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Imaging Role in Diagnosis, Prognosis, and Treatment Response
Prediction Associated with High-grade Glioma

Abstract Maryam Heidari,
Background: Glioma is one of the most drug and radiation-resistant tumors. Gliomas suffer from Parvaneh Shokrani
inter- anfi intratumor hete.roger.leity' wl}ich makes thg outcome of sir.nilar. treatment proto.col.s vary Department of Medical Physics,
from patient to patient. This article is aimed to overview the potential imaging markers for individual School of Medicine, Isfahan
diagnosis, prognosis, and treatment response prediction in malignant glioma. Furthermore, the University of Medical Sciences,
correlation between imaging findings and biological and clinical information of glioma patients is Isfahan, Iran

reviewed. Materials and Methods: The search strategy in this study is to select related studies from
scientific websites such as PubMed, Scopus, Google Scholar, and Web of Science published until
2022. It comprised a combination of keywords such as Biomarkers, Diagnosis, Prognosis, Imaging
techniques, and malignant glioma, according to Medical Subject Headings. Results: Some imaging
parameters that are effective in glioma management include: ADC, FA, K™, regional cerebral blood
volume (rCBV), cerebral blood flow (CBF), v, Cho/NAA and lactate/lipid ratios, intratumoral uptake
of 8F-FET (for diagnostic application), RD, ADC, v, Vo, K, CBF, |, rCBY, tumor blood flow, Cho/
NAA, lactate/lipid, MI/Cho, uptakes of F-FET, "C-MET, and *F-FLT (for prognostic and predictive
application). Cerebral blood volume and K"™* are related to molecular markers such as vascular
endothelial growth factor (VEGF). Preoperative ADC  ~ value of GBM tumors is associated with
O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status. 2-hydroxyglutarate
metabolite and dynamic '*F-FDOPA positron emission tomography uptake are related to isocitrate
dehydrogenase (IDH) mutations. Conclusion: Parameters including ADC, RD, FA, rCBV, K™,
v,, and uptake of 8F-FET are useful for diagnosis, prognosis, and treatment response prediction
in glioma. A significant correlation between molecular markers such as VEGF, MGMT, and IDH
mutations with some diffusion and perfusion imaging parameters has been identified.
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Introduction disrupting chemotherapy. Glioblastoma
also comprises distinct cancer cells
including stem cells, initiating cells, and
propagating cells which are extremely
resistant to typical chemo- and radiation
therapy and can make severe tumor
recurrence. [

A glioma is a primary central nervous
system malignancy in adults with
poor prognosis.'? Grades 1 and 2 are
known as low-grade glioma (LGG), and
grades 3 and 4 are known as high-grade
glioma (HGG). Standard management
of malignant glioma usually is surgery = GBM tumors suffer from inter- and
followed by concomitant and adjuvant  intratumor  heterogeneity.”!  Intratumor
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conventional methods, patients should be followed for an
extended time or alternative imaging techniques should be
applied." Quantitative evaluation of functional and metabolic
alterations in tumor can be obtained using advanced
imaging techniques including perfusion-weighted imaging,
proton magnetic resonance spectroscopy (IH-MRS), and
positron emission tomography (PET).®! Using a biomarker,
the effectiveness of a treatment protocol and its potential
complications for each patient may be assessed. The
purpose of this article is to overview the potential imaging
markers for individual diagnosis, prognosis, and treatment
response prediction in malignant glioma patients and
correlation between imaging findings and biological and
clinical information of glioma patients. The remainder
of this article is organized as follows. After materials and
methods section, imaging role in clinical management
of glioma including diagnosis, prognosis, and treatment
response prediction is given in sections “Diagnostic Imaging
Techniques” and “Prognostic and Predictive information.”
The advantages and disadvantages of the imaging modalities
are summarized in Table 1. Next, in section “Correlation
between Imaging Findings and Biological and Clinical
Information of Glioma,” a brief overview of the correlation
between imaging findings and biological and clinical
information of glioma is presented.

