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Extensive allele-specific translational regulation
in hybrid mice
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Abstract

Translational regulation is mediated through the interaction
between diffusible trans-factors and cis-elements residing within
mRNA transcripts. In contrast to extensively studied transcrip-
tional regulation, cis-regulation on translation remains underex-
plored. Using deep sequencing-based transcriptome and polysome
profiling, we globally profiled allele-specific translational efficiency
for the first time in an F1 hybrid mouse. Out of 7,156 genes with
reliable quantification of both alleles, we found 1,008 (14.1%)
exhibiting significant allelic divergence in translational efficiency.
Systematic analysis of sequence features of the genes with biased
allelic translation revealed that local RNA secondary structure
surrounding the start codon and proximal out-of-frame upstream
AUGs could affect translational efficiency. Finally, we observed
that the cis-effect was quantitatively comparable between tran-
scriptional and translational regulation. Such effects in the two
regulatory processes were more frequently compensatory, suggest-
ing that the regulation at the two levels could be coordinated in
maintaining robustness of protein expression.
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Introduction

Eukaryotic gene expression is orchestrated by multiple regulatory

processes, of which one critical step is mRNA translation. While

mRNA abundance levels are widely used as a proxy of protein

expression, yet, in various eukaryotes, only up to 50% of variation

in protein level can be explained by that in mRNA abundance (De

Sousa Abreu et al, 2009). Recent genome-wide studies further high-

light the predominant role of translation in controlling cellular

protein concentrations, in both yeast and mammalian cells

(Schwanhäusser et al, 2011; Marguerat et al, 2012). Translational

regulation, accounting for not only rapid response during stress

but also long-term adaptation in cell physiology (Sonenberg &

Hinnebusch, 2009; Spriggs et al, 2010), is mediated via the interac-

tion between the cis-regulatory elements residing in the mRNA tran-

scripts and various trans-factors (e.g. translational machinery, RNA

binding proteins (RBPs) and miRNAs). Previous studies have

reported a variety of cis-elements involved in translational regula-

tion, including Kozak sequence (Kozak, 1986), upstream open

reading frames (uORFs) or upstream AUG codons (uAUGs) (Mueller

& Hinnebusch, 1986; Matsui et al, 2007; Calvo, 2009), and binding

sites of miRNAs and different RBPs (Hentze et al, 1987; Leibold &

Munro, 1987; Abaza & Gebauer, 2008; Fabian, 2010). Genetic vari-

ants disrupting these cis-elements often alter protein synthesis and

result in pathological phenotype (Cazzola & Skoda, 2000; Signori

et al, 2001; Beffagna et al, 2005).

Changes in translational regulation represent one of the major

dynamic processes during evolution, and such changes could arise

from the divergence in cis-regulatory elements. Compared to tran-

scriptional regulation, where numerous genome-wide studies have

been using first microarray and then deep sequencing to dissect

cis-regulatory divergence in different organisms, global analysis of

translational cis-regulation is rather limited. Recently, similar to

expression quantitative trait locus (eQTL) mapping in the study of

transcriptional regulation, genome-wide mapping of protein quanti-

tative trait loci (pQTLs) has been performed to investigate genetic

variants responsible for inter-individual variation in protein abun-

dance (Ghazalpour et al, 2011; Skelly et al, 2013; Wu et al, 2013;

Battle et al, 2015). For instance, using mass spectrometry (MS)-

based shotgun proteomics approach, Ghazalpour et al (2011) quan-

tified over 5,000 peptides in 97 inbred and recombinant mouse

strains and identified 46 local pQTLs for 396 genes. Using an

improved MS-based approach, Wu et al (2013) determined relative

protein levels for 5,953 genes in human lymphoblastoid cell lines

(LCLs) from 95 individuals and identified 77 genes with local

pQTLs. In both studies, despite the overlap between some pQTLs

and eQTLs, approximately half of the pQTLs cannot be explained by

mRNA expression divergence (Ghazalpour et al, 2011; Wu et al,

2013). This suggests that genetic variants contribute substantially to

inter-individual difference in protein abundance only by affecting

post-transcriptional processes. Very recently, taking advantage of

ribosome footprinting technique (Ingolia et al, 2009), in addition to
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eQTL and pQTL profiling, Battle et al (2015) mapped the genetic

variants that are associated with individual specific difference in

ribosome occupancy (rQTL) to more directly dissect the impact of

genetic variants on translation. Based on their data obtained from

72 human LCLs, among 4,000 genes quantified for all three pheno-

types, 90 and 35% of rQTLs and pQTLs overlapped with eQTLs,

respectively (Battle et al, 2015).

An alternative approach that could more directly address the cis-

effect is to compare the allelic difference in an F1 hybrid, where

mRNA transcripts from both parental alleles are subject to the same

trans-regulatory environment; thus, observed allele-specific pattern

should only reflect the impact of cis-regulatory divergence. Recently,

based on ribosome footprinting technique, this approach has

been used to investigate allele-specific translational efficiency (TE)

in F1 hybrid yeast (Albert et al, 2014; Artieri & Fraser, 2014b;

McManus et al, 2014). While all these studies revealed a pervasive

cis-regulation at the translational level, which is comparable to the

cis-effect at transcription, it is controversial whether allelic transla-

tional regulation more frequently compensates or reinforces the

divergence resulting from allele-specific transcription. Compared to

unicellular organisms, more complex regulation is required in multi-

cellular species. However, genome-wide profiling of allele-specific

translational pattern in any of them is still lacking.

