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Abstract

Functional traits are increasingly used to assess changes in phytoplankton community structure and to link
individual characteristics to ecosystem functioning. However, they are usually inferred from taxonomic identifi-
cation or manually measured for each organism, both time consuming approaches. Instead, we focus on high
throughput imaging to describe the main temporal variations of morphological changes of phytoplankton in
Narragansett Bay, a coastal time-series station. We analyzed a 2-yr dataset of morphological features automati-
cally extracted from continuous imaging of individual phytoplankton images (~ 105 million images collected
by an Imaging FlowCytobot). We identified synthetic morphological traits using multivariate analysis and rev-
ealed that morphological variations were mainly due to changes in length, width, shape regularity, and chain
structure. Morphological changes were especially important in winter with successive peaks of larger cells with
increasing complexity and chains more clearly connected. Small nanophytoplankton were present year-round
and constituted the base of the community, especially apparent during the transitions between diatom blooms.
High inter-annual variability was also observed. On a weekly timescale, increases in light were associated with
more clearly connected chains while more complex shapes occurred at lower nitrogen concentrations. On an
hourly timescale, temperature was the determinant variable constraining cell morphology, with a general nega-
tive influence on length and a positive one on width, shape regularity, and chain structure. These first insights
into the phytoplankton morphology of Narragansett Bay highlight the possible morphological traits driving the

phytoplankton succession in response to light, temperature, and nutrient changes.

Morphology is the first characteristic we notice in any
organism, whether it is a human, a cat, a shellfish, or a micro-
organism. Cell morphology is also a primary criterion to clas-
sify unicellular organisms like phytoplankton into species,
both with light microscopy and from continuous imagery.
Phytoplankton are unicellular and colonial photosynthetic
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microorganisms that account for approximately half of Earth’s
primary productivity (Field et al. 1998). Their morphology
directly affects their fitness through its impact on nutrient
acquisition, light perception, cell division, defense against
grazing by herbivores, and buoyancy (Litchman and Klausmeier
2008; Naselli-Flores and Barone 2011; Marafién 2015). Morpho-
logical characteristics are, as such, functional traits that can
impact growth, reproduction, and survival (Litchman and
Klausmeier 2008; Martini et al. 2021). Although hard to measure
and to define in a universal way, cell size is considered a master
trait among functional traits. In two dimensions, it can be esti-
mated from surface area, major axis, or perimeter, but it can also
be replaced by estimations of cell volume for relative abundances
(e.g.: Hillebrand et al. 1999), more accurate for biomass and car-
bon analyses. Cell size is a well-defined metric in microscopy but
only includes the part of the cell within the cell wall; if used
alone, it thus occults the more complex morphological character-
istics. Extensions and protuberances, for instance, play a major
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role in modulating the sinking velocity of phytoplankton (Naselli-
Flores et al. 2020), and an increase in size will affect differently
the sinking velocity of an elongated or a spherical cell (Durante
et al. 2019). At sub-saturating light, elongated cells also have
higher growth than spherical or ellipsoidal ones, likely due to a
better exposition of chloroplasts (Naselli-Flores and Barone 2011).

Differences in morphological characteristics drive the classi-
fication of phytoplankton into different phyla, families, gen-
era, and species. Traditionally, water was collected with bottles
or plankton nets and later analyzed under light microscopy,
marking the creation of the first long-term plankton time
series. Imaging devices have improved our capacity to monitor
phytoplankton on broader temporal and spatial scales using
automatic classification (Irisson et al. 2022) but the focus
remains on using the morphology to infer the taxonomy. The
degree of precision at the taxonomic level can also differ
widely between datasets depending on both the quality of the
annotated images and the algorithm used for classification.
Obtaining accurate data both with light microscopy and imag-
ery thus requires time and taxonomic expertise, and the eco-
logical interpretation of the data relies on the quality of the
identification. However, since morphology is the main criteria
for discriminating taxa, it also holds, by itself, important addi-
tional ecological value independent from the quality of the
taxonomic information.