Materials and Methods

The search strategy conducted in this study was to select
relevant studies from scientific websites such as PubMed,
Scopus, Google Scholar, and Web of Science published
until 2022. It comprised a combination of main keywords

such as Biomarkers, Diagnosis, Prognosis, Imaging
techniques, and malignant glioma which were selected
according to Medical Subject Headings.

The inclusion and exclusion criteria in this study were as
follows: studies including books, reviews, and original
articles investigated the use of imaging markers for diagnosis,
prognosis, and treatment response prediction in glioma, as
well as studies examined the relationship between these
markers and biological markers were included in the study.
The use of articles in the languages other than English,
abstracts presented in the conferences, articles before final
publication, letters, reports, technical reports, and articles
related to other brain cancers were considered as the
exclusion criteria. Table 2 summarizes some studies about
the application of different medical imaging modalities in
diagnosis, prognosis, and treatment response prediction of
glioma.

Results
Diagnostic imaging techniques
Computed tomography

Computed tomography (CT) scan has been the main method
of imaging for treatment planning in radiation oncology.
However, in brain tissue, where most solid tumors and
adjacent organs at risk (OARs) have similar electron
densities, insufficient contrast in CT images can confuse
the determination of target and OARs.*¥! Therefore, it is
necessary to use other imaging modalities and techniques
as a complement to CT scan for its defects.[*]

Table 1: Imaging modalities and techniques used in diagnosis, prognosis, and treatment response prediction associated
with glioma with some of their advantages and disadvantages

Imaging Diffusion MRI Perfusion MRI MRS PET

modality DSC DCE ASL

Advantages Widespread Short acquisition Higher spatial Noninvasive!'?  Noninvasive, 3D Reproducibility
availability, fast time, easy resolution than evaluation of tumor due to the low
acquisition time analysis, high DSC, absolute heterogeneity half-life of
without specialized  temporal measurements of (research radiotracers,
hardware, detection  resolution!'®!!! plasma volume and application)!'¥ accurate
of some pathological Ktrans(11.12] quantitative

changes in its early

measurements!'?)

stages’®!

Disadvantages Low image quality  Indirect detection Indirect detection of Poor labeling ~ Technical problems High costs
(low SNR, limited of the injected the injected contrast  efficiency, low such as differences of imaging,
spatial resolution, contrast material, material, needing SNR, high in: acquisition impossibility
distortion, artifacts), susceptibility high temporal sensitivity techniques, of using PET
overlap between artifacts!'-'?! resolution, needing  to patient calculation of imaging in clinical
ADCs of grade II an appropriate movement, metabolites ratio, ~ emergencies,
astrocytomas and analysis model, not  needing and in volume lack of anatomic

glioblastomas!*!*!

suitable for glioma
with BBB disruption
or vessel leakagel'®!”!

standardization averaging. limited  information!'>>!
methods!'>!8] spatial resolution,

low SNR!*2!

DSC —Dynamic susceptibility contrast; DCE — Dynamic contrast-enhanced; ASL — Arterial spin labeling; MRI — Magnetic resonance imaging;
MRS — Magnetic resonance spectroscopy, PET — Positron emission tomography; BBB — Blood-brain barrier; SNR — Signal-to-noise ratio;

ADCs — Apparent diffusion coefficients; 3D — Three-dimensional

2

Journal of Medical Signals & Sensors | Volume 14 | Issue 3 | March 2024



Heidari and Shokrani: Imaging for diagnosis, prognosis, and treatment response prediction in HGG

Table 2: Some imaging modalities and techniques and their assessed parameters used in diagnosis, prognosis, and
treatment response prediction of glioma

