstituted double bond. Although there were no direct HMBC 

correlations available, the remaining one unsaturation indicated that an oxygen bridge is probably 

present between a lactone carbonyl carbon [δC 176.2 (qC, C-11)] and an oxygenated quaternary carbon 

[δC 82.6 (qC, C-8)]. This assumption was further confirmed by a strong IR absorption at 1771 cm−1 [26]. 

Comparison to the NMR data reported for crassumol C [24] permitted us to propose the  

11,12-secocembranoid structure for secocrassumol. 

Figure 2. Selected 1H–1H COSY (▬) and HMBC (→) correlations of secocrassumol. 

 

The geometry of the trisubstituted olefin was assigned as E based on the γ-effect of the olefinic 

methyl signals for C-18 (16.4 ppm) [27] and the NOESY correlations between H-3 and H2-5, and H-2 

and H3-18. The relative configurations of C2, C7 and C8 could not be determined due to the absence of 

decided NOESY correlations available. Additionally, the failure to crystallize, the limitation of 

material, and scarcity of sample source make secocrassumol inaccessible to X-ray crystallographic 

analysis for confirmation of the relative configurations of the aforementioned carbons. Based on 

biogenic considerations, a 2S, 7S configuration of secocrassumol was assumed to be identical with that 

of crassumol C [24]. The circular dichroism (CD) spectrum exhibited a positive Cotton effect around  

λmax 214 nm due to the γ-lactone (Figure 3). The absolute configuration at C-8 was deduced to be R 

based on its CD data comparable to that of some C11-C12 secocembranoids from the leaves of air-cured 

Burley tobaccos [26]. The appropriate stereochemistry of secocrassumol was identified by Mosher’s 

esterification for absolute configuration determination of chiral alcohols [28]. Analysis of the ΔδS−R 

values according to the Mosher model pointed to an S configuration for C-12, because H2-13 and  
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H2-14 of the (S)-MTPA ester were less shielded by the phenyl ring of MTPA products (Figure 4). 

Accordingly, the structure of secocrassumol was elucidated unambiguously. 

Table 1. NMR spectroscopic data of secocrassumol a. 

# 13C 1H 1H–1H COSY HMBC (H→C) 

1 133.0 (qC) b    

2 84.4 (CH) 5.42 m  H-3, H-16, H-17  

3 126.0 (CH) 5.09 br·d (9.2, 0.8) c H-2, H-18 C-5, C-18 

4 138.2 (qC)    

5 35.8 (CH2) 2.04 m H-6  

6 27.6 (CH2) 
a: 1.94 m 

H-5, H-7  
b: 1.80 m 

7 75.9 (CH) 5.01 dd (10.4, 2.4) H-6 C-8, C-9, 7-OAc 

8 82.6 (qC)    

9 29.9 (CH2) 
a: 2.22 m 

H-10 C-10, C-11, C-19 
b: 1.91 m 

10 28.7 (CH2) 2.61 m H-9 C-8, C-9, C-11 

11 176.2 (qC)    

12 68.0 (CH) 3.76 m H-13, H-20  

13 37.5 (CH2) 1.49 m H-12, H-14 C-1, C-14, C-20 

14 21.1 (CH2) 
a: 2.24 m 

H-13 C-1, C-2, C-13 
b: 1.89 m 

15 128.4 (qC)    

16 78.1 (CH2) 
a: 4.54 dd (11.6, 5.6) 

H-2, H-17 C-1 
b: 4.45 br·d (11.6) 

17 10.0 (CH3) 1.66 s H-2, H-16 C-1, C-15, C-16 

18 16.4 (CH3) 1.76 s H-3 C-3, C-4, C-5 

19 22.5 (CH3) 1.40 s  C-7, C-8, C-9 

20 23.3 (CH3) 1.19 d (6.0) H-12 C-12, C-13 

7-OAc 
20.9 (CH3) 

2.09 s  7-OAc 
170.4 (qC) 

a Spectra were measured in CDCl3 (1H, 400 MHz and 13C, 100 MHz). b Multiplicities are deduced by HSQC 

and DEPT experiments. c J values (in Hz) are in parentheses. 

Figure 3. The CD spectrum of secocrassumol. 
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Figure 4. Selected 1H·NMR ΔδS−R values in ppm for the S- and R-MTPA esters of 

secocrassumol in CDCl3. 

