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Asthma is an inflammatory disease of the airways that may result from exposure to

allergens or other environmental irritants, resulting in bronchoconstriction, wheezing,

and shortness of breath. The structural changes of the airways associated with asthma,

broadly referred to as airway remodeling, is a pathological feature of chronic asthma that

contributes to the clinical manifestations of the disease. Airway remodeling in asthma

constitutes cellular and extracellular matrix changes in the large and small airways,

epithelial cell apoptosis, airway smooth muscle cell proliferation, and fibroblast activation.

These pathological changes in the airway are orchestrated by crosstalk of different

cell types within the airway wall and submucosa. Environmental exposures to dust,

chemicals, and cigarette smoke can initiate the cascade of pro-inflammatory responses

that trigger airway remodeling through paracrine signaling and mechanostimulatory cues

that drive airway remodeling. In this review, we explore three integrated and dynamic

processes in airway remodeling: (1) initiation by epithelial cells; (2) amplification by

immune cells; and (3) mesenchymal effector functions. Furthermore, we explore the

role of inflammaging in the dysregulated and persistent inflammatory response that

perpetuates airway remodeling in elderly asthmatics.
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INTRODUCTION

Asthma is a widely prevalent disease. In the United States, 13.4% of adults aged 18 years
and older, and 11.6% of children are diagnosed with asthma. These rates are higher in adult
females (15.2%) and male children (13%); in general, asthma prevalence is higher in minority
populations and populations with low socioeconomic status1 (1). According to the most recent
Global Initiative for Asthma (GINA) guidelines, asthma is defined as “a heterogeneous disease,
usually characterized by chronic airway inflammation.” It is characterized by respiratory symptoms
such as wheezing, shortness of breath, chest tightness, and cough that vary over time and in
intensity, together with variable expiratory airflow limitation2. The variable airflow limitation
in asthmatics is due to a combination of bronchoconstriction, airway edema, mucus secretion,
airway hyper-responsiveness, and airway remodeling (2)1. However, variable airflow limitationmay
progress to persistent airflow limitation or fixed airway obstruction in a subset of patients (3).

EPIDEMIOLOGY

Among the general population, asthma accounts for 30–50% of those individuals with fixed
airway obstruction (4–6); in severe or difficult-to-treat adult asthmatics, 55–60% have fixed airway

1Available online at: http://www.nhlbi.nih.gov/health-pro/guidelines/current/asthma-guidelines
2Available online at: www.ginathma.org
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obstruction (7, 8). Airway remodeling may explain persistent
airflow obstruction present in some asthmatic patients, attributed
to goblet cell hyperplasia, decreased epithelial cell and cartilage
integrity, subepithelial collagen deposition with increased
thickness of the reticular basement membrane, increased airway
smooth muscle mass and angiogenesis of the airways (9–
15). This is present in asthmatics with mild disease (16), but
tends to worsen in parallel with increasing disease severity
(13, 17). Importantly, onset of airway remodeling has been
identified in pre-school children as young as 1-year-old (18,
19) and in school-age children, persisting through adulthood.
Thus, airway remodeling in some patients may occur early in
the disease process (20–22). Conversely, adult asthma patients
with minimal airway remodeling similar to healthy controls
have also been identified (23, 24), and adult mild asthmatics
acutely increase parameters of airway remodeling with exposure
to asthma triggers (25). Thus, while airway remodeling may
be a consequence of inflammation, the heterogeneity in its
presentation suggests that it should not be assumed to occur
downstream of a single (or central) mechanism. Ultimately,
these varying mechanisms will illuminate our understanding of
asthma endotypes.

ASTHMA ENDOTYPES

The field of personalized medicine in asthma care has benefitted
greatly from the recognition that “asthma” refers to an umbrella
term encompassing a range of clinical presentations (26). An
aspirational goal of this phenotyping process is to eventually
link clinical phenotype to molecular mechanisms, defining an
“endotype” that would predict response to therapy (27).

One of the first approaches to phenotyping asthmatics
was to evaluate sputum cellularity as an indirect readout
of airway inflammation. Four subgroups of adult asthmatics
were identified: eosinophilic asthma, neutrophilic asthma,
mixed granulocytic asthma with both sputum eosinophils
and neutrophils, and paucigranulocytic asthma with neither
(28, 29). In multiple cohorts, the distribution of asthma
favors eosinophilic (40–50%) and paucigranulocytic (30–50%)
airway inflammation, with only 10–20% of patients manifesting
neutrophilic asthma (28–32).

Unbiased identification of phenotypic clusters of asthmatics
have incorporated objective clinical and morphometric
parameters, including peripheral blood eosinophil counts,
sputum cellularity, history of atopy, age of onset of asthmatic
disease, body mass index, asthma control questionnaire, and
presence of fixed vs. variable airflow obstruction (33, 34).
These parameters when applied with unbiased clustering
algorithms to large patient cohorts [SARP (Severe Asthma
Research Program), ADEPT (Airways Disease Endotyping
for Personalized Therapeutics), and U-BIOPRED (Unbiased
BIOmarkers in PREDiction of respiratory disease outcomes)]
consistently identify four to six clinically defined clusters
(35–37). From these studies, a consensus has arisen that, at a
minimum, asthma includes “Th2-high” and “Th2-low” disease
subclusters. Th2-high includes: early-onset allergic asthma,

late-onset steroid-resistant eosinophilic asthma, and aspirin-
exacerbated respiratory disease (AERD). Th2-low tends to be
steroid-resistant with either neutrophilic or paucigranulocytic
inflammation and it is further classified by obesity, smoking, or
onset after 50 years of age (38).