In this study, to globally investigate cis-divergence in transla-

tional regulation in mammals, we applied mRNA sequencing and

deep sequencing-based polysome profiling to quantify the allele-

specific TE in an F1 hybrid between two inbred mouse strains, Mus

musculus C57BL/6J (B6) and Mus spretus SPRET/EiJ (SPRET). The

two parental strains chosen in this study diverged ~1.5 million years

ago, which results in ~35.4 million single nucleotide polymorphisms

(SNPs) and ~4.5 million insertion and deletions (indels) between

their genomes (Keane et al, 2011). Such a high sequence divergence

allowed us to unambiguously determine the allelic origin for a large

fraction of sequencing reads, thereby enabled accurate quantifica-

tion of allelic TE for thousands of genes. Out of 7,156 genes with

reliable quantification of both alleles, we identified 1,008 genes

(14.1%) with significant allelic biases in TE. Compared to genes

without allelic bias, those with bias in TE contained higher density

of sequence variants, particularly in the 50UTR regions, including

those affecting local RNA secondary structure in vicinity of start

codon or changing proximal out-of-frame uAUGs. Finally, we

observed quantitatively comparable allelic divergence in transcrip-

tion and translation. Consistent with previous reports that the abun-

dance of protein tends to be less diverged than that of RNA across

different species, allelic biases in the two processes were more

frequently compensatory.

Results

Pervasive allelic divergence in translational efficiency (ADTE)

To investigate the allelic divergence at the translational level in a

mammalian system, we derived fibroblast cell lines from an F1

hybrid mouse between C57BL/6J and SPRET/EiJ strains. Using

the F1 fibroblasts, we deep-sequenced the polyadenylated RNAs

to measure mRNA abundance (total mRNA) and, in parallel,

performed deep sequencing-based polysome profiling to estimate

the translational status by quantifying the abundance of mRNA tran-

scripts associated with polyribosome (poly-mRNA) (Fig 1A; see

Materials and Methods for details). From two biological replicates,

paired-end sequencing of total mRNA and poly-mRNA produced on

average 158.5 and 94.6 million 100-nt read pairs, respectively

(Table EV1 and Fig EV1). The high density of sequence variants

between the genomes of C57BL/6J and SPRET/EiJ allowed unam-

biguous assignment of allelic origin for an average of 61% total

mRNA and 65% poly-mRNA uniquely mapped reads (Table EV1

and Fig 1B; see Materials and Methods for allelic read mapping).

We defined translational efficiency (TE) as the abundance ratio

between poly-mRNA and total mRNA, and used only the reads

assigned with unambiguous allelic origin to assess the allele-specific

TE in a quantitative manner. More specifically, we used only the

reads that were mapped on the SNP loci in protein-coding regions.

After filtering out the SNP loci with potential allelic read mapping

biases due to incomplete SNP annotation in paralogous or pseudo-

genes (see Materials and Methods for details), 7,156 genes contain-

ing at least five coding SNPs supported with sufficient allelic reads

were retained (see Materials and Methods for details). Figure 1C

showed two representative examples with significant ADTE, biased

towards C57BL/6J and SPRET/EiJ allele, respectively.

To further formally determine the genes with significant ADTE,

while accounting for the non-uniform allelic read counts at different

SNP loci across the same genes, we applied a bootstrapping strategy

to estimate the confidence of calculated allelic TE ratio, as previ-

ously used by Muzzey et al (2014) (see Materials and Methods). In

brief, for each gene consisting of a list of at least five coding SNPs,

we generated 5,000 new lists, each comprised of the same number

of SNPs that were chosen at random with replacement from the

original list. For each of the 5,000 random list, allelic TE ratio was

calculated and altogether yielded a bootstrap distribution, which was

then summarized with a mean and a standard deviation. The larger

the bootstrap mean deviates from zero, the larger the TE diverges

between the two alleles. By contrast, lower bootstrap standard devia-

tion gives more confidence in the estimation of allelic TE ratio. As

shown in Fig 2A, 81 and 98% of all analysed genes showed a

bootstrap standard deviation lower than 0.2 and 0.4, respectively,

indicating the good quality of our total mRNA and poly-mRNA data.

Based on the bootstrap mean and standard deviation, the statistical

significance of ADTE was then determined for each gene (Fig 2A; see

Materials and Methods). After applying a threshold of Benjamini–

Hochberg-adjusted P-value < 0.05 and allelic TE divergence > 2.0

in both replicates (FDR = 4.85%, Fig EV2A), we identified 1,008

(14.1%) genes exhibiting significant ADTE.

To assess the accuracy in quantifying ADTE based on short

Illumina reads, we randomly selected 33 genes for independent

validation. Using the PacBio RS system, we deep-sequenced the RT–

PCR products (500–600 bp, spanning ≥ 3 SNPs) amplified from both

total mRNA and poly-mRNA using primers targeted at the regions

with no sequence variant between the two alleles (see Materials and

Methods) (Eid et al, 2009; Sun et al, 2013). The longer read length

facilitated the assignment of the PacBio reads to the parental alle-

les without any ambiguity. Allelic ratios of both total mRNA and

poly-mRNA abundances could therefore be calculated with high

precision. As shown in Fig 2B, the ADTE estimated in this way was

significantly correlated with that determined by Illumina approach

(R2 = 0.912, P < 10�17).
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Figure 1. Deep sequencing-based global quantification of allele-specific translational efficiency.