 

Apparently, the co-occurrence of crassumol C within the same organism raises the probability that 

secocrassumol results from crassumol C. The biosynthetic precursor is transformed into intermediate I 

by oxidative C11-C12 cleavage. The intermediate I would undergo an enzymatic lactonization to yield 

intermediate II, which was converted into secocrassumol by reduction (Scheme 1). Purification of 

secocembranoids is intriguing, especially in light of the previous isolation and characterization of the 

related metabolites [29–33], suggesting that marine soft corals possess a biodegradable capacity to 

modify parent cembranoids through simple ring cleavage. The few examples of secocembranoids from 

soft corals include two C12-C13 analogues from Sinularia mayi [29], a C1-C14 secocembranoid from 

Eunicea succinea [30], a C8-C9 secocembranoid (seco-sethukarailin) from Sinularia dissecta [31], two 

C2-C3 secocembranoids (caucanolides E and F) from Pseudopterogorgia bipinnata [32], two C9-C10 

secocembranoids from Nephthea sp. [33], and a C11-C12 secocembranoid from Sinularia flexibilis 

[34]. Among these marine secocembranoids already reported in the literature, secocrassumol also 

represents a secocembrane skeleton functionalized at the C11-C12 bond cleavage. 

Preliminary cytotoxic screening revealed that secocrassumol exhibited no discernible cytotoxicity 

against mouse lymphocytic leukemia (P-388), human lung carcinoma (A-459) as well as human colon 

adenocarcinoma (HT-29) (ED50 > 50 μM). Similarly, the biosynthetic precursor crassumol C was not 

cytotoxic to P-388, A-549, and HT-29 cells [24]. The anticancer agent mithramycin was used as the 

positive control and exhibited EC50 values of 0.05, 0.06 and 0.07 μM against P-388, A-549 and HT-29 

cells, respectively. It was noteworthy to mention that crassumol C did not show anti-HCMV activity 

(IC50 > 50 μg/mL), but secocrassumol exhibited moderate antiviral activity against HCMV cells with 

an IC50 value of 5.0 μg/mL. 

3. Experimental Section 

3.1. General Experimental Procedures 

Optical rotations were recorded on a JASCO P1020 polarimeter (Tokyo, Japan). CD analysis was 

performed on a JASCO J-815 spectropolarimeter (Tokyo, Japan). IR and UV spectra were measured 

on JASCO FT/IR-4100 (Tokyo, Japan) and JASCO V-650 spectrophotometers (Tokyo, Japan), 

respectively. The NMR spectra were recorded on a Varian 400 MR NMR spectrometer (Santa Clara, 

CA, USA) at 400 MHz for 1H and 100 MHz for 13C, respectively. Chemical shifts are expressed in δ 

(ppm) referring to the solvent peaks δH 7.27 and δC 77.0 for CDCl3, respectively, and coupling 

constants are expressed in Hz. ESIMS spectra were recorded by ESI FT-MS on a Bruker APEX II 
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mass spectrometer (Bruker, Bremen, Germany). Silica gel 60 (Merck, Darmstadt, Germany, 230–400 

mesh), LiChroprep RP-18 (Merck, Darmstadt, Germany, 40–63 μm) and Sephadex LH-20 (Amersham 

Pharmacia Biotech., Piscataway, NJ, USA) were used for column chromatography. Precoated silica gel 

plates (Merck, Darmstadt, Germany, Kieselgel 60 F254, 0.25 mm) and precoated RP-18 F254s plates 

(Merck, Darmstadt, Germany) were used for analytical thin-layer chromatography (TLC) analyses.  

High-performance liquid chromatography (HPLC) was performed on a Hitachi L-7100 pump (Tokyo, 

Japan) equipped with a Hitachi L-7400 UV detector (Tokyo, Japan) at 220 nm and an ODS  

column (Merck, Darmstadt, Germany, Hibar Purospher RP-18e, 5 μm, 250 × 10 mm). S-(+)- and  

R-(–)-α-methoxy-α-trifluoromethylphenylacetyl chloride were obtained from ACROS Organics  

(Geel, Belgium). 

3.2. Animal Material 

Specimens of L. crassum, identified by Professor Chang-Feng Dai of the Institute of Oceanography, 

National Taiwan University (Taipei, Taiwan), were collected from coral reefs offshore from the 

Dongsha Atoll off Taiwan in April 2007, at a depth of 8 m, and were immediately frozen at −20 °C 

until further processed for extraction in the laboratory. A voucher specimen (TS-11) has been 

deposited at the Department of Marine Biotechnology and Resources, National Sun Yat-sen University 

(Kaohsiung, Taiwan). 

3.3. Extraction and Isolation 

The sliced bodies of L. crassum were exhaustively extracted with acetone. The combined extracts 

were concentrated in vacuo (under 35 °C) to obtain a dry crude extract (25 g), which was suspended in 

water and extracted with EtOAc. The EtOAc-soluble portion was evaporated to dryness in vacuo to 

give a dark brown residue (20 g). The resulting EtOAc residue was subjected to a silica gel 

chromatography using a stepwise gradient mixture of n-hexane–EtOAc–MeOH as elution and 

separated into 40 fractions. Fraction 20 (223 mg) eluted with n-hexane/EtOAc (1:10) was submitted to 

repeated chromatography over Si-60 gel column using n-hexane–EtOAc mixtures of increasing 

polarity as eluent. Altogether, three subfractions were obtained, of which subfraction 20-3 (142 mg) 

was followed by column chromatography on ODS column using 53% MeOH in H2O to yield a mixture 

(25 mg). In turn, the mixture was further purified by RP-18 HPLC using an isocratic solvent system of 

65% MeOH in H2O to give secocrassumol (2 mg). 