Morphological analysis reduces high-dimensional datasets
of multiple species to a few selected morphological traits char-
acteristic of the community. By taking into account functional
redundancy among taxa, it groups species with similar fea-
tures without reducing the ecological information (Abonyi
et al. 2018). Simplifying phytoplankton communities to a set
of common functional traits also enables comparing environ-
ments based on phytoplankton functional roles in the ecosys-
tems even when species might differ (Salmaso et al. 2015).
Freshwater phytoplankton morpho-based classifications, for
instance, can be better explained by environmental variables
than phylogenetic and species-based classifications (Kruk
et al. 2011). Here, we investigate cell morphology that can
now be automatically studied using high throughput imaging
systems. Imaging devices such as the CytoSense (Cytobuoy b.
v., Dubelaar et al. 2000) or the Imaging FlowCytobot (IFCB,
Olson and Sosik 2007) combine flow cytometry and imagery,
targeting phytoplankton populations respectively from
<1 pym up to 4 mm (CytoSense) and from ~ 10 to 150 ym
(IFCB). For each image, associated software (e.g., CytoClus for
the CytoSense) or open-source processing codes (Sosik and
Olson 2007, for the IFCB) provide easy, fast, reliable, and
quantitative measurements of cell morphological features. For
example, Fragoso et al. (2019) used eight morphological fea-
tures derived from discrete water samples analyzed with a
CytoSense to characterize trait variability of phytoplankton
and plastid ciliates in the subpolar North Atlantic. Dunker
(2020) combined taxonomic and morphological information
from discrete samples run with an ImageStream®X MKk II to
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characterize the seasonal changes of cyanobacteria and green
algae in a pond. In parallel to the recent development of these
instruments, several morphology-based approaches, mainly in
freshwater ecosystems, have been developed to estimate the
functional and morphological heterogeneity of phytoplank-
tonic communities (Weithoff and Beisner 2019). Focusing on
freshwater phytoplankton, Reynolds et al. (2002) formalized
decades of studies of functional groups into 31 associations of
organisms sharing similar morphological features, habitats, or
tolerances to nitrogen, light and carbon. On the other hand,
Kruk et al. (2010) focused on morphology and developed
morphology-based functional groups using traits determined
from microscopy including volume, surface area, maximum
linear dimension, aerotopes, flagella, mucilage, heterocysts,
and siliceous exoskeletal structures. These approaches, devel-
oped for freshwater lakes, have paved the way for automated
and solely morphological approaches for marine phytoplank-
ton. However, they either make a detour through inferring
morphological features from taxonomy, require time consum-
ing light microscopy measurements, or include parameters
that are not as easily detectable by imagery and automatic
classification (e.g., mucilage, flagella), reducing the possible
application to large temporal and spatial scales.

Narragansett Bay has been studied via weekly sampling
since 1959 and the general taxonomical seasonal pattern is
thus well known, offering a knowledge foundation to build
upon and expand towards morphology. This coastal estuary is
characterized by diatom domination in winter—spring and late
summer months and flagellate domination in late spring-early
summer and autumn (Pratt 1959). The winter-spring bloom
supports fast-growing species with sizes greater than 20 ym
and consists in the succession of different populations; a dom-
inant taxon, morphologically similar or not, replacing one
another within a few weeks (Gowen et al. 2012). Karentz and
Smayda (1998) detailed the succession, starting with winter
species with low temperatures for optimal growth such as
Thalassiosira nordenskioeldii and Detonula confervacea, moving
to spring species such as Leptocylindrus danicus, often highest
in abundance in May, then to summer species like Heterosigma
akashiwo and Prorocentrum sp., motile and occurring at higher
temperatures, and eventually fall species such as Thalassiosira
rotula. Other important species can have both a warm-water and
cold-water peak (e.g., Skeletonema costatum and Rhizosolenia
setigera) or may, in the case of Asterionellopsis glacialis certain
years, dominate the population almost every month except dur-
ing the summer.

All species mentioned above have common morphological
characteristics as well as unique features that can be captured
by IFCB images (Fig. 1). Looking only at morphology, we
might expect similar signals in elongation from communities
dominated by chain-diatoms, while the width and shape of
individual cells would allow for the taxonomic differentiation.
Diatoms also tend to decrease in size throughout their life
cycle due to asexual reproduction (Amato et al. 2005).
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Fig. 1. Imaging FlowCytobot images of some of the most common phytoplanktonic organisms observed in Narragansett Bay at the GSO Pier. Included
are chain-forming diatoms (Asterionellopsis glacialis, Skeletonema sp., Cerataulina sp., Leptocylindrus sp.), diatoms that can be found as single cells or as
chains (Thalassiosira sp., Chaetoceros spp., Rhizosolenia sp.), the dinoflagellates Dinophysis norvegica, Prorocentrum micans, and Margalefidinium sp., and

the image of a Cryptophyte.

Therefore, as one dominant chain-diatom replaces the other
during the winter-spring blooms, there might be a small
decrease in size. If dominant, species such as Chaetoceros spp.
or A. glacialis should increase measures of perimeter and com-
plexity due to their structure, spines, or setae while
cryptophytes, dinoflagellates, and flagellates, on the contrary,
would be expected to have a more homogeneous shape.
Approaching these signals by the prism of morphology allows
us to focus on the changes that are significant for the commu-
nity. For instance, the replacement of a chain-diatom domi-
nated population by another chain-diatom may not affect the
predator-prey relationship of phytoplankton with zooplank-
ton. Dominant phytoplankton groups are highly variable from
1 yr to the next, it is thus difficult to identify recurring yearly
patterns in taxonomy. On the other hand, the morphological
succession and functional role in the ecosystem may remain
the same if taxa are replaced by others with a similar morphol-
ogy (Gowen et al. 2012). By considering the whole commu-
nity, we avoid focusing on only a small number of species
selected based on their abundance—a possible bias towards
bloom periods with high abundances—and include cells like
nanophytoplankton, which are harder to detect and enumer-
ate via light microscopy.