A Study design. Fibroblast cell line was derived from an F1 hybrid mouse between C57BL/6J and SPRET/EiJ inbred strains. Using the F1 fibroblasts, we deep-sequenced
the polyadenylated RNAs to measure mRNA abundance (total mRNA) and, in parallel, performed deep sequencing-based polysome profiling to estimate the
translation status by quantifying the abundance of mRNA associated with polyribosome (poly-mRNA).

B The percentage of uniquely mapped reads from total mRNA sequencing (left) or polysome profiling dataset (right) that were unambiguously assigned to C57BL/6J
(red) and SPRET/EiJ (blue) alleles, or assigned to the two alleles with equal probability (common, grey). On average, 61% total mRNA and 65% poly-mRNA uniquely
mapped reads could be unambiguously assigned to either allele. See Table EV1 for the detailed statistics of allelic read mapping.

C Barplots showing the number of sequencing reads from total mRNA sequencing (mRNA) or polysome profiling dataset (Poly) assigned to C57BL/6J (red) or SPRET/EiJ
(blue) alleles (y-axis) at different SNP loci (x-axis) across the coding region of genes Cnppd1 (up) and Lbp (low). In Cnppd1, whereas the mRNA transcribed from the
two alleles was of similar abundance, mRNA associated with polysome contained higher amount of C57BL/6J-derived transcripts, indicating the higher translational
efficiency of C57BL/6J allele. In contrast, transcripts derived from the C57BL/6J allele of gene Lbp was translated at lower efficiency than SPRET/EiJ-derived transcripts.
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Figure 2. Identification of genes with significant ADTE.

A Scatterplot showing the bootstrap means (x-axis) and standard deviations (y-axis) in estimating ADTE for the 7,156 genes containing at least five coding SNPs
supported with sufficient allelic reads. Dashed blue lines indicate the Benjamini–Hochberg-adjusted P-value of 0.05, and dashed brown lines indicate the twofold
divergence. Genes with significant ADTE (Benjamini–Hochberg-adjusted P-value < 0.05, allelic TE bias > 2-fold) are depicted in red.

B Scatterplot comparing ADTE estimated based on Illumina sequencing data (x-axis) to that based on PacBio sequencing (y-axis) for the 33 randomly selected genes.
The ADTE estimated based on PacBio sequencing was significantly correlated with that determined by Illumina approach (R2 = 0.912, P < 10�17).

C Scatterplot comparing the ADTE estimated based on polysome profiling data (x-axis) to that based on ribosome foortprinting data (y-axis). All dots represent the
4,511 genes with both sufficient polysome profiling and ribosome footprinting data. Among them, the 688 genes with significant ADTE based on polysome profiling
data are depicted in dark grey, of which the 460 genes that were also estimated with significant ADTE based on ribosome footprinting data are depicted in red
circles.

D Boxplots showing the distribution of allelic bias in protein abundance estimated using mass spectrometry (MS)-based proteomics approach. The 54 genes that were
confidently quantified for their allelic protein abundance using MS approach were categorized into three groups according to polysome profiling data, that is no
allelic bias (n = 35), bias towards C57BL/6J (n = 10) and SPRET/EiJ allele (n = 9). The allelic biases estimated using MS approach were on average coherent with that
based on polysome profiling data, and that the MS estimates were significantly different among all the three groups (P < 0.05 for all pairwise comparisons, Mann–
Whitney U-test).
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As another independent approach, we also performed ribosome

footprinting to assess mRNA translational status. In comparison

with polysome profiling that measures the relative abundance of

mRNA transcripts in the active translating pool, ribosome profiling

directly measures the number of ribosomes associated with different

mRNAs and therefore in principle enables more precise estimates of

protein synthesis rate (Ingolia et al, 2009). The insert size of the

ribosome profiling library was limited by the length of ribosome-

protected mRNA fragments (RPFs), that is 28–33 nt. Therefore, the

library was sequenced only for 50 nt. After trimming adapters, we

mapped 165.9 million RPF reads to the reference sequences of both

B6 and SPRET transcriptome in the same manner as we did with the

total mRNA and poly-mRNA data. Due to the short length after

adaptor trimming, only 19% uniquely mapped RPF reads could be

unambiguously assigned to either allele (Fig EV2B and Table EV1).

Consequently, only 4,511 ORFs consisting of ≥ 5 SNPs supported

with sufficient allelic RPF reads could be used for ADTE calcula-

tion. Applying the same bootstrapping strategy, we identified

1,305 genes with significant ADTE (Benjamini–Hochberg-adjusted

P-value < 0.05; Fig EV2C). Among the 1,008 genes with significant

ADTE identified based on polysome data, 688 had sufficient allelic

ribosome profiling data. Among them, 460 genes (66.9%) showed

also significant ADTE bias towards the same allele as estimated

based on polysome profiling (Fig 2C; see also Fig EV3A for compar-

ing the allelic divergence in translational status estimated based on

polysome profiling data versus that based on ribosome footprinting

data). Importantly, no single gene showed significant ADTE but

towards the different allele between polysome profiling and ribo-

some footprinting results.