Application Modality Imaging techniques Assessed parameters Reference
Diagnostic Diffusion MRI DWI ADC [22-24]
Perfusion MRI DCE CBV, K™, v, [25-27]
Perfusion MRI ASL CBF [18,28]
Perfusion MRI DSC CBV, rCBV [10,18,26-28]
MRS Cho/NAA* and lactate/lipid levels [19,29]
PET Intratumoral uptake of ¥F-FET [30,31]
Prognostic and Diffusion MRI RD, ADC value, and longitudinal DTI [32-34]
treatment response Perfusion MRI DCE Kt v v, CBE [35-37]
prediction Perfusion MRI DSC rCBV, CBF, EF [38,39]
Perfusion MRI ASL TBF [40]
MRS Cho/NAA, lactate/lipids, and MI/Cho ratios [41,42]
PET Intratumoral uptake of *F-FET, reduced [43-47]

uptake of "C-MET, ®FET*, and "F-FLT

MRI —Magnetic resonance imaging; MRS — Magnetic resonance spectroscopy, PET — Positron emission tomography; DWI — Diffusion-weighted
imaging; DCE — Dynamic contrast-enhanced; ASL — Arterial spin labeling; DSC — Dynamic susceptibility contrast; MI — Myo-inositol;
TBF — Tumor blood flow; CBF — Cerebral blood flow; CBV — Cerebral blood volume; rCBV — Regional CBV; DTI - Diffusion tensor imaging;
ADC —Apparent diffusion coefficient; 'SF-FET — "*F-fluor-ethyl-tyrosine; 'F-FLT — "*F-fluorothymidine; "C-MET — L-[methyl-""C] methionine;
NAA — N-acetylaspartate; Cho — Choline; RD — Radial diffusivity; EF — Extraction fraction

Magnetic resonance imaging
Standard sequences of magnetic resonance imaging

Magnetic resonance imaging (MRI) is used as the primary
method of early diagnosis in glioma.y MRI sequences
which are essential for glioma tumor visualization
and provide important information before and
during the tumor resection are pre- and postcontrast
T1-weighted and T2-weighted fluid-attenuated inversion
recovery (T2-FLAIR) sequences.!'**% TI1-postcontrast
imaging is very useful in detecting HGG.['*' T2-FLAIR
is more suitable for visualizing LGG and areas of edema
and tumor spread outside the contrast-enhancing areas
on T1 sequences for HGG. Despite the advantage of
using standard MRI sequences which has been supported
by many studies,!'®5-* their use has some limitations
in diagnosis of gliomas. For example, in some cases
of GBM, Tl-postcontrast images show the absence or
lack of enhancement.!'” In addition, T2 and FLAIR
sequences are limited in distinguishing LGG from
HGG.!'®! Therefore, for characterizing glioma tumor
more completely, it is necessary to use other imaging
sequences and modalities.

Diffusion magnetic resonance imaging

In diffusion-weighted imaging (DWI), the motion of water
molecules and ultimately the magnetic resonance signal is
affected by microstructural changes. Thus, using diffusion
tensor imaging (DTI) to measure diffusion in several
directions, the average molecular motion (ADC criterion)
and information about the arrangement and integrity of
cellular structures (fractional anisotropy [FA]) are also
obtained.” In terms of application to brain tumors, FA
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shows the amount of anisotropy in each voxel (anisotropy
is high in white matter and low in gray matter)®! which
can be used as a measure for degradation of healthy
white matter.”! Sugahara et al. evaluated the cellularity
and grading of glioma using DW-MRI with echo-planar
imaging technique and demonstrated that the minimum
ADC of the tumor increases with increasing tumor grade
and cellularity.’ In diffusion imaging, it is possible
to differentiate between the edema and the infiltrative
tumor cells, the neoplastic areas from the abscess, and
primary central nervous system lymphoma from HGG.[*?
Furthermore, advanced sequences such as DTI can be
utilized to exhibit the transposition of white matter tracts
resulting from the existence of tumor.”*! Diffusion kurtosis
imaging is an emerging diffusion technique that provides
more information about tissue microstructural changes
with higher sensitivity and accuracy than DWI and
DTI.[57,58]