Here, we want to characterize the main morphological vari-
ations of these coastal phytoplankton communities by com-
bining a trait-based approach with an automatic imaging
system. Based on the winter-spring bloom usually detected
with taxonomic analysis, we hypothesize that diatoms, and
specifically chains, would dominate the morphological signal
in winter and spring with consistent domination of elongated
communities throughout this period. There may however be
more changes in other morphological characteristics due to
other differences between the successively dominant chain
species and as environmental conditions change. On the con-
trary, we hypothesize that summer would show a very differ-
ent morphological signal mainly dominated by smaller
organisms. To study these variations of the morphological

signal, we use morphological features automatically extracted
from individual cell images collected using an IFCB at a
coastal time-series station over a 2-yr period. Using multivari-
ate analysis, we create a morphological space capturing the
main morphological variations of phytoplanktonic cells.
Finally, we characterize the temporal dynamics of phytoplank-
ton morphology within this morphological space in relation
to environmental changes.

Methods
Sampling

Water samples were continuously collected at the University
of Rhode Island, Graduate School of Oceanography Pier (GSO
Pier, total depth: 2 m, Lat: 41.4923, Lon: -71.1489,
11 November 2017 to 30 October 2019) using an IFCB. This
station is located on the west shore of a temperate and shallow
estuary, Narragansett Bay, on the northeast coast of the
United States (Fig. 2). Narragansett Bay is New England’s largest
estuary and a populated area subject to anthropogenic pressures
(Roman et al. 2000; Narragansett Bay National Estuarine
Research Reserve 2009). The Bay is well mixed with similar
salinity and nutrient concentration at the bottom and surface.
Nutrients peak in fall and are close to depletion in spring-
summer (Heffner 2009). Large islands complexify the circula-
tion of water masses in the southern half of the Bay with the
water flowing in through the East passage and out the West
passage even though deeper water may also flow north in or
out of the Bay depending on the tides (Kincaid et al. 2008).

Phytoplankton imaging

The IFCB combines a flow cytometer and a camera to record
images of phytoplankton between 10 and 150 ym (Olson and
Sosik 2007). The water is pumped from 1.5 m deep into a small
research building located on the pier and filtered with 400 and
150 ym screens before entering the IFCB. Triggered by fluores-
cence, the instrument records a file of images approximately
every 20 min and 236 image descriptors are automatically
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Fig. 2. Bathymetric map of Narragansett Bay with sampling stations. Sampling locations for phytoplankton imaging, physical variables, nutrients (GSO
Pier), and light (Kingston) are indicated with a black dot and label. The level of gray represents the water depth with darker tones indicating greater
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Fig. 3. Example of IFCB image processing for a chain (top) and an individual cell (bottom). The MATLAB® image processing code detects the edges of
organisms on the image and converts the image into blobs (see Sosik and Olson 2007). The blobs are the organisms detected on the image (i.e., white
part of the black and white image), it can be a single cell or several cells depending on the morphology. Based on the original gray-scale and processed
image, the code computes 236 image descriptors covering different measures of size, contrast, perimeter, circularity, and so on (see Supporting Informa-

tion Table S1 for the morphological descriptors that were used in this analysis).

measured for each individual image (Sosik and Olson 2007,
https://github.com/hsosik/ifcb-analysis/wiki) (Fig. 3).

Environmental variables

Environmental parameters were compiled from two loca-
tions (Fig. 2). Temperature and salinity were continuously
measured at 15-min intervals at the GSO Pier by the Narragan-
sett Bay Fixed-Site Monitoring Network (NBFSMN, contact:
Heather Stoffel) and nutrients (silica, phosphate and nitrogen)
were measured weekly at the same location by the Marine

Ecosystems Research Lab (Reed and Oviatt, 1976-2019, Marine
Ecosystems Research Laboratory) Solar radiation was measured
every 5 min in Kingston, west of the Pier, by the U.S. Climate
Reference Network (https://wwwl.ncdc.noaa.gov/pub/data/
uscrn/products/subhourly01/).

Morphological analysis

The morphological analysis of the phytoplankton images
involved three steps (Fig. 4): data preprocessing, dimension
reduction to define morphological traits, and time series analysis.
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Fig. 4. Workflow of our phytoplankton morphological analysis. (a) The data processing consists of selecting the features relevant for morphology,
removing the nonphytoplankton images, and subsampling the dataset with 250 images per sample, (b) the PCA was used for dimension reduction to
create a morphological space and, using the SYM matrix, we reprojected every image in this morphological space, (c) the time series analysis included
looking at the morphological succession and the environmental forcing through pairwise mean comparison statistical test, RDA, and Bayesian DLM (West

and Harrison 1997).

Data preprocessing

The IFCB is deployed in a flowthrough system; if the
pump is not operating optimally, bubbles can lower the cell
counts and eventually stop the flow. We used manual qual-
ity control to remove samples that had artifacts or bubbles.
We also removed all files with less than 250 cells mL™' and
less than 250 images to exclude the files that would not
accurately represent the community. Manually annotated
images via the tool IFCB annotate (Woods Hole Oceano-
graphic Institution, https://ifcb-annotate.whoi.edu/) were
used to create a classifier based on a Random Forest algo-
rithm (Breiman 2001). This led to the removal of images
classified as  “bubbles”,  “detritus”,  “zooplankton”,
“ciliates”, and images within the category “unclassified”
with an area greater than 90,000 pixels to avoid nematodes
or macroalgae. The removal of these classes allowed for
keeping all images classified as phytoplankton, that is,
68,539,385 images of the 104,613,040 initial images set for
26,720 samples. A simple classifier with very few broad clas-
ses can also be used when no previous classification is avail-
able. The classification mentioned above was later used to
extract species composing the greatest percentage of the
community every week.