We also used mass spectrometry (MS)-based proteomics to

directly quantify protein abundance. To minimize the influence of

protein degradation, we measured only newly synthesized proteins

using azidohomoalanine (AHA) labelling, which in principle

provides a more direct proxy for translational status than poly-

some or ribosome profiling (Dieterich et al, 2006). Due to much

lower number of peptides that could be detected and assigned to

either allele, 54 genes could be confidently quantified for their

allelic translational status (see Materials and Methods). Based on

polysome profiling results, these 54 genes could be categorized

into three groups, that is no allelic bias (n = 35), bias towards

C57BL/6J (n = 10) or SPRET/EiJ allele (n = 9). As shown in

Figs 2D and EV3B, the allelic biases at the protein level quantified

by MS were on average coherent with that based on polysome

data, and the MS estimates were significantly different among all

the three groups.

Cis-regulatory elements proximal to start codons
contributed to ADTE

The ADTE observed in the F1 hybrid should only reflect the impact

of the allelic differences in cis-regulatory elements residing within

the transcripts. To study the potential cis-features accounting for the

observed allelic translational bias, we first calculated the density of

sequence variants between the two parental genomes for 634 genes

with significant ADTE and 1,291 control genes without ADTE

(restricted to single-isoform genes with unambiguous 50/30 UTR

annotation, see Materials and Methods). As shown in Fig 3A, the

genes with significant ADTE contained significantly higher density

of sequence variants than the control genes (P = 1.7 × 10�5,

Kolmogorov–Smirnov test; see also Fig EV4A for ADTE genes with

allelic TE divergence > 1.5 instead of 2.0, and Fig EV5A for ADTE

genes determined based on the ribosome footprinting data).

Next, we sought to explore how these sequence variants were

distributed in different genic regions. For this purpose, each gene

was separated into 50UTR, CDS and 30UTR regions, and SNP density

was calculated in each region and then normalized against the over-

all SNP density of the same gene. Compared to the 1,291 control

genes, the 634 genes with significant ADTE showed relatively higher

enrichment of SNPs in 50UTR (Fig 3B; see also Fig EV4B for ADTE

genes with allelic TE divergence > 1.5 and Fig EV5B for ADTE genes

determined based on the ribosome footprinting data). Inspired by

this observation, we further examined the SNP enrichment inside

50UTR proximal to the start codon (see Materials and Methods). As

shown in Fig 3C, compared with the control genes, the genes with

significant ADTE exhibited on average higher SNP enrichment in

the region proximal to the start codon (see also Fig EV4C for ADTE

genes with allelic TE divergence > 1.5 and Fig EV5C for ADTE genes

determined based on the ribosome footprinting data).

To dissect potential cis-elements close to the start codon account-

ing for the observed ADTE, given the well-known importance of

Kozak sequence in translational regulation (Kozak, 1986, 1987), we

first focused on the variants residing in the Kozak sequence (posi-

tions from �6 to +5 relative to start codon). Among the 634 genes

with significant ADTE, 7.1% contained at least one SNP in the

region, compared to 7.3% of the control genes. There was no signifi-

cant difference between the two gene groups (P = 0.93, Fisher’s

exact test). It has been reported that the third nucleotide upstream

of the start codon (position �3) has a dominant effect, where a

purine (A or G) is important for achieving optimal TE. Consistent

with the importance of this position, we found a purine in ~87% of

the genes examined for ADTE. Only four genes contained transver-

sion SNPs (purine to pyrimidine or vice versa) at this position,

which did not allow any statistical analysis on the contribution of

SNPs at this position to overall ADTE. Nevertheless, interestingly,

among the genes with sequence variants in other positions of the

Kozak sequence, we found those with a C at the position �3 tended

to more frequently show significant ADTE (odds ratio = 3.02,

P = 0.059, Fisher’s exact test).

mRNA secondary structure around the start codon has been

reported to affect TE (Kudla et al, 2009; Dvir et al, 2013). We there-

fore compared the minimum free energy (MFE) of mRNA segments

(of length 20–50 nt) surrounding the start codon between the two

alleles (see Materials and Methods) and correlated such difference

to the observed ADTE. By large, the alleles with less stable local

secondary structure around the start codon were more likely to

show higher TE (Fig 3D; see also Fig EV5D for ADTE calculated

based on the ribosome footprinting data).

Another category of known regulatory elements in 50UTR
includes uORFs and uAUGs (Mueller & Hinnebusch, 1986; Matsui

et al, 2007; Calvo, 2009). Here we defined uORFs as ORFs that

resided completely within the 50UTRs, and uAUGs as AUG codons

in 50UTR but without any in-frame stop codons upstream to the

start codons of main ORFs. To check whether allelic difference in

the presence of uORFs or uAUGs contributed to the observed

allelic TE bias, we first separated 1,640 (695) genes with uORFs

(uAUGs) into two groups, one group containing 1,597 (618) genes
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with uORFs (uAUGs) in both alleles, and the other 43 (77) genes

with uORFs (uAUGs) in only one allele. Comparing the distribu-

tion of ADTE between the two groups, we observed no significant

differences between the two groups for either uORF (Fig 3E;

P = 0.32, Mann–Whitney U-test; see also Fig EV5E for ADTE calcu-

lated based on the ribosome footprinting data) or uAUG (Fig 3F;

P = 0.72, Mann–Whitney U-test; see also Fig EV5F for ADTE calcu-

lated based on the ribosome footprinting data). After noting that

uAUGs located in the same frame as the main ORF (in-frame) or

not (out-of-frame) may play different roles in affecting translation

of main ORF, we separated the genes with uAUGs into two sets,

each of which containing only in-frame or out-of-frame uAUGs.