In contrast to unbiased clustering methods utilized above, the
most widely used and easily implemented parameters in clinical
use to assess asthma phenotype are the presence of sensitization
to perennial aeroallergens, peripheral eosinophil count, fixed
airway obstruction, and fractional exhaled nitric oxide (FENO)
(39). This classification scheme differentiates Th2-high asthma,
which is amenable to treatment with anti-IgE, anti-IL-5 or
anti-IL-5Rα, and anti-IL-4Rα therapy (40, 41), from Th2-low
asthma (42). In the context of cigarette use history and associated
onset of asthma symptoms, patients with fixed airway obstruction
may also be classified as “asthma-COPD (chronic obstructive
pulmonary disease) overlap” (43).

Airway Remodeling Endotypes
Airway remodeling may provide further specification of asthma
endotypes. Post-mortem studies of asthmatic patients reveal that
airway remodeling can affect both large and small airways (44,
45). However, invasive assessments of remodeling predominantly
evaluated endobronchial biopsies of proximal airways rather
than small airways (46), limiting our understanding of the
small airway changes that are relevant to air trapping and may
be relevant to airway remodeling (6). Non-invasive means of
evaluating airway remodeling are needed that correlate with
airway morphometric analyses. The gold standard of airway
remodeling requires bronchial biopsy and direct assessment of
lung tissue (6). Quantitative Computerized Tomography (CT)
imaging of lung is a non-invasive means of assessing airway
remodeling. In adult asthmatics, comparison of airway biopsies
with CT morphometrics indicates a good correlation between
airway wall volume and increased reticular basement membrane
thickness (47). However, this association was not reproduced
in a pediatric severe asthma cohort undergoing endobronchial
biopsy (48) in spite of consistent identification of bronchial wall
thickening on CT in cohorts of children with difficult-to-treat
asthma (49). Regardless, CT imaging is now increasingly used to
assess airway remodeling in adult asthmatics (50–52).

Asthma is often characterized as childhood-onset or adult-
onset (53, 54). Childhood-onset asthma typically occurs prior
to 12 years of age, whereas 40% of adult asthmatics report
symptoms after 40 years of age (55, 56). Childhood-onset
asthma is predominantly atopic and eosinophilic, even into
adulthood with marked airway remodeling, increased reticular
basement membrane thickness and airway smooth muscle mass
(23, 57). Airway remodeling in adult-onset asthma is less well-
characterized but prevalence appears to be lower than childhood-
onset asthma (58). When unbiased clustering of CT airway wall
thickness or airway lumen thickness was applied to an adult
asthma cohort, all asthma patients manifested air trapping but
one cluster with less air trapping and lacking changes consistent
with airway remodeling correlated with clinically mild disease
(59). Two other cohorts of adult onset asthmatics with severe
disease were found to contain a subpopulation (25–30%) lacking
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both eosinophilic inflammation and airway remodeling (24, 50).
Unbiased clustering analysis has also revealed an adult severe
asthma population, identified as “paucigranulocytic” asthma,
with airway remodeling in the absence of airway inflammation
(28, 29, 60). In paucigranulocytic asthma, airway remodeling
is thought to occur in a manner “uncoupled” from airway
inflammation, perhaps as a direct consequence of airway smooth
muscle hypertrophy or neurogenic factors contributing to
bronchospasm (61). In most cases, however, airway remodeling
seems to behave as a function of either disease severity and/or
chronicity of inflammation.

Extracellular Matrix in Asthmatic Airway
Remodeling
Increased deposition of extracellular matrix (ECM) proteins
in the reticular basement membrane region, lamina propria,
and submucosa is a characteristic of asthmatic airways and
contributes to the airway wall thickening and airflow obstruction.
The ECM is composed of a diverse group of proteins
and glycoproteins, including (a) structural proteins, including
collagen and elastin, (b) adhesion proteins, including fibronectin
and tenascin, etc, and (c) glycosaminoglycans (GAGs) and
proteoglycans (62). Collagen fibers are the most abundant
elements of the ECM in the lung. Fibrillar collagens, including
type I, II, III, V, and XI collagens, have great tensile strength but
low elasticity and contribute to the overarching architecture of
the lung. Overproduction and deposition of collagen leads to lung
stiffness. Elastic fibers, on the other hand, have high elasticity
and provide the lung with compliance and elastic recoil. ECM
adhesion proteins, such as fibronectin, provide binding sites for
cell adhesion receptors including integrins. Therefore, the ECM
proteins provide structural and mechanical support for lung
tissue and a substratum for cell adhesion, migration, activation,
and proliferation. Aberrant accumulation of ECMmay, however,
lead to changes in tissue structure and function that contribute to
airway remodeling.

It has been well-documented that the deposition of various
ECM molecules is increased in asthmatic airways, including
structural proteins collagens I, III, and V, adhesion proteins
fibronectin and tenascin, as well as proteoglycans such as lumican
and biglycan (63–67). Fibroblasts are the major producer of
ECM. Fibroblasts in asthmatic airways are activated and produce
large amounts of ECM (66, 68, 69). It has also been shown that
asthmatic airway epithelial cells stimulate naïve lung fibroblasts
to produce collagens, fibronectin, and the pro-fibrotic mediator,
TGF-β (68). Airway smooth muscle (ASM) hypertrophy and
hyperplasia are characteristic features of asthmatic airways.
Besides fibroblasts, smooth muscle cells in asthmatic airways
also produce increased amounts of ECM, including collagens
and fibronectin (70–72). Known environmental risk factors such
as biomass fuels, cigarette smoke, and rhinovirus have been
shown to stimulate the productions of ECM proteins by airway
epithelial cells, ASM and fibroblasts (73–77). Additionally, it
has been reported that the degradation products of matrix
proteins, sometimes referred to as “matrikines,” regulates the

remodeling process; for example, tumstatin, a type IV collagen-
derived matrikine, modulates ASM production of ECM proteins
(71). These matrikines, which are increased in asthmatic airways,
interact with ECM proteins to regulate the composition of
the matrix and modulate airway hyper-responsiveness (78, 79).
Together, emerging data indicate that the deposition of ECM
proteins in asthmatic airways is increased and may be post-
translationally modified, which lead to specific endotypes of
airway remodeling in asthma.

