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Summary

Replicative senescence is a fundamental tumor-suppressive

mechanism triggered by telomere erosion that results in a

permanent cell cycle arrest. To understand the impact of telomere

shortening on gene expression, we analyzed the transcriptome

of diploid human fibroblasts as they progressed toward and

entered into senescence. We distinguished novel transcription

regulation due to replicative senescence by comparing senes-

cence-specific expression profiles to profiles from cells arrested

by DNA damage or serum starvation. Only a small specific subset

of genes was identified that was truly senescence-regulated and

changes in gene expression were exacerbated from presenescent

to senescent cells. The majority of gene expression regulation in

replicative senescence was shown to occur due to telomere

shortening, as exogenous telomerase activity reverted most of

these changes.
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Introduction, results, discussion

Human somatic cells do not have the ability to divide indefinitely

(Hayflick & Moorhead, 1961) but will eventually enter replicative

senescence, triggered by genomic stress, most of which is attributed

to telomere shortening (Campisi & d’Adda di Fagagna, 2007). Failure to

initiate senescence has detrimental effects and results in the emergence

of transformed and immortalized cells (Artandi & DePinho, 2000).

Human fibroblasts such as the normal diploid fibroblasts cell line IMR90

are the major model system to study replicative senescence (Shay et al.,

1991; Narita et al., 2003). Here, we examined global gene expression by

analyzing a time-course as IMR90 cells progressed toward senescence.

We show that re-introduction of telomerase into presenescent cells

reverted the majority of gene expression changes, and we compared

these data with changes in response to DNA damage and quiescence.

This work represents a resource for the field of senescence and aging

research.

To describe global senescence-associated expression patterns, we

grew IMR90 cells at physiological oxygen levels from low population

doublings (PD) onward until they reached replicative senescence and

analyzed RNA levels with Affymetrix arrays. Genes were regulated as a

function of replicative age, as the number of regulated genes at each

time point increased (Fig. 1A), with 1603 genes regulated in senescent

cells (Table S1). Expression changes were exacerbated with a progres-

sion toward senescence, pointing toward regulation of specific path-

ways (Fig. 1B). Array data for selected genes were confirmed in IMR90

and WI38 cells (Fig. S1A,B). We confirmed the impact of replicative

senescence on telomeres by assessing the number of telomere

dysfunction-induced foci (TIF) (Takai et al., 2003). While young cells

displayed only background levels, TIF were increased in presenescent

cells (Fig. 1C,D), which is in agreement with previous reports (Kaul

et al., 2012).

We next determined enriched pathways. Down-regulated genes

were strongly enriched for proliferation and replication pathways,

while the pathways associated with genes that were up-regulated

were less congruent, but there was enrichment for pathways that

impact on proliferation (Table S2), for example TGFb signaling, which

can repress proliferation (Hannon & Beach, 1994). We also identified

genes with established roles in senescence (p21, p16) or with

antiproliferative properties such as WNT16 (Binet et al., 2009), or

BTG2 (Rouault et al., 1996). Enrichment of these pathways together

with the identification of previously reported genes confirmed the

reproducibility of our data.

Next, we assessed the impact of hTERT on gene expression in

senescence. We generated presenescent cells expressing hTERT and

confirmed expression and telomere elongation (Fig. S2). Most expression

changes in senescence were reverted upon hTERT expression (Fig. 1E).

Eighty-four percent of the initially up-regulated and 86% of the down-

regulated genes showed at least a 1.2-fold reversion. While expression

was not in all cases completely restored, only few genes failed to show

any reversion. Hierarchical clustering also pointed out a reversion (Fig.

S3): Expression profiles from initially presenescent cells expressing hTERT

were more similar to young cells than to senescent cells.

Why were few genes (Table S3) not reverted upon hTERT expression?

52 of 55 down-regulated genes showed already at least a 1.2-fold

change between young and middle cells, and only 9 of these displayed

an additional change in senescence arguing against regulation due to

senescence. Also, genes such as p16 contribute to senescence in a

telomerase-independent way (Herbig et al., 2004). Alternatively, timing

of expression might be important. Cells were infected with hTERT or

control constructs at PD 65 (old) and were presenescent at the time of

harvesting. Consequently, p16 was not yet increased to the level of

senescent cells, and suppression was thus not observed (Fig. S4).

We ruled out that hTERT itself had an effect on gene expression, as it

was recently shown that TERT can modulate transcription through direct

association with chromatin (Choi et al., 2008). Expression of hTERT in

young IMR90 cells that still possess a reservoir of long telomeres had no
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Fig. 1 Gene expression regulation in response to senescence is reverted upon hTERT expression. (A) Number of twofold regulated genes compared to young cells for the

indicated time points. (B) Hierarchical clustering of twofold regulated genes in senescent IMR90 cells compared to young cells. Relative expression values are indicated for:

young cells (PD 30) 3 repeats, middle cells (PD 50) four repeats, old cells (PD 70) three repeats and senescent cells (PD 80) 2 repeats. (C) TIF analysis: cH2AX colocalization

events in young and presenescent cells. Green signal: telomere specific FISH probe, red signal: DNA damage marker cH2AX. (D) Quanification of (C). (E) Hierarchical

clustering of senescence-regulated genes [same as in (A)] according to gene expression values in presenescent cells expressing hTERT or vector control. Relative expression

values are indicated. (F) TIF analysis: cH2AX colocalization events in presenescent cells expressing hTERT or vector control. Green signal: telomere specific FISH probe, red

signal: cH2AX. (G) Quantification of (F).