Interestingly, whereas we did not observe any significant correla-

tion between ADTE and presence/absence of the in-frame uAUGs

(Fig 3G; P = 0.30, Mann–Whitney U-test; see also Fig EV5G for

ADTE calculated based on the ribosome footprinting data), we

found that, for genes with proximal (≤ 100-nt upstream of the

main ORF) out-of-frame uAUGs in only one allele, ADTE differed

with marginal significance from that of genes with proximal out-

of-frame uAUGs in both alleles (Fig 3G; P = 0.038, Mann–Whitney

U-test; see also Fig EV5G for ADTE calculated based on the ribo-

some footprinting data). The observation that ADTE on average

biased towards the allele without uAUG indicates that the presence

of a proximal out-of-frame uAUG could negatively affect the TE of

the main ORF.

In previous studies, a number of sequence features beyond start

codon have also been reported to affect translation, including GC

content, codon bias (measured by codon adaptation index, CAI) and

the occurrence of miRNA target sites (Sandberg et al, 2008; Mayr &

Bartel, 2009; Santhanam et al, 2009; Plotkin & Kudla, 2010; Vogel

et al, 2010). To investigate whether these features accounted for the

ADTE observed in this study, we separated the genes into three sets,

that is no allelic bias, bias towards C57BL/6J and SPRET/EiJ allele

(see Materials and Methods), and then calculated the different

features for each set, separately. As a result, we did not observe

among the three sets significant disparity of the difference between

the two alleles with respect to GC content and codon bias measured

by CAI (Fig EV6A and B). To estimate the contribution of miRNA,

we profiled the miRNA abundance in our F1 fibroblast cells and

predicted the target sites for the 20, 50 and 100 most abundant

miRNAs. As shown in Fig EV6C, no significant allelic difference in

the number of predicted miRNA target sites could be observed

among the three gene sets.

Comparable allelic regulation of translation versus transcription,
and their coordination

In our F1 hybrid cells, the allelic bias in protein abundance is

controlled by the allele-specific regulation at transcriptional as well

as translational level. To explore the relative contribution of the two

processes, we first calculated allelic bias in RNA abundance, likely

resulting mostly from allelic transcriptional regulation. Based on

only total mRNA sequencing dataset, using the same bootstrapping

strategy at the same threshold (adjusted P-value < 0.05 and allelic

divergence > 2-fold, FDR = 4.74%, see Fig EV7), out of 7,892 genes,

we identified 1,041 with significant allelic differences in mRNA

abundance. As shown in Fig 4A, the proportion of genes exhibiting

allelic bias at mRNA abundance or translational efficiency was

similar (Fig 4A; 13.2 versus 14.1%, P = 0.11, Fisher’s exact test; see

also Fig EV8A and B for different threshold setting). In addition, the

allelic difference in mRNA abundance only explained 43% of the

allelic divergence in poly-mRNA abundance (Fig EV8C). Both obser-

vations suggested that allelic regulation at the two levels operated

with comparable importance in determining final allelic bias in

protein abundance.

Previous studies in yeast have shown that allelic translation and

transcription could be regulated in a coordinated fashion; however,

it is still in debate whether the regulatory effects at the two levels

reinforce or compensate each other (Artieri & Fraser, 2014a;

McManus et al, 2014; Muzzey et al, 2014). Here based on our

◀ Figure 3. Sequence features that were correlated with ADTE.

A The cumulative distribution function (CDF) of SNP density (number of SNPs per kb) for genes with significant ADTE (red) and without (control genes, grey). Compared
to the control genes, the genes with significant ADTE showed significantly higher SNP density (P = 1.7 × 10�5, Kolmogorov–Smirnov test), with the median SNP
density for the genes with significant ADTE being approximately 9.4% higher than that for the control genes.

B Barplots showing the regional SNP density enrichment for the genes with significant ADTE (red) and the control genes (grey). Each gene was separated into 50UTR,
CDS and 30UTR regions, and SNP density was calculated in each region and then normalized against the overall SNP density of the same gene. Compared to the 1,291
control genes, the 634 genes with significant ADTE tended to show relatively higher enrichment of SNPs in 50UTR. Grey and red bars represent mean, and error bars
represent s.e.m.

C SNP density enrichment in 50UTR proximal to the start codon for the genes with significant ADTE (red) and the control genes (grey). In the region proximal to the
start codon (up to 200 nt upstream), we calculated the SNP density in all 100-nt sliding windows with a step size of 20 nt and then normalized against the overall
SNP density of the same gene. The distance of window centre to start codon was indicated in x-axis, and the mean SNP density enrichment from the two gene
groups was indicated in y-axis. Although the SNP enrichment difference in five windows had a nominal P < 0.05, after Benjamini–Hochberg correction for multiple
testing, no windows remained significant (adjusted P < 0.05) (see Materials and Methods for the statistical test).

D Heatmap showing the Spearman’s correlation coefficient (q) between ADTE and the allelic difference in the minimum free energy (MFE) of mRNA segments
surrounding the start codon. For each of mRNA segments, its length was indicated in y-axis and the distance of its centre to start codon was indicated in x-axis.
Colour keys for q were shown below the heatmap. Note that q in none of the segments achieved statistical significance (FDR < 0.05) (see Materials and Methods for
the statistical test).

E Boxplots comparing the distribution of ADTE between 1,597 genes with uORF present in both alleles (grey) and 43 genes with uORF present in only one allele (red).
No significant differences between the two groups were observed (P = 0.32, Mann–Whitney U-test).

F Boxplots comparing the distribution of ADTE between 618 genes with uAUG presence in both alleles (grey) and 77 genes with uAUG presence in only one allele (red).
No significant differences between the two groups were observed (P = 0.72, Mann–Whitney U-test).