Due to the redundancy of our high-frequency data and the
computation cost of working with more than 68 million
images, we chose to adopt a subsampling strategy to create the
morphological space. We randomly chose 5% of the total sam-
ples and extracted 3, 10, 50, 100, 250, 500, and 1000 random
images per sample and repeated this process 10 times to

estimate how a principal component analysis (PCA; Legendre
and Legendre 1998) would be affected by the number of
images extracted. Considering the extent of our dataset and
the desire to also capture rare events, we chose to subsample
250 images per sample since the variation between replicates
converged with this sample size and no greater value was
gained by sampling 500 or 1000 images (see Supporting Infor-
mation Figs. S1, S2). This corresponds to 6,680,000 images for
26,720 samples.

Dimension reduction: Defining a morphological space from
individual phytoplankton images

We used 45 morphological features (see Supporting Infor-
mation Table S1) of the 6,680,000 subsampled phytoplankton
individual images to define a morphological space using mul-
tivariate analyses in an approach similar to the one used for
copepods by Vilgrain et al. (2021). Among the 236 image
descriptors that were automatically calculated on each image
by the MATLAB® routine, the 45 features selected were impor-
tant in describing the whole cells and not only part of the
image, hence having ecological importance. They correspond
to the size, volume, symmetry, texture, shape, colony, and
chain measures. This includes, among others, area, convex
area, major axis, minor axis, circularity, the ratio of perimeter
over major axis, levels of gray, number of blobs detected on
the image (see Supporting Information Table S1 for a full list
and definitions). After a Box Cox transformation (Box and
Cox 1964) on skewed variables (all but eccentricity, extent,
number of blobs, circularity, ratio of area over perimeter
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squared, and the features related to distance or levels of gray)
and normalization, we generated an observation-weighted
PCA to define a morphological space. The interest of multivar-
iate analysis such as PCA resides in the reduction of complex
data into a small number of composite axes correlated with
the original variables but orthogonal, thus independent from
each other. However, the PCA gives more weight to the most
extreme values even if they are extremely rare. To avoid giving
an out-of-proportion weight to very extreme but very rare
morphologies and to better represent the most abundant mor-
phologies, we chose to implement an observation-weighted
PCA using the concentration of the samples as weight. The
weight was calculated by Eq. (1) with N the number of images
in the sample, 0.25 mL min ! the flow speed, runTime the
time the sample was run, and inhibitTime the time the IFCB
was writing images to the disk and not recording.

- > 1)
- (runTime—inhibitTime) *
0.25 x enTime-inhibitTime)

The significant axes of the observation-weighted PCA were
determined using Cattel’s scree test, also called the visual
elbow method (Cattell 1966, see Supporting Information
Fig. S3), and used as new synthetic morphological traits. To
obtain the full picture of the community for every sample, we
used the singular value decomposition matrix from the PCA
to reproject every one of the 68,539,385 images into our mor-
phological space. The details of the data preprocessing,
subsampling, and dimension reduction are included in a
GitHub repository, along with a 2-d subset of our dataset and
accompanying data files for illustration (https://github.com/
VirginieSonnet/spidr).

Statistical and environmental analyses

We used a Wilcoxon test of comparison of means to com-
pare the inter-annual seasonal variability of each of the mor-
phological traits. To explore the potential relationships
between morphological traits and environment variables on a
weekly time scale we ran a redundancy analysis (RDA; Legen-
dre and Legendre 1998) with light, salinity, temperature,
nitrogen, phosphate, and silicate as explanatory variables. The
RDA, similarly to the PCA, creates composite axes that are
orthogonal to each other and represent the variance explained
by the environmental variables. Going down to a finer time
scale, at the hourly level, we used Bayesian DLM (West and
Harrison 1997) to explore how these relationships between
morphology and environment may change over time. In a
DLM, environmental parameters can be either static (as in a
regular linear regression model) or dynamic, with regression
coefficients changing over time. DLMs are especially suitable
for complex time series as they can handle non-stationary pro-
cesses and missing observations (Laine 2020). DLMs are repre-
sented as a system of two equations: the observational
equation, modeling the time series with static and dynamic

Phytoplankton morphological succession

parameters, and the evolution equation, controlling how the
dynamic parameters change over time. The observations Y;
were modeled as dependent of §;, a seasonal component, Z;, a
set of covariates whose vector of regression coefficients  does
not change over time, F, a set of covariates (including a
dynamic intercept) with dynamic regression coefficients x,,
and v, the observation error:

Yi=8+Zp+Fxi +ut. (2)

The dynamic intercept and the observation error bring addi-
tional information on top of the covariates: the former is the
value of the response when all the other predictors are equal
to zero while the latter measures the component not captured
by the model. Different specifications with several combinations
of covariates and static/dynamic coefficients were considered.
Model selection was conducted to maximize the marginal log-
likelihood. After testing whether each covariate was better
modeled with either fixed or dynamic parameters, the best fit
was obtained with a model including temperature, salinity, and
light with dynamic parameters, no fixed parameters, a 24-h sea-
sonal component, and a dynamic intercept. All dynamic compo-
nents were normalized and modeled with random walks as we
expect the regression coefficients to be similar to their value at
the previous time. The dynamic regression coefficients x, were
estimated from the evolution equation below:

Xt = GiXs.1 + oy, 3)

where G; is the matrix of evolutions coefficients and w; is a
Gaussian evolution error.