Aging and Airway Remodeling
Asthma mortality has declined in the United States, but not
in elderly patients. The probability of death from asthma is
more than five times higher in elderly asthmatics (80–82). Aging
affects the lung and chest wall, reducing FEV1 (forced expiratory
volume), FEV1/FVC (forced vital capacity), and FVC (with
minimal change in lung volume), and increasing residual volume
(83). Age-dependent decrements in FEV1 proceed linearly from
25 to 30 years of age through adulthood, then accelerate with
increasing age (84). This deterioration is further accelerated in
asthmatic patients (85). Lung parenchyma structural changes
affecting elastic recoil are postulated to underlie peripheral
airway narrowing with reduced airway surface-to-volume ratio
observed in the elderly (3, 86). Elderly patients with no known
underlying lung disease also manifest alveolar dilation and ductal
ectasia without emphysema or fibrosis (87). The chest wall
compliance of elderly patients is reduced by costochondral joint
calcification, degenerative joint disease of the spine, and kyphosis
(83). Diaphragmatic weakness and skeletal muscle weakness
reduce maximum inspiratory and expiratory pressures (83, 88).
Comorbidities, frailty, and poor nutrition result in respiratory
muscle weakness (89, 90). However, airway remodeling does not
appear to occur as an intrinsic feature of aging. Rather, it is
an intrinsic feature of asthma, manifesting in a subset of adult
asthmatic patients.

AIRWAY EPITHELIAL CELLS AS
“INITIATORS” OF AIRWAY REMODELING

The airway epithelium is subject to airborne particles and
infectious agents and represents the frontline barrier between
the host and environment in the airways (91) (schematic in
Figure 1). Epithelial cells are armed with pattern recognition
receptors (PRR) which detect pathogen-associated molecular
patterns (PAMPs) and damage-associated molecular patterns
(DAMPs) that are derived from pathogens, allergens, and injured
cells due to environmental insults (92–95). Triggering of PRRs
by allergens, results in the recruitment of dendritic cells (DCs)
through the secretion of chemokines and cytokines, such as
CCL2, CCL20, IL-12, IL-12p40, TSLP, and GMCSF (94, 96, 97).

The environmental insult on airway epithelial cells may also
induce apoptosis, or programmed cell death (98). Apoptosis
of the epithelium, accompanied by soluble paracrine factors
such as TGF-β can initiate the tissue regenerative process in an
attempt to restore homeostasis (99, 100). However, persistent
damage and prolonged stimulation by growth factors, can lead
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FIGURE 1 | The airway epithelium serves as the primary interface between the environment and the lung. When triggered by allergens, house dust mite or microbes,

epithelial cells respond by secreting soluble factors that recruit, and activate immune cells. The amplification of the immune response involves macrophages, dendritic

cells, neutrophils, mast cells, eosinophils, and lymphocytes. Both the epithelium and immune cells produce paracrine signals that induce proliferation, expansion, and

activation of the submucosal mesenchyme that include resident airway smooth muscle cells and fibroblasts.

to aberrant tissue repair and remodeling of the airways that
leads to the pathophysiological conditions seen in asthma. For
example, thickening of the airway smooth muscle is a result of
mesenchymal differentiation into myofibroblast (101).

As the lung expands with air, the accompanying
morphological changes also affects the cellular constituents
of the lung (102–104). The mechanical forces experienced by
cells during regular respiration is minimal; however, during
bronchoconstriction and bronchospasms, epithelial cells are
subject to compressive forces at a magnitude higher than normal
physiological conditions (103, 105). These compressive forces
may often result in mechanostimulation, which can activate
epithelial cells to produce TGF-β and GMCSF, which can then
recruit DCs and other immune cells (106). Recruited DCs
orchestrate the activation of both innate and adaptive arms
of the immune system, facilitating the inflammatory process
in the airways of asthmatics (107). Mechanostimulation also
increases gene expression of early growth response 1 (Egr-1),
endothelin 1, transforming growth factor β1 (TGF-β1), and
epidermal growth factors (EGF) (108). Secreted EGF can bind
epithelial epidermal growth factor receptors (EGFR), which
in turn mediates a positive feedback loop to increase EGFR
ligand production (109). EGF promotes goblet-cell metaplasia
(110), which also contribute to the physiological changes
observed in patients exposed to repeated bronchoconstriction
by methacholine challenge (25). Repeated bronchoconstriction
induces goblet cell proliferation, sub-epithelial thickening,
and mucus secretion which can lead to airway obstruction
(25). Compressive stress also increases YKL-40 expression,
encoded by the gene CHI3L1, and its secretion (111); this

stimulates angiogenesis, smooth muscle cell proliferation, and
migration (112).

Cytokines involved in asthma, such as IL-6, IL-8, and TSLP
are known drivers of cellular senescence (113, 114). Cellular
senescence, or the irreversible arrest of the cell cycle, may also
contribute to airway remodeling and its detrimental effects on the
airways of asthmatics (115). Senescent epithelial cells induced by
cigarette smoke have been shown to destroy the alveoli resulting
in progression of disease (116). In normal physiological setting,
cellular senescence is usually a protective mechanism to prevent
cells that have undergone telomere erosion and stress from
proliferation and transformation (117). However, accumulation
of senescent fibroblasts can contribute to reduced pulmonary
compliance and remodeling of the airways (118, 119).

IMMUNE CELLS AS “AMPLIFIERS” OF
AIRWAY REMODELING

The lung, like many other organs and tissues, contain a
diverse population of immune cells that protect us from
pathogens invading the airways (120–122). Immune surveillance
and phagocytosis facilitates the resolution of the inflammatory
process back to homeostasis. However, aberrant activation and
prolonged immune responses are key drivers in asthma and
have detrimental effects to the airways. Notably, T helper type
2 (Th2) and Th17 cells produce cytokines that promote airway
inflammation and remodeling in allergic asthma (123, 124). Th2
cytokines, such as IL-4 and IL-13 enhance subepithelial fibrosis,
mucous hyperplasia, and collagen deposition (125–127). Despite
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the controversial role of Th17 cells in airway remodeling and
inflammation, the synergistic effect of DCs together with Th17
cytokines promote accumulation of fibrotic matrix components
that correlate with TGF-β expression (123).