A genomics approach for senescence-specific genes, D. H. Lackner et al. 947

ª 2014 The Authors. Aging Cell published by the Anatomical Society and John Wiley & Sons Ltd.



effect on gene expression, with only hTERT itself showing a significant

change (Fig. S2). Examination of the number of TIF in presenescent cells

indicated a significant reduction following the expression of hTERT

(Fig. 1F,G). These data suggest that the majority of gene expression

changes in senescent cells happened as consequence of telomere

shortening and DNA damage signaling and that hTERT-mediated

reversion of gene expression changes was due to telomere elongation

and suppression of DNA damage.
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Fig. 2 Similar gene expression profiles in cells arrested in senescence, quiescence and in response to DNA damage by IR. (A) PCA of all arrays shows a distinction in overall

gene expression phenotypes between cycling and arrested cells. (B) Overlap of regulated genes in senescence, quiescence or in response to DNA damage (DDR arrested). All

overlaps are statistically significant (p-values <0.05). (C) Hierarchical clustering of regulated genes in either senescence, quiescence, acute DDR, or in cells arrested after DDR.
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There was strong enrichment for cell cycle and proliferation pathways

within the senescence-regulated genes (Table S1). Consequently, we

asked to what extent expression regulation in senescence simply reflects

changes due to cell cycle arrest and if we can identify senescence-

specific pathways that are not directly linked to the cell cycle. We

irradiated cells with 5 Gy of ionizing radiation (IR) and analyzed

expression 30 min after and when cells were permanently arrested

5 days later. Additionally, we analyzed gene expression patterns of

quiescent IMR90 cells, arrested by serum starvation. Principle component

analysis (PCA) showed that there was a distinction between gene

expression profiles from cycling and arrested cells (Fig. 2A): control

conditions and expression profiles from the 30 min time point after IR

clustered together, while profiles from senescent, quiescent, and IR-

arrested cells clustered together. 30 min post-IR, no genes showed a

significant down-regulation, and only three genes showed a significant

up-regulation: GDF15, BTG2, and p21, all direct p53 targets with

established antiproliferative roles (Rouault et al., 1996; Agarwal et al.,

2006; Sperka et al., 2012).

The number of genes regulated in quiescent and IR-arrested cells was

similar to the number regulated in senescence, with overlap between

regulated genes (Fig. 2B). While not all genes showed a twofold

regulation in all conditions, the general trend went in the same direction,

determined by hierarchical clustering (Fig. 2C), which recapitulated the

PCA. These data demonstrate that the majority of expression changes in

senescent cells was due to a stop in proliferation and cell cycle arrest and

was similar to other conditions that halt proliferation.

Lastly, we determined genes that exhibited senescence-specific

regulation and were not regulated as a response to DNA damage or

quiescence (for selection criteria see Experimental procedures) (Table S4).

Few pathways showed enrichment for regulated genes (Table S5), and

only few genes were responsible for the enrichment. There was

enrichment for regulators of cytokine signaling, due to down-regulation

of SOCS1, SOCS3, and LIFR, all of which have a reported role in negative

regulation of cytokine signaling, consistent with an increase in cytokine

signaling in senescent cells (SASP) (Copp�e et al., 2008). Analyzing gene

ontology (GO) terms, we found a strong enrichment for proteins that are

associated with the cellular membrane (Table S5), in agreement with

altered morphology and increased adhesion of senescent cells to the

extracellular matrix, usually mediated through membrane-associated

proteins.

We also focused on RFPL4A, which was specifically up-regulated in

replicative senescence (Fig. S1A-C, Table S4). Our qPCR data (Fig. S1A,B)

suggest that RFPL4A was regulated in an on-off fashion, as it was barely

detectable in young cells. RFPL4A is a putative ubiquitin-ligase and has

been shown to target cyclin B1 for degradation (Suzumori et al., 2003).

We confirmed up-regulation in replicative senescence at the protein level

(Fig. S1C), but over-expression of RFPL4A in young IMR90 cells had no

effect on proliferation or cell cycle progression. Still, RFPL4A is a potential

novel senescence marker.

Here, we described a novel and unique approach to senescence-

associated expression changes in human IMR90 fibroblasts: Most

importantly, by not only comparing endpoints (young and senescent

cells), but describing gene expression changes in cells as they progressed

toward senescence and the reversion of these changes upon hTERT

expression, we were able to generate a high-quality curated dataset that

reflects the dynamic content of the path to senescence.

We also demonstrated that there are only few pathways that are

uniquely engaged during replicative senescence and that the majority of

regulated genes is commonly altered in cells that are cell cycle arrested

due to other triggers, such as DNA damage or serum starvation.

Together with our data on hTERT re-introduction, this confirms that

replicative senescence is not a completely autonomous program, but a

specialized cell cycle arrest that occurs in response to nonrepairable DNA

damage, mostly at telomeric regions.

Global gene expression regulation during senescence has been the

topic of previous studies, but the combination of analysis presented in

our study is unique, especially as many published studies either use

oncogene-induced senescence (Chicas et al., 2010; Aksoy et al., 2012)

as model for senescence or grow cells at atmospheric oxygen levels (Kim

et al., 2013), both of which dramatically alter gene expression programs.

In conclusion, we provide the first study to describe gene expression

changes in replicative senescence in IMR90 fibroblasts grown at

physiological oxygen levels. Our data provide a framework and novel

potential candidates for future studies to identify truly senescence-

specific genes and their involvement in establishing and maintaining a

permanent cell cycle arrest.
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