Secocrassumol: Colorless oil; [α]
25
D  −192 (c 0.1, CHCl3); IR (KBr) νmax 3434, 2965, 2924, 2857, 

1771, 1742, 1649, 1557, 1375, 1232, 1036 cm−1; CD (4.80 × 10−4 M, MeOH) λmax (Δε) 214 (+12.24) nm; 
1H·NMR (CDCl3, 400 MHz) and 13C·NMR (CDCl3, 100 MHz) data, see Table 1; ESIMS m/z  

417 [M + Na]+; HRESIMS m/z 417.2256 [M + Na]+ (calcd. for C22H34O6Na, 417.2253) 

(Supplementary Figures S1–S7). 
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3.4. Preparation of (R)- and (S)-MTPA Esters of Secocrassumol 

Two secocrassumol samples (0.5 mg) were dissolved in pyridine-d5 (0.6 mL) and allowed to react 

overnight at room temperature with (R)- and (S)-MTPA chloride (one drop), affording the (S)-MTPA 

ester (S) and (R)-MTPA ester (R), respectively. 

Selected 1H-NMR (pyridine-d5, 400 MHz) of S: δH 7.88–7.61 (5H, m, Ph), 5.70 (1H, m, H-2), 5.35 

(1H, d, J = 9.2 Hz, H-3), 5.29 (1H, m, H-12), 4.65 (1H, dd, J = 11.6, 4.8 Hz, 16a), 4.56 (1H, d, J = 11.6 Hz, 

16b), 2.70 (1H, t, J = 8.8 Hz, H-14a), 2.30 (1H, m, H-14b), 1.87 (1H, m, H-13a), 1.76 (1H, m,  

H-13b), 2.10 (3H, s, 7-OAc), 1.76 (3H, s, H-18), 1.59 (3H, s, H-17), 1.36 (3H, s, H-19), 1.29 (3H, d,  

J = 6.4 Hz, H-20). 

Selected 1H-NMR (pyridine-d5, 400 MHz) of R: δH 7.88–7.61 (5H, m, ph), 5.65 (1H, m, H-2), 5.34 

(1H, d, J = 9.2 Hz, H-3), 5.30 (1H, m, H-12), 4.63 (1H, dd, J = 11.6, 4.8 Hz, 16a), 4.53 (1H, d, J = 11.6 Hz, 

16b), 2.70 (1H, t, J = 8.8 Hz, H-14a), 2.29 (1H, m, H-14b), 1.84 (1H, m, H-13a), 1.73 (1H, m,  

H-13b), 2.10 (3H, s, 7-OAc), 1.73 (3H, s, H-18), 1.51 (3H, s, H-17), 1.36 (3H, s, H-19), 1.37 (3H, d,  

J = 6.4 Hz, H-20). 

3.5. Cytotoxicity Assay 

Cytotoxicity was determined against P-388 (mouse lymphocytic leukemia), HT-29 (human colon 

adenocarcinoma), as well as A-549 (human lung epithelial carcinoma) tumor cells using a modification 

of the MTT colorimetric method according to a previously described procedure [35,36]. The P-388 cell 

line was kindly provided by John M. Pezzuto, formerly of the Department of Medicinal Chemistry and 

Pharmacognosy, University of Illinois at Chicago. Additionally, HT-29 and A-549 cell lines were 

purchased from the American Type Culture Collection (Manassas, VA, USA). 

3.6. Anti-HCMV Assay 

To determine the effects of natural products upon HCMV cytopathic effect (CPE), confluent human 

embryonic lung (HEL) cells grown in 24-well plates were incubated for 1 h in the presence or absence 

of various concentrations of tested natural products. Then, cells were infected with HCMV at an input 

of 1000 pfu (plaque forming units) per well of 24-well dish. Antiviral activity was expressed as IC50 

(50% inhibitory concentration), or compound concentration required to reduce virus-induced CPE by 

50% after seven days, as compared with the untreated control. To monitor the cell growth upon 

treatment with natural products, an MTT-colorimetric assay was employed [37]. 

4. Conclusions 

A new seco-cembranoid, designated as secocrassumol, was isolated from the Dongsha Atoll soft 

coral Lobophytum crassum. Secocrassumol differs from the previously known marine seco-

cembranoid in that it possesses an unprecedented skeleton functionalized at the C11-C12 bond 

cleavage. Preliminary cytotoxic screening revealed that secocrassumol are not cytotoxic to P-388, A-

549, and HT-29 cells. However, secocrassumol showed antiviral activity against HCMV with an IC50 

value of 5.0 μg/mL. 
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