Alveolar macrophages (AM) are important lung-resident
immune cells involved in immune response and tissue repair
in the lung (128). They have a protective role in maintaining
pulmonary tissue homeostasis as well as phagocytosis and
host defense like many other macrophages. Generally, AM
dampen the inflammatory responses in the airways through
phagocytosis of apoptotic bodies and clearance of innate immune
cell infiltrates. In asthmatics, however, these mechanisms are
impaired; thus amplified and prolonged inflammation is present
in the airways. Alveolar macrophages also contribute to airway
remodeling through activation by TGF-β and release of matrix
metalloproteinases that alter the extracellular matrix (ECM) and
airway structure.

TGF-β is strongly implicated in airway remodeling and is
released by eosinophils at the site of allergic inflammation
(129, 130). TGF-β promotes metalloproteinase-9 (MMP-9)
production, also known as gelatinase B; a metalloproteinase
found in BAL fluid as well as plasma from asthmatics (131).
MMP-9 is activated by tryptase secreted from mast cells, which
have been tied to hypersensitivity and allergic inflammatory
responses (132). Tryptase also induces fibroblast, endothelial,
and epithelial cell proliferation further fueling remodeling of the
airways in asthmatics (133, 134). Neutrophils have also been
shown to produce MMP-9 and are associated with severe forms
of asthma (135–137). In particular, neutrophils are associated
with non-allergic and steroid resistant asthma (138, 139). In non-
allergic asthma, epithelial cells initiate the inflammatory process
through the release of IL-6, TGF-β, and IL1-β, which stimulates
the production of IL-17 (140, 141). Th17 cytokines such as
IL-17 and IL-22 facilitate neutrophilic recruitment, and TGF-
β production, further amplifying the inflammatory and airway
remodeling responses (142–144).

In addition to cellular mediators discussed above, the
complement cascade can drive the same inflammatory and
remodeling responses seen in asthma. Both the classical and
alternative complement pathways promote airway inflammation
through recruitment of proinflammatory immune cells, such
as Th2 cells, mast cells, eosinophils, and macrophages. The
recruitment of these immune cells helps amplify the magnitude
of airway remodeling through the release of TGF-β, IL-13,
and PDGF by both immune and epithelial cells. Specifically,
C3a and C5a complement molecules have been reported to
stimulate pro-airway remodeling factors such as TGF-β by
epithelial cells (145). These pro-remodeling factors help drive
fibroblast-to-myofibroblast differentiation and the production of
metalloproteinases that drive structural changes in the airways of
asthmatics (145).

MESENCHYMAL CELLS AS “EFFECTORS”
OF AIRWAY REMODELING

It is now well-recognized that resident airway smooth muscle
(ASM) cells and fibroblasts drive key cellular and structural

features of asthmatic airway remodeling, specifically the increase
in ASM mass and subepithelial fibrosis (146). Paracrine signals
from epithelial cells and immune cells may sustain mesenchymal
cell activation in the airway wall (147). Bidirectional crosstalk
between the epithelium and the mesenchyme is critical for
normal lung development including branching morphogenesis;
reactivation of this epithelial-mesenchymal tropic unit (EMTU)
has been proposed as a driving mechanism in the repair response
to chronic injury (148). Cytokines such as transforming growth
factor-β (TGF-β) and fibroblast growth factors (FGFs) secreted
by the mesenchyme instruct the growth and differentiation of
epithelial cells, while epithelial growth factor (EGF), TGF-β,
sonic hedgehog (SHH), and Wnt proteins from the epithelium
direct the proliferation, differentiation, and fate of mesenchymal
cells. An aberrantly activated EMTU in combination with
inflammatory stimuli, such as the Th2 cytokines IL-4 and IL-13,
may sustain the sub-mucosal mesenchymal response by ASM and
fibroblasts to execute pathological airway remodeling.

Increased ASM mass has been recognized as a hallmark of
airway remodeling in asthma (149, 150). There is abundant
evidence for ASM plasticity, and the regulation of its
proliferative, synthetic, and contractile properties (151). In
support of the concept of an EMTU that recapitulates lung
development, ADAM33, a membrane-anchored metalloprotease
that is developmentally regulated, was identified as an asthma
susceptibility gene by positional cloning in an outbred population
(152). Several ADAM33 protein isoforms are expressed in
human embryonic bronchi and surrounding mesenchyme,
and its “reactivation” in adult ASM may explain its genetic
association with asthma and bronchial hyper-responsiveness
(153). In addition to pro-inflammatory/pro-fibrotic cytokines
and contractile agonists that regulate ASM mass, cell intrinsic
properties are also important. For example, the mitochondrial
Bcl-2 adenovirus E1B 19 kDa-interacting protein, Bnip3,
regulates the expression of adhesion proteins that control ASM
adhesion, migration, and proliferation (154). ASM responses to
β2 agonists is decreased by TGF-β1 signaling via the modulation
of intracellular cAMP levels and a Smad2/3-dependent
mechanism (155, 156). The TGF-β-induced activation of
the reactive oxygen species (ROS)-generating enzyme, NADPH
oxidase 4 (Nox4) that induces myofibroblast differentiation
(157), is implicated in ASM proliferation and hypercontractility
in asthma (158, 159), as well as in epithelial ciliary dysfunction in
neutrophilic asthma.