Perfusion magnetic resonance imaging

In perfusion techniques, blood is followed to the target
tissue within the wvascular system with or without
an injected contrast agent.'? Then, physiologic and
hemodynamic data are measured and their relationship
with the tumor biology can be obtained.”* ! Perfusion
imaging techniques that can be used for brain tumors
include dynamic susceptibility contrast (DSC)-MRI,
dynamic contrast-enhanced (DCE)-MRI, arterial spin
labeling (ASL)-MRI, perfusion computed tomography, PET,
and single-photon emission computed tomography.!'>6!¢2
Some of the perfusion parameters include cerebral blood
volume (CBV), regional CBV (rCBV), cerebral blood
flow (CBF), permeability of blood vessels (K"™*), volume
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fraction of extravascular extracellular space (v ), and
plasma volume per unit volume of tissue (Vp).[24’60]

Magnetic  resonance perfusion imaging techniques
including DSC, DCE, and ASL can be used to distinguish
between high and low grades of glioma.l'*'%! Studies
have introduced CBV and rCBV as angiogenesis markers
to distinguish HGG from LGG.[* In a meta-analysis
study by examining the performance of DCE and DSC
imaging techniques in the diagnosis of glioma grade,
it was concluded that these two techniques and their
parameters including K", v, rCBV, and CBF are reliable
in differentiation between high- and low-grade gliomas and
rCBV is the best parameter for glioma characterization,
preoperatively.?Y K" js able to distinguish between
Grade IL III, and IV gliomas.’® HGGs have higher K'n
than LGGs.1"%¥ In addition, CBF parameter obtained from
ASL technique is able to distinguish between LGG and
HGG, if standardization methods are used in postprocessing
algorithms to make the data reliable.!'®!

There are more recent MRI techniques that are not widely
used clinically and are able to distinguish LGG from
HGG, e.g., intravoxel incoherent motion. In this technique,
imaging is performed based on the diffusion and perfusion
of tissue water molecules without the need to inject
exogenous contrast.[®71]

Magnetic resonance spectroscopy

MRS offers information about biochemical changes in brain
tissue by analyzing the concentration of metabolites. MRS
can be used to distinguish normal brain tissue from tumor,
glioma from noninfiltrative tumor such as metastases, and
also to determine tumor grade.[**7271

With increasing glioma grade, the amount of Cho and lipid
increases, and in cases of metastasis, the amount of lipid
is higher than in HGG cases.”” MRS proton-detectable
metabolites such as Cho and NAA are probable biomarkers
for tumor activity. Cho represents the metabolism of cellular
membrane turnover function. NAA, as a neuronal density
marker, decreases in tumors owing to the lack of neurons.
GBM illustrates a growth in the ratio of Cho/NAA 19497473
Furthermore, creatine (Cr) is a marker of normal cellular
metabolism. Lactate, lipid, and myo-inositol (MI) reflect
hypoxia, necrosis, and astrocyte integrity, respectively.!'”]
It has shown a direct relationship between tumor grading
and the ratios of Cho/NAA and Cho/Cr."*7! Furthermore,
an inverse relationship between the ratio of MI/Cr and
tumor grading in cerebral astrocytoma patients has been
concluded.®? Ratios such as Cho/NAA and lactate/
lipid levels can be used to diagnose different intracranial
tumor types and grades or distinct tumor recurrence from
radiation necrosis.!

Low signal to noise ratio in MRS causes the decrease in the
spatial resolution. Therefore, the assessment of intratumoral
heterogeneity is limited.?” Chemical exchange saturation
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transfer is another MRI technique that detects metabolites
with a higher spatial resolution than MRS and can be used
to investigate intratumoral heterogeneity in glioma.®!