Although DLM parameter estimation is often carried out
using Markov Chain Monte Carlo algorithms, here we used a
more recent and faster approach based on the Integrated
Nested Laplace Approximation (INLA) (Rue et al. 2009; Ruiz-
Cardenas et al. 2012). The codes for the morphological analy-
sis and figures can be found in a second Github repository
(https://github.com/VirginieSonnet/mapi).

Statistical software

Data preprocessing steps were run with bash scripts from the
terminal for efficiency. We used MATLAB® 2019a (The Math-
Works, Inc. 2019) to extract morphological features from the
images and R 3.6.0. (R Core Team 2019) for statistical analyses.
The main packages used include “tidyverse” (Wickham 2017) for
data manipulations and graphics, “car” for Box-Cox transforma-
tion (Fox and Weisberg 2011), “FactoMineR” (L€ et al. 2008) for
PCA, “factoextra” (Kassambara and Mundt 2017), and “INLA”
(Martins et al. 2013, www.1-inla.org) for the DLM.

Results

Morphological space
The three first axes of the PCA were significant and repre-
sented 76.9% of the morphological variations of the
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phytoplankton cells (Fig. 5). We also considered the 4™ axis
for its ecological significance as it allows us to differentiate
between chain structures. The 1% axis of the morphological
space (PC1, 46.2% of the variance) corresponded to elonga-
tion. It was driven by the measures of major axis length, cell
perimeter, and the different measures related to the surface
area, hence separating longer and bigger cells (PC1 > 0) from
smaller ones (PC1 < 0). The 279 axis (PC2, 21.4% of the vari-
ance) represented the cell width. It was mainly driven by the
minor axis length and the ratio of area over perimeter, both
characteristics of the width of the cells, hence separating more
circular and wider cells (PC2 >0) from narrower cells
(PC2 < 0). The biovolume and area contributed to both PC1
and PC2; while the area was more correlated with PCI,
biovolume was more correlated with PC2. The 3™ axis (PC3,
9.3% of the variance) represented cell shape complexity or
regularity. It separated cells with a simple shape (PC3 > 0),
that is, regular cells having a high ratio of convex perimeter
over perimeter, generally good symmetry (low Hausdorff dis-
tances after rotation), and a small difference between the area
and the convex or bounding box area (high solidity and high
extent), from cells with complex shape (PC3 < 0) with a high
ratio of perimeter over major axis. Eventually, the 4™ axis
(PC4, 4.1% of variance) is more complex to interpret but,
when interpreted in conjunction with PC1, can help differen-
tiate chain structures. It is mainly driven by the median dis-
tance between points along the perimeter and the number of
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blobs that can be detected on each image, which corresponds
to the number of different enough entities for the processing
software to consider them as different cells. Both of these mea-
sures, although in opposite directions along the PC4 axis, can
be seen as chains structure measurements: very elongated and
thin chains with little difference between the cells
(e.g., Leptocylindrus minimus) will have a very high median dis-
tance between points along their perimeter but most likely
will not be detected as several blobs while chains with very
distinct chloroplasts (e.g., Skeletonema sp.) or connected by
threads (e.g., Thalassiosira sp.) are likely to have more than
one blob detected and thus have more negative values along
PC4. When PC1 values are high, meaning organisms are elon-
gated, PC4 can be used to differentiate the average chain struc-
ture. Table 1 illustrates the values of the main correlated
variables for the average and extreme values of each principal
component.

Morphological succession

The temporal evolution of the four main axes of the mor-
phological space, that is, the main morphological traits char-
acterizing the phytoplankton community, revealed complex
successions of morphologically different communities (Fig. 6)
and contrasted seasonal and interannual patterns (Fig. 7).
Contrary to our expectation, there was no clearly defined sea-
sonal pattern for cell morphology. Instead of observing an
increase in length in spring and a decrease in summer, the
average phytoplankton community length (PC1) oscillated,
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Fig. 5. Description of the morphological space of phytoplankton cells. (@) Main morphological features (i.e., with a cos? > 0.7 and only one variable for
very correlated groups, for example, area for area, summed area, convex area) in the 1°* two dimensions PC1 and PC2 of the morphological space. (b)
Main morphological features (i.e., with a cos? > 0.2) in the 3™ and 4" dimensions PC3 and PC4. The size of the arrows materializes the importance of
the correlation and, its direction, the sign of the correlation (positive or negative). The angle indicates the axis that is correlated with this variable: if the
arrow is parallel to an axis, it is highly correlated, perpendicular means no correlation, and a 45° angle indicates a correlation with the two axes. Individ-
ual images with extreme values along each axis and in the center of the morphospace are shown to illustrate that PC1 represents cell length, PC2 cell
width, PC3 cell shape regularity, and PC4 differences in the structure of chains detected. An extra image of Thalassiosira sp. is added to (b) to help

illustrate PC4.
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Table 1. Range of correspondences between principal components and main correlated variables. The general average and the aver-
age of the 5% having the maximum and minimum values along each principal component are indicated with the corresponding values
for their most correlated variable(s). Values are rounded to the nearest integer for Length and Width and to the 1°* decimal for Shape reg-
ularity and Chain structure. Biovolume was added to PC1 and PC2 because of its contribution to both axes.