G Boxplots comparing the distribution of ADTE between 18 (505) genes with proximal in-frame (out-of-frame) uAUG presence in both alleles (grey) and 9 (38) genes
with proximal in-frame (out-of-frame) uAUG presence in only one allele (red). Whereas no significant correlation was observed between ADTE and presence/absence
of the proximal (≤ 100 nt upstream of the main ORF) in-frame uAUGs (P = 0.30, Mann–Whitney U-test), for genes with proximal out-of-frame uAUGs in only one
allele, ADTE significantly differed from that of genes with proximal out-of-frame uAUGs in both alleles (P = 0.038, Mann–Whitney U-test).
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Figure 4. Comparable allelic regulation of translation versus transcription, and their coordination.

A Comparable cis-effects at transcriptional and translational levels. Barplots showed 13.2 and 14.1% of genes with significant allelic bias at transcriptional and
translational levels, respectively, and the two proportions were of no significant difference (P = 0.11, Fisher’s exact test). Numbers of genes with or without biases at
transcriptional or translational levels are indicated within the corresponding bars. See also Fig EV8A and B for the comparison at different threshold settings.

B Scatterplot comparing each gene’s allelic divergence (log2-transformed fold change) at transcriptional (x-axis) and translational (y-axis) levels. Grey dash lines
indicate twofold divergence at either level. Compensatory (mRNA and TE divergent in opposite directions) and reinforcing (mRNA and TE divergent in the same
direction) genes were depicted in blue and red, respectively, while genes with significant allelic bias at only mRNA level and only TE level were depicted in orange
and green, respectively. See Fig EV8D and E for results at different threshold settings.

C Venn diagram showing 185 genes exhibiting significant allelic biases at both transcriptional and translational levels, which was significantly more than that expected
by chance (P = 5.8 × 10�7, Fisher’s exact test). Among the 185 genes, 137 showed the compensatory effects between the two processes, which was approximately
three times the number of genes with the reinforcing effects.

D Boxplots showing mRNA expression levels (log2-transformed reads per kilobase per million mapped reads (RPKM) values from total mRNA sequencing data) for genes
without allelic divergence at either level (grey), and genes with significant ADTE (green) or mRNA abundance (orange). On average, genes with allelic bias at either
level expressed significantly lower than those without allelic bias, and genes exhibiting allelic bias at the translational level expressed significantly higher than those
showing allelic bias at the transcriptional level. The P-values indicate the significance level of pairwise comparison of expression level among the three gene groups
(Mann–Whitney U-test).

E Gene Ontology (GO) enrichment of compensatory genes (blue), reinforcing genes (red) and genes without allelic bias at either level (grey). All GO terms shown are
with FDR < 0.05.
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dataset, we sought to address in a mammalian system whether and

how the extensive allelic translational regulation coordinated with

the allelic mRNA abundance. As shown in Fig 4B, 1,041 and 1,008

showed significant allelic biases in either RNA abundance or trans-

lational efficiency, respectively. Among them, 185 were exhibiting

allelic biases at both levels, which was slightly but statistically

significantly more than expected by chance (Fig 4C, P = 5.8 × 10�7,

Fisher’s exact test). Among these 185 overlapping genes, 137

showed the compensatory effects between the two processes

(mRNA and TE divergent in opposite direction), nearly two times

more frequent than those with the reinforcing effects (mRNA and

TE divergent in the same direction) (n = 48) (Fig 4C; see also

Fig EV8D and E for different threshold setting).

We then categorized the 7,892 genes into three groups based on

their allelic bias at transcriptional and translational levels. Interest-

ingly, we found that, on average, genes with allelic bias at either

level expressed significantly lower than those without allelic bias,

and genes exhibiting allelic bias at the translational level expressed

significantly higher than those showing allelic bias at the transcrip-

tional level (Fig 4D). Finally, we asked whether genes with or with-

out allelic bias in transcriptional and/or translational regulation had

distinct functions (see Materials and Methods). As shown in Fig 4E,

the genes without allelic biases in either process were enriched in

constitutive cellular processes, such as chromatin modification, and

transcription. While compensatory genes also showed enrichment

of some essential functions, such as regulation of proteolysis, rein-

forcing genes were enriched in two specific functional categories,

that is cartilage development and sensory perception of sound.

Discussion

Changes in translational efficiency play an important role in shaping

phenotypic diversity during evolution. To globally investigate cis-

divergence in translational regulation in mammals, we performed a

first genome-wide survey of allele-specific translational regulation in

a hybrid mouse system. Our data demonstrated that cis-divergence

in translation and transcription was of comparable importance

in determining allelic bias in protein abundance, and the cis-

divergence in the two regulatory precesses more often buffered than

enhanced each other. The large set of genes with cis-divergent

translational regulation collected in this study also enabled to

systematically characterize the potential cis-elements in translational

regulation.

To identify the genetic variants with regulatory effects on gene

expression, including ones lying in cis, a frequently used method is

eQTL mapping, in which different genotypes are correlated with

gene expression levels in a large population with diverse genetic

backgrounds (Pickrell et al, 2010; Majewski & Pastinen, 2011;

Lappalainen et al, 2013). Recently, this strategy has been extended

to study the genetic regulation on protein abundance (Ghazalpour

et al, 2011; Skelly et al, 2013; Wu et al, 2013; Battle et al, 2015).