Positron emission tomography

PET is another imaging modality widely used for imaging
of gliomas wusing their molecular and biochemical
attributes such as glucose, nucleoside, or amino acid
metabolism.®) The use of PET imaging for the first
time in oncology dates back to the early 1980s, when
2-deoxy-2 ["®F] fluoro-D-glucose (FDG), !"C-labeled
amino acids, and nitrosourea analogs were used for
brain tumors.®** Since the late 1970s, the clinical use
of alternatives to FDG-PET, like radiolabeled amino
acids, has been propounded for cancer imaging.®! Tracers
including "C-MET and “FET are more useful than
BF-FDG and are most widely used.®’ "C-MET and '*FET
are preferable for diagnosis of glioma in areas of infiltrating
tumor cells that are not visualized by MRLM It has been
shown that using ""FET data for RT planning compared to
conventional methods increases the treatment volumes. >8¢!
In clinical trials, nucleic acid tracers like '*F-FLT have been
shown to be better than '®F-FDG in differentiation between
LGG and HGG."™ The relation between nucleic acid
tracers and histological proliferation markers has been well
documented.®” The most common PET radiotracers for use
in brain imaging are amino acid PET radiotracers including
MET, FET, "®*F-fluoro-1-dihydroxy-phenylalanine (FDOPA),
and AMT.®

Prognostic and predictive information
Magnetic resonance diffusion and perfusion imaging

Predicting the true progression of the tumor can be achieved
using diffusion and perfusion parameters such as ADC and
rCBV,8®1 ks and v values,” extraction fraction (EF),>”
and FA from longitudinal DTLPF¥ In diffusion imaging,
longitudinal variations in water molecules’ mobility as an
early indicator of treatment response are also correlated
with overall progression and survival time. The
correlation between pretreatment DWI-MRI parameters,
ADC and diffusion index (RD), of brain tumor patients and
response to RT has been indicated.?* Minimum ADC value
before surgery has a negative association with the Ki-67
labeling index and can be applied to predict progression in
malignant astrocytic tumors, including GBM and anaplastic
astrocytoma.’! Hamstra ef al. showed that functional
diffusion map data have potential to be used as an early
predictor of treatment response and overall survival (OS) in
HGG.PY

The most important prognostic molecular factors in
gliomas are isocitrate dehydrogenase (IDH) mutations,
which can be detected using DSC-CBV and DSC-CBF
parameters. DCE permeability parameters, including K",
Vo, and v, have also shown a decrease in the case of IDH
mutant gliomas compared to IDH-wild-type.?>3¢38 On
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the other hand, the results of studies on the usefulness of
ASL-CBF in distinguishing these two types of gliomas
are not consistent.*’®4 The study by Yamashita er al.
demonstrated that combination of tumor blood flow
obtained from ASL and measurement of necrotic area
from routine MRI is a surrogate marker for predicting the
IDHI status in GBM patients.*” In addition, Nguyen et al.
showed that DCE modeling can be used to predict OS in
patients with glioma.’ In a study carried out by Larsson
et al., the prognostic value of DCE parameters including
K™ and CBF,, in early prediction of OS was more
promising than DSC parameters.”®

Magnetic resonance spectroscopy

Kumon et al. concluded a direct relationship
between the ratio of MI/Cho and better prognosis
of IDH-wild-type (IDH-wild-type) GBM patients in
preoperative MRS analysis.*?l In another study, after
investigation of the recurrence free survival (RFS) and
MRS parameters including NAA/Cr, Cho/Cr, Cho/NAA,
and MI/Cr ratios in HGG patients, the authors concluded
that the Cho/ Cr ratio has a significant correlation with
RFS.B7

Positron emission tomography

Valuable prognostic and predictive information is obtained
using some PET tracers. For example, “F-FLT was
introduced as a predictor of response to bevacizumab
treatment in glioblastoma patients, which performed
better than MRI in predicting early and late response to
treatment and OS.M* MET-PET has also been proposed
as a predictor of treatment response in malignant
glioma.*>% In a prospective phase II study, after using
postoperative "FET-PET for definition of CTV in treatment
planning, Piroth et al. concluded that postoperative tumor
volume in "FET-PET has a significant relationship with
progression-free survival and OS in GBM patients.”! It is
also possible to monitor tumor oxygen deficiency, which is
a substantial characteristic of HGGs, using PET imaging.™

All imaging modalities and techniques have certain
advantages and disadvantages which some of them are
given in Table 1. The physicians can choose the best option
based on the available facilities and the patient’s condition.