Length Width Shape regularity Chain structure
Major Biovolume Minor Biovolume perim. hflip med. nb.
PCl  axis (um) (um?) PC2 axis (um) (um?) PC3 maj (nm)  PC4  dist blobs
5% min -6 6 62 -6 3 66 —4.4 2.4 1.4 -3.2 0.6 2.1
Mean 1 17 493 0 6 493 0.5 2.8 0.4 0 0.7 1.1
5% max 10 94 3744 7 16 3996 3.7 3.7 0.2 2.5 1.2 1
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Fig. 6. Average value per hour of the main morphological traits (i.e., main axes of the morphological space) of the phytoplankton community in Narra-
gansett Bay from November 2017 to October 2019. The 1% (a), 2" (b), 3™ (c), and 4™ (d) morphological traits, respectively, representing the length,
the width, the shape regularity, and the structure of chains are shown. For a better visualization of the trends, the curves were smoothed 5 times with a
weighted moving average over a window of 121 h and colored on top of the hourly averaged observations in gray. For reference, the range of the most

correlated contributor for each component is indicated on the right.

suggesting a succession of communities characterized by
smaller and longer cells (Fig. 6a). The length was generally
lower in summer, but we saw several rises over the summer in
2018 and a peak—as important as the winter peaks—in
September 2019. Length was also significantly higher in 2019
(p-value < 2e-16, see Fig. 7a). Although missing values cer-
tainly increase the signal, it illustrates significant inter-annual
variability and the importance of long-term time series. Cell
width (PC2) significantly decreased in April 2018, coinciden-
tally with a rise in length, as well as in late December 2018
(Fig. 6b). There might be a third major decrease in April 2019
but too many data points are missing to draw any robust con-
clusions. Cell shape regularity (PC3) also varied with time
(Fig. 6¢): phytoplankton communities generally had more reg-
ular shapes in autumn and late spring and more complex

shapes in February—-March and summer (Fig. 7c). PC4 does not
display a general seasonal pattern but when considered during
the periods of high PC1, we can see that the February 2018
length increase was coupled with a low PC4 and thus included
more chains with distant cells compared to the bloom of
March 2018 (Fig. 6d). Similarly, the December 2018 and
February 2019 length increases had lower PC4 values than
March 2019, indicating more chains with differentiated cells.

There was high inter-annual variability between the years
2018 and 2019 (Fig. 7) for all the morphological traits but par-
ticularly in summer for the length and width, significantly
higher in 2019 (p-value < 2e-16) and with little overlap in
their distributions. Generally, for each season the length,
width, shape regularity, and clearly connected chains were
higher in 2019 than in 2018.
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Fig. 7. Distribution of morphological traits per season and per year. The distributions are colored by season (winter in blue, spring in red, summer in yel-
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Morphological response to environmental forcing

The RDA run on the weekly averages explains a significant
proportion of the variance (p = 0.001, R*-adjusted = 0.18,
Fig. 8) but only the 1°' axis, constraining 17.6% of the vari-
ance, was significant (p = 0.001). Light (p = 0.001), nitrogen
(p = 0.001), silicate (p = 0.001), and, in a lower measure, tem-
perature (p = 0.02) are the significant drivers of the RDA.

Cell length is strongly negatively correlated with salinity
and silicate and negatively correlated with nitrogen. Cell
width and clearly connected chains are negatively correlated
with silicate, nitrogen, and salinity while shape regularity is
positively correlated with them but negatively correlated with
light. Along the 2"¢ axis, temperature is slightly negatively
correlated with length and slightly positively correlated with
uniform chains. Temporally, the RDA also reveals interannual
variations in relation with environmental conditions, with
larger and thicker cells in 2019 compared to 2018, with the
addition of the coldest months of 2018 (December and
January).

Bayesian DLM (Fig. 9) shows that at the hourly timescale, tem-
perature is the factor with the highest magnitude coefficients,
hence the one explaining most of the variability within the mor-
phological signal. Similar to the RDA, temperature has a general
positive influence on chain structure and a negative influence on
length. However, for both morphological variables, this influence
seems to decrease and sometimes even reverse in summer. The
clear positive influence of temperature on width throughout the
time series, contrary to the absence of a relationship in the RDA,
could indicate that the daily cycle might influence this morpho-
logical variable. Salinity has a general negative influence on chain
structure throughout the time series and a positive one on shape
regularity but only until September 2018. Light seems to be gen-
erally positively influencing width and shape regularity, indicat-
ing that a daily cycle might be significant. The intercepts model
the baseline characteristics of the signal when the environmental
variables are equal to O; they are generally negative in 2018 and
positive in 2019 for length, width, and shape regularity, showing
an increase in those measures and conversely for chain structure.
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it is negative.