However, since the deep proteomic analysis of a large number of

samples is challenging, many true pQTLs probably escaped the

detection, especially those with smaller effect size (Brem &

Kruglyak, 2005). An alternative approach that could more directly

address the effect of cis-divergence is to analyse the allelic difference

in F1 hybrids between two distantly related parental strains. Very

recently, a couple of studies have used this strategy in hybrid yeast

to characterize allele-specific TE based on deep sequencing-based

ribosome footprinting (Albert et al, 2014; Artieri & Fraser, 2014b;

McManus et al, 2014). In this study, we applied the same approach

in mice and chose the F1 hybrid between C57BL/6J and SPRET/EiJ

inbred strains as our model. Among all the mouse strains with high-

quality genome assembly, SPRET/EiJ has the largest number of

sequence variants relative to C57BL/6J. This large genomic diver-

gence first provides a large number of potential regulatory variants

between the two strains. Second, more importantly, it allows the

use of deep sequencing or MS-based approaches to distinguish RNA

transcripts or peptides derived from either allele. Here, we used

deep sequencing-based polysome profiling and ribosome footprint-

ing as well as MS coupled with pulse labelling of newly synthesized

protein to measure allelic TE. As expected, given the much lower

number of peptides that could be detected and assigned to either

allele, MS-based approach could only be used to identify the allelic

bias in tens of different genes. Deep sequencing-based ribosome

profiling and polysome profiling data serve as a close proxy to

mRNA translation status, although both only capture a snapshot of

ribosome–RNA association without taking translational elongation

into account. With much higher sensitivity, they are however more

useful in quantifying allele-specific TE. Compared to ribosome foot-

printing, which measures the number of ribosomes associated with

individual mRNA transcripts, polysome profiling quantifies the

proportion of cellular mRNAs associated with polyribosome and

therefore yields lower resolution regarding the number of associated

ribosomes. Nevertheless, while ribosome profiling captures RPFs of

only ~29–33 nt in length, polysome profiling can be used to generate

longer sequencing reads that more likely cover at least one sequence

variants between the two alleles. Empirically, polysome profiling

with paired-end 2 × 100 nt sequencing resulted in > 60% reads with

unambiguous allelic origin assigned, compared to 19% reads from

ribosome profiling (Table EV1, Figs 1B and EV2B). Moreover, the

uncertainty in ADTE estimation (i.e. bootstrapping standard devia-

tion) based on polysome profiling was much lower than that based

on ribosome footprinting (Fig EV2D). After considering all the pros

and cons of both approaches, we decided to base our analysis on

polysome profiling data. In this way, 1,008 genes were identified

with significant ADTE, of which 688 had sufficient allelic RFP data.

Among them, 460 (66.9%) showed also significant allelic bias.

Importantly, no single gene showed significant allelic TE divergence

in the opposite direction between polysome profiling and ribosome

footprinting data. Finally, the allelic bias of 54 genes estimated using

MS data were on average coherent with that based on polysome

data, again validating that our polysome profiling data could be

reliably used for quantifying ADTE.

Compared to the genes without ADTE, the genes with allelic

biases contained higher SNP density, suggesting that the divergent

TE identified in our study was indeed caused by cis-variants. In

addition, we observed that SNPs associated with TE divergence

were more enriched in 50UTR, particularly in the vicinity of start

codon, indicating that the genetic variants accounting for the

observed ADTE preferentially functioned by affecting translation

initiation, which was in great accordance with previous findings

that translation is predominantly regulated at the initiation stage

(Jackson et al, 2010). Kozak sequence is one of the most well-

known elements in controlling translation initiation, and within the
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Kozak sequence, it has been reported that there is a strong prefer-

ence of a purine at the third nucleotide upstream of the start codon

(position �3) for efficient translation (Kozak, 2005). Interestingly,

whereas ~87% genes analysed in this study contained a purine and

nearly no genes had transversion SNPs at this position, among the

genes with SNPs in other positions of the Kozak sequence, we

found those with a C at the position �3 tended to more frequently

exhibit significant ADTE. This suggests that sequence variants at

other positions of the Kozak element could affect translation more

likely under non-optimal context. Beyond Kozak element, we

observed the variants affecting local secondary structure surround-

ing the start codon could result in ADTE, largely agreeing with the

previous findings in yeast (Dvir et al, 2013; Shah et al, 2013; Artieri

& Fraser, 2014b; Muzzey et al, 2014). Recently, based on genome-

wide analysis of RNA secondary structure, it has been observed in

Saccharomyces cerevisiae, Arabidopsis thaliana and human that

RNA fragments in the vicinity of start codons tend not to form

stable secondary structure (Kertesz et al, 2010; Wan et al, 2012,

2014; Ding et al, 2014). A slight alteration of this local secondary

structure due to a single SNP might be sufficient to cause detectable

difference in TE. It has also been reported that the presence of

uORFs or uAUGs would decrease TE (Mueller & Hinnebusch, 1986;

Vattem & Wek, 2004; Matsui et al, 2007; Calvo, 2009), yet in this

study, the difference (presence/ absence) of overall uORFs or

uAUGs between the two alleles appeared not to correlate with the

observed ADTE. However, after separating the proximal uAUG into

in-frame and out-of-frame categories, we observed that out-of-frame

proximal uAUGs could negatively affect TE. This observation agrees

with empirical evidences that uAUGs would diminish the transla-

tion of main ORFs by reducing the number of ribosomes reaching

the downstream AUGs. Such negative impact was not observed

for in-frame uAUGs, possibly due to the fact that, in contrast to

out-of-frame uAUGs, the in-frame uAUGs could generate N-terminal

extended protein isoforms (Kozak, 2005; Medenbach et al, 2011;

Dvir et al, 2013). Indeed, Dvir et al (2013) demonstrated with their

reporter assays that translation from the main ORF was efficiently

attenuated by only the out-of-frame uAUGs, but not in-frame

uAUGs.