Correlation between Imaging Findings and
Biological and Clinical Information of Glioma

Vascular permeability, the presence of vascular endothelial
growth factor (VEGF)/VPF, and angiogenesis are important
mediators of tumor growth that can be obtained by
perfusion and permeability imaging.l'!° The amount
of wvascular proliferation is an important criterion in
the histopathological description of tumor biology and
prognosis.[®) CBV measurements have a strong and direct
relationship with histopathological grade of cerebral
gliomas and may be employed to assess the effect of
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treatment or to distinguish between tumor recurrence and
the posttreatment radiation effect.[!02-1%41  Mathematical
modeling by DCE imaging has shown that K"™» is
associated with tumor aggressiveness.”” CBV and K
have a direct relationship with molecular markers such as
VEGE.[60:105]

There are also imaging markers related to the
0O6-methylguanine-DNA methyltransferase (MGMT) status;
for example, preoperative minimum ADC value of GBM
tumors is associated with MGMT promoter methylation
status.!'%! Furthermore, K™ has potential to be used as an
imaging marker because of its significantly higher value in
the MGMT-methylated group of GBM patients.'” Another
study has suggested the use of radiomic features extracted
from pretreatment FDOPA-PET images to predict the
MGMT status in glioblastoma patients.['%]

MRS can noninvasively detect IDH mutations using the
levels of the metabolite 2-hydroxyglutarate (2HG), so that
in IDH-mutant tumors, the amount of 2HG metabolite
increases, and in the IDH-wild-type, its amount is normal.[”]
2HG is an oncometabolite that affects the hypoxia-inducible
factor-1o, which is a tumor progression factor in
GBM.I®T Tt should be noted that accurate diagnosis using
MRS has many advantages over biopsy, including low
risk, reproducibility, and the possibility of noninvasive
examination of different parts of the tumor, but under the
appropriate acquisition and quantification techniques to
prevent false results.'™ Using dynamic *F-FDOPA PET
uptake parameters, the presence of IDH mutation in newly
diagnosed gliomas can be predicted.'” Furthermore,
via radiomic analysis of ®F-FDG PET images, the IDH
genotype status was effectively and noninvasively predicted
in glioma patients.['!!]

Conclusion

Along with challenges involved in development of an
effective treatment and early treatment evaluation of
glioma, the identification of specific and noninvasive
biomarkers will be useful. Prognostic information and
predicting individual patient’s response to the treatment
can be obtained using specific biomarkers. Substantial data
on cell proliferation, angiogenesis, hypoxia, and metabolic
activity using advanced imaging techniques are provided
for better management of glioma. For example, in diffusion
imaging, it is possible to distinguish the edema from the
infiltrative tumor cells and the neoplastic areas from the
abscess. ADC and RD can be related to treatment response
in pretreatment DW images of tumor. Tumor physiological
parameters obtained in perfusion MRI techniques such
as CBV, rCBV, CBF, K" and v, can be correlated
with tumor biology. Using appropriate acquisition and
quantification techniques to prevent false results, MRS can
discriminate between normal tissue and tumor, identify
types and grade of tumor, predict survival, or differentiate
between tumor recurrence and radiation necrosis. Ratios of



Heidari and Shokrani: Imaging for diagnosis, prognosis

Cho/NAA, Cho/Cr, and MI/Cr have diagnostic information,
and Cho/Cr ratio has a significant correlation with RFS.
The use of PET as a complementary modality to MRI
in the clinical management of brain tumors, including
glioma, is increasing because of its accuracy in quantitative
measurements. The most common amino acid PET tracers
for use in brain cancer including glioma are '"C-MET,
BFET, FDOPA, and AMT.

Vascular proliferation is an important factor in describing
tumor biology and prognosis. For this reason, rCBV is
related to tumor grade and histopathology results. K™ is
also related to tumor aggressiveness. Moreover, both K™
and CBV have a direct relationship with the molecular
markers such as VEGF. Minimum ADC values of GBM
tumors are related to MGMT status. IDH mutations can
be detected using 2HG MRS metabolite and dynamic
SE-FDOPA PET uptake parameters.
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