Main phytoplankton groups

Looking through the bank of images for the winter-spring
2018-2019, we can identify that the long and medium thick
organisms in December 2018 are mostly driven by Skeletonema
sp. and the drop in width at the end of December relates to an
uptick in Leptocylindrus sp. in the community (Fig. 10). The
thicker and less regular organisms observed in February 2019
are driven by Thalassiosira sp. The last peak in size in March
2019, which is slightly smaller, has similar values in width as
the previous peak but less regular organisms and more uni-
form chains; being driven by an increase in chains of
Chaetoceros spp. The nanophytoplankton are present year-
round and make up a high percentage of the concentration in

the samples, including in the winter-spring season, which
explains the consistent decrease in elongation observed in-
between diatom blooms during this season.

Discussion

Relationship between environment and phytoplankton
morphology

The strongest feature of our time series resides in the deep-
ened oscillations in length during the winter and spring com-
pared to the summer and fall. This is accompanied by a trend
to go, between peaks in elongation, from regular chains with
spaced cells to clearly connected chains. This implies not only
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Fig. 10. The weekly average percentage of the community that are represented by the most dominant phytoplankton groups. The groups displayed
are the ones representing the highest percentage of the community during at least 1 week of the time series (indicated in a darker color), excluding the
unclassified, bubbles, and bead images and with the addition of Cerataulina bergonii. The names appear as they are defined by the classifier developed by
the Mouw lab, grouping Chaetoceros spp. by single cells or colonies forming straight (or curly) chains rather than species. The pointed nanophytplankton,
square nanophytoplankton, and round nanophytoplankton all refer to different morphologies of nanophytoplankton.

a higher number of chains but also that these chains are more
equally spaced. They are either linked by thin threads or with
chloroplasts concentrated in one part of the cell such that the
junctions between cells are not defined well enough for the
algorithm to detect them. This results in accurately consider-
ing that there is more than one cell on the image
(e.g., difference between Skeletonema sp. and Cerataulina sp.).
We observe that length correlates with lower salinity as
winter mixing helps sustain large, non-motile cells (Stoyneva
et al. 2007). Bigger organisms, whether as individual cells or
chains also have an advantage against predation; data on
copepods and zooplankton in Narragansett Bay show that
increases in size occur right after increases in zooplankton
concentration (Supporting Information Fig. S5). On the con-
trary, smaller phytoplankton in summer and fall are correlated
with higher salinity and generally higher nutrient concentra-
tion (RDA, Fig. 8); before the blooms of long-chain diatoms
deplete both silicate and nitrogen in winter-spring. Silicate
shows the highest concentrations in summer and fall due to
the low counts of diatoms. This occurs while nitrogen is
depleted throughout the spring and summer but increases in
fall before the chain diatoms blooms occur during the colder
months. In summer, when turbulence is too weak to
resuspend phytoplankton, smaller and buoyant cells have an
advantage as they can regulate their vertical position, select

for the optimal light and nutrient conditions, and avoid sink-
ing losses (Findlay et al. 2001; Huisman et al. 2004; Strecker
et al. 2004). Zohary et al. (2017) also hypothesize that this
adaptation enables species to adjust their sinking velocity in
different seasons since sinking velocity naturally increases
with cell size. When temperature increases, changing the den-
sity and absolute viscosity of the water thus increasing the
sinking velocity, it pushes phytoplankton towards smaller cell
size to compensate and keep a constant sinking velocity
(Naselli-Flores et al. 2020). The width, independently from the
length, tends to oscillate throughout the time series and gen-
erally increases with temperature, with higher temperature
seemingly favoring more circular organisms than elongated
ones. Throughout the winter, the width of the longest organ-
isms also slightly increases.

Shape regularity oscillates throughout the time series and is
high at the start of winter before slowly decreasing as nutri-
ents also decrease. A decrease in regularity due to spines
increases the form resistance factor (Walsby and
Xypolyta 1977; Padisdk et al. 2003), which lowers the sinking
speed of the chain diatoms throughout winter. As nutrients
are taken up and decrease, cells diverging from the regular
spherical shape also increase their surface area to volume ratio
and, de facto, their nutrient uptake efficiency (Karp-Boss and
Boss 2016). However, a reduction in size is another possibility
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to increase the nutrient uptake efficiency and such small cells
are often more regular in shape. The nitrogen-depleted waters
starting in March and especially the summer stratified waters
offer thus opportunities for smaller cells as well as cells with
more complex shapes, motile species, nitrogen fixers, and
mixotrophic species (Litchman and Klausmeier 2008).

The measure brought forward by the 4™ axis of the PCA
relates to how many cells the algorithm detects on one image
and how elongated they are. The same pattern occurs both in
winter 2018 and 2019: as dominant chains succeed each
other; the dominant chain structure also changes. Chains tend
to increase as the water is cooler and less stratified (Kenitz
et al. 2020), when the protection offered by a chain against
predation by zooplankton might overcome the loss of effi-
ciency in resource acquisition compared to single cells
(Pahlow et al. 1997). However, the change in chain structure
between different high elongation peaks is also an indication
of how close the cells in the chains are to each other, either
tightly linked together with many chloroplasts or, on the con-
trary, far apart with mainly chloroplasts in the middle of the
cells or only linked by thin threads. As nutrients get depleted
throughout the winter and spring, the uniformity in chains
associated with size increases, showing that cells are more
tightly linked with each other. A gain in surface area and thus
efficiency in nutrient travel time for thin, elongated chains
that are directly connected rather than linked by threads
might be one of the drivers.