Another distinct hallmark of airway remodeling in asthma is
subepithelial fibrosis that is primarily mediated by submucosal
resident fibroblasts that proliferate and differentiate into
myofibroblasts. In addition to airway resident fibroblasts, the
number, activation, and differentiation of circulating bone
marrow-derived fibrocytes have been correlated with asthma
severity (160). Consistently, TGF-β is recognized as a key
mediator of this response, a number of paracrine mediators
secreted by epithelial cells and immune cells are capable of
activating submucosal fibroblasts (101). The SHH pathway
has been implicated in induction of epithelial-mesenchymal
transition (EMT) induced in bronchial epithelial cells by house
dust mite exposure (161). The ECM itself and related proteases
may serve to sustain these fibrogenic activities. For example,
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eosinophil-mediated fibroblast-to-myofibroblast transition and
increased migration of fibroblasts is dependent on expression
of matrix metalloproteinase-2 (162). In addition to pro-fibrotic
cytokines such as TGF-β and Wnt proteins secreted by the
epithelium, there is also evidence that epithelial-derived factors
may mitigate fibrogenic responses in subepithelial fibroblasts.
Club cell secretory protein-16 (CCSP-16), a member of the
secretoglobin family, is decreased in serum of severe asthmatics
and animal studies support a protective role of this protein
against airway fibrosis and airway remodeling (162). Extracellular
vesicle (EV)-mediated transfer of inositol polyphosphate 4-
phosphatase type I A (INPP4A), a lipid phosphatase and an
asthma candidate gene, functions to restrain the proliferative
capacity of fibroblasts by dampening PI3K/Akt signaling (163).
In contrast, fibroblast-derived EVs that carry fibronectin on
its surface promotes invasion in recipient fibroblasts (164).
Unique lipid signatures of EVs have been identified in the
airways of human asthmatic subjects (165); in this study,
lipidomics analysis revealed that phosphatidylglycerol, ceramide-
phosphates, and ceramides were significantly reduced in
exosomes from asthmatics exposed to tobacco smoke, while
sphingomyelin 34:1 was more abundant in this group compared
to healthy controls.

In addition to the traditional concept of targeting
inflammatory responses in asthma, recent studies support
potential utility in targeting the mesenchymal remodeling
component. Although corticosteroids can mitigate chronic
inflammation which secondarily contribute to airway
remodeling, there is growing interest in developing therapies
that more directly target airway fibrosis. None of the currently
approved biologics, with the potential exception of IL-4/IL-
13 targeted therapies, directly target cellular components of
airway remodeling. However, bronchial thermoplasty is a non-
pharmacological approach that may target the ASM component
of airway remodeling. Bronchial thermoplasty involves the
application of radiofrequency energy to the airway wall during
bronchoscopy, and is thought to selectively ablate ASM; there
is evidence that this procedure reduces asthma exacerbations
and improves quality of life in patients with severe uncontrolled
asthma (166). However, many questions remain as to its utility in
severe asthma, specifically as it relates to mechanism(s) of action,
patient selection, and predictors of response (167). There is likely
to be advances in development of anti-fibrotic therapies for
asthmatic airway remodeling. Although targeting Th2 cytokines
are not particularly novel, there is continued interest in targeting
this pathway in selected asthma endotypes. Recent studies
suggest that epithelial cell responses to IL-4/IL-13 increases
the IL-4Rα-dependent smooth muscle contribution to airway
hyper-responsiveness, supporting IL-4Rα-targeted therapy in
asthma (168). Activation of estrogen receptor-β signaling has
been shown to downregulate airway hyper-responsiveness and
airway remodeling (169). Agonists of the bitter taste receptors
(TAS2Rs) promote bronchodilation, restrict allergen-induced
inflammatory responses, and ASM proliferation and mitigate
features of airway reactivity in vitro and in animal models
(169, 170). Increased sphingosine kinase 2 (SPHK2) levels in
proliferating ASM cells may be exploited to alleviate airway

smooth muscle thickening with synthetic substrates (171, 172).
When bronchodilatory responses to β-receptor agonists are
blunted, the synthetic peroxisome proliferator activated receptor
(PPAR)-γ agonist, rosiglitazone, may have benefit in eliciting
ASM relaxation in ex vivo mouse lung slice models (173).
Antagonism of prostaglandin D2 type 2 with fevipiprant
reduced ASM mass in patients with asthma by decreasing
airway eosinophilia in concert with reduced recruitment of
myofibroblasts (174). Targeting another TGF-β-inducible
gene, plasminogen activator inhibitor 1 (PAI-1), with a small
molecule inhibitor has been shown to suppress eosinophilic
allergic responses and ameliorate airway remodeling in an
ovalbumin-sensitized murine model of chronic asthma (175).

AGING AND INFLAMMAGING

The repercussions and effects of the aging immune system are
wide-ranging and diverse. Aging, as a whole, produces complex
and ubiquitous physiological alterations across nearly all organ
and tissue systems leading to many age-related diseases (176–
181). The human immune system relies on an intricate interplay
between the innate arm of the immune system, comprised
of primary sentinel immune cell populations, and adaptive
responses that rely on immunologic memory (176–181). A major
consequence of immune senescence is an impaired capacity
to repopulate naive B cells from the bone marrow and T
cells from the thymus, which involutes over time. In addition
to the loss of such cellularity, there is progressive loss of
functional competency of both innate and adaptive immune
cells (176–182). The biological and physiological nature of
immune senescence remains largely unexplored, and there is
growing interest in defining mechanisms and developing novel
therapeutic approaches.

Human lungs are an intricate fractal network of airways
composed of the trachea, bronchioles, alveolar ducts, and
terminal alveolar regions. During aging, the lung undergoes
a remarkable transformation with structural and functional
alterations (183–185). Concurrent with aging, a loss of bone
density (osteoporosis) and muscle atrophy produce physical
alterations to the spine, chest wall, and thoracic cavity. The
resultant physiological and functional changes include the
reduction in lung elasticity of lung tissue, forced expiratory
volume (FEV), forced vital capacity (FVC), and tidal volume
(TV) (183–185). Collectively, the cellular, structural, and
functional changes in the aging lung results in impaired host
responses to respiratory infections, higher rates of autoimmunity,
and diminished capacity to repair and regenerate (183–185).

Inflammaging
Described in 2000 by Franceschi et al., “inflammaging” is
the process by which immune senescence is accompanied
by low-level, chronic inflammation (186). Immune senescence
is characterized by a decreased proliferative ability of cells
and secretion of pro-inflammatory cytokines/mediators that is
referred to as senescence-associated secretory phenotype (SASP).
Replicative senescence results from a shortening of telomeres,
which ultimately triggers DNA damage responses. In addition
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to replicative senescence, oxidative stress, epigenetic alterations,
oncogene activation, and other stressors that induce DNA
damage can induce cellular senescence (187). SASP activation
leads to the production of pro-inflammatory cytokines such
as IL-12, IL-6, IL-1β, TNFα, IFNγ, and other factors such
as C-reactive protein and prostaglandins (187). The pervasive
inflammatory milieu can be local or systemic in nature and
is proposed to result from an accumulation of self-antigens
produced by age-associated damage to tissues (186). The
resultant accumulation of endogenous cellular matter induces
an inflammatory environment leading to tissue destruction and
injury (186). Inflammaging is well-recognized as an integral
contributor to age-related disease pathology. This important
recognition has led to growing interest in understanding
the mechanisms that govern the inflammaging process and
the subsequent effects on lung pathophysiology and age-
related lung disorders. Elderly adults are more susceptible to
pulmonary disorders such as asthma, Idiopathic Pulmonary
Fibrosis (IPF), and COPD, however, the age-related mechanisms
that drive disease pathology remains largely unresolved (90).
Asthma is a disease characterized by airway inflammation,
elevated mucus production, and airway obstruction (90). The
disease phenotype of early-onset asthma has been well-defined
and is consistent with a pattern of allergic inflammation
including eosinophilia, and a Th2 bias (188). In contrast, the
pathophysiology of late-onset asthma which affects the elderly is
less well-understood, although inflammaging may represent one
mechanism for disease susceptibility, progression, and relative
obstinate responsiveness to therapy.

Cells Implicated in Inflammaging
Macrophages resident within the alveolar compartment are
a first-line defense in innate immune responses, and are
implicated in inflammaging (189). Macrophages elicit varied
responses depending on microenvironmental cues, and can
initiate inflammation (classically activated/M1) or attenuate
inflammation and promote wound healing (alternatively
activated/M2) (190). In contrast to this concept of polarized
macrophage phenotypes, it is now appreciated that varied
phenotypes can emerge along this differentiation spectrum.
Macrophages play a central role in lung homeostasis by clearing
surfactant and cellular debris from apoptotic cells (191–194).
During inflammaging, macrophages lose plasticity and are
unable to alternate between the pro- and anti-inflammatory
phenotypes (189). The age-induced alterations in macrophage
function include decreased production of pro-inflammatory
cytokines (IL-6, IL-1β, TNFα), deficiency in phagocytosis and
cellular debris clearance, and decreased Toll-like receptor (TLR)
expression in mice (195–198). This functional transformation
may, in part, be responsible for creating a pervasive cycle that
sustains inflammaging in the aging lung.

Naïve T helper cells, after activation, differentiate into a
multitude of specialized effector subtypes of which CD4+ Th2
and Th17T cells have been associated with asthma. Th2 cells
and type 2 immune responses are predominately associated with
early-onset asthma, although other endotypes are observed in
children, highlighting the heterogeneous nature of the disease

(188). The Th17 subtype is generated from naïve CD4+ T cells
in response to IL-1β, IL-6, TGFβ, and IL-23 (199–202). They are
characterized by the fate-determining transcription factor RORγt
and produce IL-17a, IL-17F, and IL-22 (203, 204). Th17 cells
are associated with mucosal barriers and involved in pathogen
clearance (205) A new non-canonical role for Th17 cells is
emerging in infection-induced asthma. IL-17 produced by Th17
cells recruit and activate neutrophils via crosstalk with airway
epithelial cells (206). Additionally, it has been shown that IL-17a,
IL-17f, and IL-23 promote increased mucous production, airway
remodeling, and inflammation (207). Molet et al. (208) reported
an increase in IL-17 in the sputum and bronchoalveolar lavage
of asthmatics; they showed that IL-17 activation of macrophages
and fibroblasts promoted the secretion of IL-6, IL-1β, and TNFα
in vitro. As highlighted previously, a curious paradox exists with
respect to inflammaging, an increase in immune cell senescence
concurrent with chronic inflammation.

We have focused, thus far, on immune cell senescence
as a regulator of immune effector cell function, chronic
inflammation, and airway remodeling. An alternative view
suggests that immune senescence is propagated by activation
of regulatory cells possessing immunosuppressive properties.
A plethora of myeloid and lymphoid-derived regulatory cells
with such properties has described regulatory T cells (Tregs),
regulatory B cells (Bregs), and myeloid-derived suppressor cells
(MDSCs) (209–214). Regulatory T cells, defined by expression
of the fate-determining transcription factor Forkhead Box
P3 (Foxp3), are paramount to the maintenance of immune
homeostasis (209, 210). After infectious challenge and its
resolution, Tregs promote tissue repair and restrain immune
hyper-reactivity through the secretion of anti-inflammatory
cytokines, IL-10, and TGF-β (209–212). Tregs also express
high levels of CD25 (IL-2Ra) and are thought to compete
with immune effector cells for IL-2 in local inflammatory
environments (205). A number of modalities of Treg-induced
immunosuppression have been proposed (215). Similar to other
immune cell types, Tregs precipitously decline in aged adults,
the mechanism of which is incompletely understood; the role of
cellular senescence in this process is likely. Traditional CD4+

Foxp3+ regulatory T cells develop in the thymus and are
designated natural Tregs (nTregs) (209–212). Additionally, Tregs
can be induced in the periphery from conventional CD4+ T
cells (iTregs) (205). The frequency and total numbers of CD4+

Tregs are elevated during the aging process in humans (205).
However, murine studies have revealed that the proportion of
nTregs to iTregs increases during aging, suggesting a defect
in the inducibility of Tregs from the conventional T-cell pool
(205). These seemingly paradoxical observations underscore the
complex nature of immune network remodeling and phenotypic
switching that occurs with age.