The effect of the spring-neap tide cycle on the level of
mixing and the daily tidal cycle bringing organisms from
upstream and downstream have been shown to influence the
phytoplankton communities in estuaries (Cloern 1991;
Sin 2000). The dynamic modeling approach applied to the
hourly data shows that the relationship between environmen-
tal and morphological variables can change through time and
can differ from the weekly time scale: temperature, for
instance, incorporates both the tidal and daily signal and has
a generally positive impact on width and chain structure and
negative on elongation. The positive influence of light on
width and shape regularity also at the hourly time scale con-
firms that there may be significant variations throughout the
day. These 1° results highlight the role of these smaller time
scales. In the future, the hourly resolution of the dataset will
allow deeper analysis of the periodicities related to the sea-
sonal, daily, and tidal cycles that might explain part of the
morphological variability observed here.

Phytoplankton morphology and taxonomy in
Narragansett Bay

Phytoplankton display a wide range of sizes which is
known to be a key parameter in phytoplankton ecology. Thus,
we expected that a combination of size measures would be the
main driver of morphological variation. We observed commu-
nities of longer and more regular cells in winter and early
spring, in agreement with the diatom domination in

Phytoplankton morphological succession

Narragansett Bay described by Pratt (1959) and Durbin et al.
(1975). Indeed, diatoms are known to form very long chains
and thus, would generally be the organisms with the longest
elongation in our dataset. The number of blobs detected was
the highest in winter but the lowest in spring, highlighting
different diatoms dominate these seasons with winter diatoms
without spines, more regularly shaped and more equally spa-
ced than spring ones since the software was able to differenti-
ate several cells on the image. The succession of peaks in
length observed in winter and spring indicates that there are
discontinuities in-between the different blooms: there is not
just one diatom species dominating and being gradually rep-
laced by a morphologically similar species, the diatom domi-
nation decreases before a bloom morphologically different
from the previous one takes over. Adding taxonomic informa-
tion from automatic classification confirms the succession of
Skeletonema sp., Leptocylindrus sp., Thalassiosira sp., and
Chaetoceros sp.-dominated communities. Since these commu-
nities are not gradually replacing each other, the dominance
of diatoms decreases between blooms and the morphological
signal comes back to a community dominated by smaller
organisms with a regular shape; the taxonomic data corrobo-
rates the dominance of nanophytoplankton during those
periods. As such, the morphological analysis allows us to dis-
tinguish which morphological traits are significantly changing
throughout the blooming season: the general morphology
decreases in length throughout the blooms while increasing
in width and shape complexity. Skeletonema sp. have been
extensively studied in Narragansett Bay and are considered
the most abundant phytoplankton species of the Bay
(Borkman and Smayda 2009; Windecker 2010; Canesi and
Rynearson 2016). Although its highest cell counts have histor-
ically been recorded in late winter—early spring and mid-
summer (Karentz and Smayda 1984), our analysis shows that,
for our time period, the morphological signal of Skeletonema
sp. most likely drives only the first winter-spring blooms and
is not significantly influencing the summer communities.
Morphological analysis provides an easy and fast way to inves-
tigate general and functional community changes without
prior taxonomic identification and reduces the complexity of
the data. Although species identity provides equally important
information (Salmaso et al. 2015), the combination of both
taxonomic and morphological information shall provide a
more complete understanding of community, functional, and
intra-specific changes.

Deriving morphology from imagery

The use of continuous imaging devices offers new opportu-
nities to monitor phytoplankton communities, especially to
study the triggers and developments of harmful algae blooms
(Campbell et al. 2013; Anderson et al. 2019). Indeed, those
high-throughput devices allow investigations on a much finer
time scale than discrete sampling. They also give the possibil-
ity to go back to the high-quality images at the origin of the
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signal to perform further analysis retrospectively. Despite the
cost of maintenance and computing (i.e., machine learning
analysis of the images), their efficiency is high in comparison
to the time-consuming task of identifying and measuring phy-
toplankton cells individually under a microscope. Similar to
any net sampling, most of the imaging instruments cannot
cover the whole size spectrum of the phytoplankton (Lombard
et al. 2019), hence, in our analysis, picophytoplankton are not
included, as the IFCB has a lower limit of 10 ym. This limits
the analysis of the full phytoplankton size range and the possi-
bility to sample, with the same instrument, higher trophic
levels such as zooplankton. However, on their own or coupled
with other imagery devices with different range capabilities,
they open new possibilities for learning and exploring changes
in taxonomical, morphological, and functional community
composition at high-frequency periodicities (light or tidal cycle)
and on the morphological responses of phytoplankton to
flow at smaller time scales as wished by Naselli-Flores et al.
(2020). This work thus presents one of the many approaches
to exploit such rich datasets beyond taxonomical labeling.
Although our time coverage is limited (2 yr), the methodol-
ogy we present here could be applied to longer time series;
this one, in the future, to confirm those local trends or
others, linked to instruments deployed in places that might
have different environmental forcings and different targeted
organisms.
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