As discussed earlier, fibroblasts represent a specialized
mesenchymal cell population that produce collagen, fibronectin,
and proteoglycans which comprise major components of the
ECM and are found in the stroma of virtually all tissue types
(216). In response to injury, fibroblasts deposit ECM components
providing the physical architecture and matrix-generated signals
that promote wound healing (217, 218). In age-induced
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pathologies such as asthma, COPD, and IPF, a reorganization of
airway architecture has been consistently observed. Fibroblasts
produce a number of cytokines and respond to an assortment
of cytokines from neighboring cells, primarily epithelial cells
and immune cells. Cross-talk between fibroblasts and immune
cells has been shown to be central to disease pathologies
(219). The low-level, chronic inflammation that characterizes
inflammaging may alter the cytokine microenvironment in aging
lung tissues; the resulting dysregulation in stromal cell-immune
cell cross-talk may contribute to disease progression. The precise
mechanisms driving inflammaging and its link to fibrosis and
airway remodeling requires further investigation. Given the
dynamism involved in the progression and pathophysiology
of inflammaging, it is not surprising that the mechanistic
underpinnings have yet to be fully defined. In the ensuing section,
we will highlight several emerging and proposed mechanisms.
Cellular senescence of ASM induced by hyperoxia leads to
secretion of pro-inflammatory and pro-fibrotic mediators factors
that has been proposed to contribute to pediatric airway disease
in the context of sequelae of preterm birth (220, 221).

The Role of Oxidative Stress in
Inflammaging
Oxidative stress participates in myriad disease pathologies, and
is particularly relevant for diseases of aging (222, 223). This
biological phenomenon results from an imbalance between the
production and clearance of ROS (222). ROS are produced
during normal cellular processes such as oxidative metabolism,
responses to bacterial infections, and during signaling events
by Nox enzymes (222). ROS are important signaling mediators
and during redox homeostasis participate in many cellular
and physiologic processes such as proliferation, differentiation,
migration, and apoptosis (222, 224). Conversely, during redox
imbalance, ROS are implicated in disease pathogenesis due
to excess cellular atrophy and death, macromolecule damage,
and exacerbated inflammation (222) A specific source of
ROS, mitochondrial ROS (mtROS), has gained considerable
attention recently given the ubiquity of cellular respiration,
even during homeostatic conditions. In healthy individuals,
the oxidant/antioxidant balance is maintained. The oxidative
stress theory of aging, proposed by Denham Harman in
1950 (225), was the first to implicate ROS in age-induced
molecular alterations. This theory posits that an accumulation of
reactive species (ROS/RNS) during normal cellular metabolism
promotes the aging process by disturbing the redox balance
in favor of pro-oxidants (225). Metabolic dysfunction and
damage induces inflammaging through an innate immune
sensing mechanism (226). DAMPs released following necrotic
and apoptotic cell death are recognized by innate immune cells
bearing PRRs such as TLRs and NOD-like receptors (NLRs)
(226). Necroptosis, a form of regulated cell death, is regulated
via a multiprotein signaling complex called the necrosome
consisting of receptor-interacting kinase 1 (RIPK1), receptor-
interacting kinase 3 (RIPK3), and mixed lineage kinase domain-
like pseudokinase (MLKL) (227). This regulated cell death is
also called inflammatory cell death, as necroptosis induced cell

membrane rupture releases endogenous DAMPs [mitochondrial
DNA (mtDNA), high-mobility group box 1 (HMGB1), genomic
DNA and RNA] to the surrounding tissue microenvironment,
leading to “sterile” inflammation (228). Pinti et al. (229) noted
an increase in circulating mtDNA in aged adults correlated with
elevated pro-inflammatory cytokines. These observations, along
with previous studies, collectively suggests that maintenance of
inflammaging in the aging lung may be mediated by age-induced
tissue damage, release of endogenous DAMPs, and senescence of
immune and non-immune cells.

Inflammaging and the Epigenome
In addition to genetic factors, environmental and other factors
may contribute to inflammaging by epigenetic mechanisms.
Several epigenetic mechanisms, including direct DNA
methylation, non-coding RNAs, and histone modifications, that
regulate chromatin remodeling may participate in this process
(230). The initiation of epigenetic modulation is triggered by
diverse environment stimuli including diet, infection exposure,
toxins, and the microbiome (222). Chemical modifications to
histone tails leads to three-dimensional chromatin remodeling.
Euchromatin, a loose, uncoiled chromatin structure, is
transcriptionally permissive, while heterochromatin with
a tightly packed 3-D structure is transcriptionally silent
(222) While not fully understood, it is well-accepted that
chemical modifications of histones such as methylation,
acetylation, phosphorylation, and ubiquitination alter chromatin
structure. Methylation and acetylation of histone tails, the most
studied of the modifications, are associated with permissive
(H3K4me3, H3K9me1, H3K9ac, and H3K27ac) in addition
to, repressive (H3K9me3 and H3K9me3) histone signatures
(222). Ultimately, these chemical modifications influence
gene expression in a dynamic interplay that also requires
specific transcription factors and co-factors. Age-dependent and
ubiquitous hypomethylation of DNA and heterochromatin loss
have been broadly reported (222, 231). Furthermore, age-related
alterations in post-translational modifications of histone tails
have been detailed and a ubiquitous loss of nucleosome density
has been observed (231). The direct relationship between age-
driven epigenetic remodeling and inflammaging in pulmonary
tissues is incompletely understood. It has been proposed that, in
aging human cells, loss of heterochromatin is due to diminished
nucleosome occupancy (231). In fact, (232), first observed
this phenomenon in human skin fibroblasts (231). It was
reported by Agrawal et al. (233) that DNA from elderly adults is
more immunogenic relative to aged controls. Moreover, it was
speculated that DNA from aged adults is a more potent DAMP
due to hypomethylation, thus indistinguishable from microbial
DNA by PRRs expressed by innate immune cells (222).

Metabolism and Inflammaging
Metabolic dysfunction is implicated in many age-associated
chronic diseases and has been suggested to not only be a result of
inflammaging, but also directly contributes to the aging process
(234). Both innate and adaptive immune responses have been
demonstrated to be regulated via the metabolism of multiple
amino acids including tryptophan, arginine, phenylalanine,

Frontiers in Medicine | www.frontiersin.org 8 May 2020 | Volume 7 | Article 191

https://www.frontiersin.org/journals/medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/medicine#articles


Hough et al. Airway Remodeling in Asthma

cysteine, and glutamine (235). Arginine has been shown to play
a critical role in the pathogenesis of allergen-driven asthma
(236–238). The catabolism of arginine via arginase is not only
a biomarker for the onset of asthma, but it has been suggested
to be directly involved in the manifestation of allergic airway
disorders (236–238). Arginine is the substrate for both nitric
oxide synthase (NOS) and arginase. These enyzmes regulate
each other by controlling the availability of the substrate
arginine (236–238). Given the opposing regulatory functions
of NOS and arginase, a better understanding of this dynamic
equilibrium in allergy-driven asthma is required (239, 240).
In a 2015 study, Comhair et al. (241) identified 25 metabolic
intermediates that were significantly different in the plasma of
asthmatics vs healthy controls. Furthermore, their work revealed
that severe asthmatics demonstrated lower levels of steroid
metabolism intermediates. Alternatively, increased plasma levels
of taurine, bile acids, nicotinamide, arachidonate, and adenosine-
5-phosphate were observed (241). Collectively, these studies
and others, underscore how the alterations in tightly regulated
metabolic and homeostatic processes in aging individuals may
increase susceptibility to allergic asthma.

The role of lipid metabolism in age-related diseases is not
well-understood. However, it has been reported that plasma
triglyceride levels increase, while phosphatidylethanolamine
(PE) and phosphatidylcholine (PC), which are generally
associated with membranes, decrease with age (242). Moreover,
Lawton et al. (243) reported the age-related modulation of
lipid composition including elevated levels of fatty acids, beta-
hydroxybutyrate, carnitine, and cholesterol in older individuals.
The relationship between disturbed lipid metabolism dynamics
and inflammatory responses remain poorly understood. Three
isoforms of the nuclear receptor family of transcription factors-
peroxisome proliferation-activated receptors exist: PPARa,
PPARb, and PPARg (244, 245). Fatty acid metabolism is
facilitated ultimately through alterations in transcription of
PPAR sensitive genes, thus PPARs function as fatty acid sensors
(244, 245). PPARg has been shown to down-modulate gene
expression in both monocytes and macrophages, inhibiting
their activation and production of pro-inflammatory cytokines
(246–248). Lipid metabolism can also regulate chromatin
remodeling by direct modification of histone tails (242). Fatty
acid beta-oxidation produces multiple intermediates including
acetyl CoA (242). Acetyl CoA is a required cofactor used by
histone acetyltransferases in order to acetylate histone tails
(242). S-adenosyl methionine (SAM) is a common co-substrate
and acts primarily as a methyl donor for many physiological
processes such as histone and DNA methylation, as well as
lipid methylation (249). The role of fatty acid metabolism in
inflammaging is likely complex and may involve coordinated
regulation of the epigenome with diverse biological processes
altered during aging.

Loss of homeostasis in aging tissues, including the lung,
is characterized by progressive metabolic dysfunction and
physiological decline in aged populations (250). Aging-related
alterations in metabolic function include mitochondrial
dysfunction, hyperlipidemia, and increased production of
ROS, all of which are implicated in inflammatory processes

FIGURE 2 | Susceptibility to airway remodeling in individual hosts is dependent

on genetic susceptibility, environmental exposures, and aging. These risk

factors regulate the cross-talk between the epithelium, innate, and adaptive

immunity and mesenchymal stromal cells that contribute to airway remodeling.

as well. The relationship between aging pulmonary tissues,
metabolic function, and inflammation is nuanced and
complex, underscoring the need for additional research
into the mechanistic underpinnings of inflammaging in
the lung.

CONCLUSION

The development of asthma, its progression and associated
physiological declines in lung function is dependent on a
number of genetic, environmental, and host-related factors
that include age (251, 252) (Figure 2). Our understanding
of the epidemiology, clinical behavior/prognosis, and the
cellular/molecular pathogenesis of asthma have advanced over
the past decade. Most notably, the recognition and improved
understanding of disease subphenotypes and pathological
endotypes has informed the need for greater precision in
both the diagnosis and treatment of these heterogeneous
group of clinical “syndromes.” Airway remodeling may be
viewed as a specific endotype of asthma pathology that is
relatively refractory to conventional anti-inflammatory therapies.
It has been proposed that corticosteroid refractory asthma
may represent a sub-phenotype characterized by a heightened
neutrophilic airway inflammatory response in the presence or
absence of eosinophils, with evidence of increased tissue injury
and remodeling (253). Asthma in the aging population appears
to share several features with this group of corticosteroid-
refractory asthma. Recognizing that airway remodeling may
occur in parallel with chronic inflammation, and not simply
as a (serial) consequence of the inflammatory response,
will be critical to developing novel therapeutic strategies.
Over the past several years, we have witnessed intensified
efforts by both academia and industry to more specifically
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target airway remodeling events in disease pathogenesis. It
is our hope that such efforts will lead to the discovery and
development of more effective therapies for severe, steroid-
resistant asthma.
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