Surprisingly, we did not find the significant impact of several

known cis-regulatory features in determining ADTE observed in this

study, such as the number of miRNA binding sites and codon bias.

Possible explanations include, first, ADTE might be due to the

combined effect of a large set of diverse mechanisms and the contri-

bution of individual feature with smaller effect sizes might not be

sufficient to reach statistical significance. In fact, miRNA binding

reduces protein output through mRNA degradation and translational

repression (Bartel, 2009), and in many recent studies, it only shows

modest influence in TE (Guo et al, 2010; Mukherji et al, 2011;

Eichhorn et al, 2014). In addition, the presence of these sequence

features, such as miRNA target sites, could be predicted only with

limited accuracy. It has been reported that at most 60–70% compu-

tationally predicted miRNA target sites are functionally relevant

(Lewis et al, 2003; Selbach et al, 2008). Besides, codon optimality

has been hypothesized to exert its effect mostly by modulating

translational elongation rate. It might not change mRNA–ribosome

association and thus not susceptible to our ADTE measurement

based on polysome profiling (Tuller et al, 2010; Novoa & Ribas de

Pouplana, 2012; Presnyak et al, 2015). Moreover, several previous

ribosomal profiling studies also failed to detect codon-specific differ-

ences in the translation of optimal and non-optimal codons (Ingolia

et al, 2009; Qian et al, 2012; Charneski & Hurst, 2013), indicating

this hypothesis is still largely in debate. Finally, we based our analy-

sis on the RefSeq annotation while our F1 fibroblast cells might

express alternative isoforms. Indeed, it is conceivable that differen-

tial usage of alternative 50 and/or 30UTRs, and even the alternative

start/stop codons, between the two alleles could lead to allelic

difference in TE. Global dissection of such effects awaits future

studies, where experimental data on allele-specific isoform usage

will need to be collected.

It has been shown previously that across species, protein levels

are less diverged than mRNA abundances (Garge et al, 2010; Khan

et al, 2013; Wu et al, 2013; Hause et al, 2014). One possible

mechanism is that divergence in translational and transcriptional

regulation offsets each other. Consistent with this, in our F1 hybrid

system, among the genes with allelic bias at both translation and

transcription level, almost three-fourths showed the compensatory

effects between the two processes, that is mRNA and TE divergent

in opposite directions. However, the number of genes with compen-

satory effect that we identified here was relatively small; therefore,

the offsetting effect between the two regulatory processes alone may

not be sufficient to explain the attenuated protein divergence.

Indeed, a recent study, based on their genome-wide eQTL, rQTL and

pQTL mapping data, suggested that protein degradation might play

a more important role in maintaining robust protein cellular

abundance during evolution (Battle et al, 2015).

Genes with or without allelic bias in transcriptional and/or trans-

lational regulation were on average of different mRNA abundance

and enriched with distinct functional categories. First, as expected,

genes without allelic difference in either mRNA abundance or

protein synthesis, which are likely under the high selection

pressure, expressed at higher level and were enriched in house-

keeping functions. Second, the observation of higher mRNA level

for genes regulated at translational level than those at transcrip-

tional level makes intuitive sense since translation regulation

requires higher amount of regulatory substrates, that is existing

mRNAs. Finally, while the genes with compensatory effect between

allelic regulations at the two levels were enriched in more essential

functions, the genes whose allelic difference in protein abundance

was amplified by both transcriptional and translational processes

were enriched in specific functional categories. Whether this gene

group could explain in part the phenotypic difference between the

two mouse strains awaits future studies of physiologically more

relevant tissues.

Materials and Methods

F1 hybrid mouse fibroblast cell cultures

The F1 hybrid mice were obtained as described before (Gao et al,

2013). Adult mouse fibroblast cells were isolated and cultured

according to the protocol from ENCODE project (http://genome.

ucsc.edu/ENCODE/protocols/cell/mouse/Fibroblast_Stam_protocol.

pdf) with modification of cell culture medium (RPMI 1640 medium,

GlutaMAXTM supplement with 10% FBS and 1% penicillin/

streptomycin).
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mRNA sequencing

Total RNAs from mouse fibroblast cells were extracted using TRIzol

reagent (Life Technologies) following the manufacturer’s protocol.

Truseq Stranded mRNA sequencing libraries were prepared with

500 ng total RNA according to the manufacturer’s protocol (Illu-

mina). The libraries were sequenced in 2 × 100 nt manner on HiSeq

2000 platform (Illumina).

Polysome profiling

Mouse fibroblast cells were grown to 80% confluency. Prior to lysis,

cells were treated with cycloheximide (100 lg/ml) for 10 min at

37°C. Then, cells were washed with ice-cold PBS (supplemented

with 100 lg/ml cycloheximide) and further lysed in 300 ll of lysis
buffer (10 mM HEPES pH 7.4, 150 mM KCl, 10 mM MgCl2, 1%

NP-40, 0.5 mM DTT, 100 lg/ml cycloheximide). After lysing the

cells by passing eight times through 26-gauge needle, the nuclei and

the membrane debris were removed by centrifugation (15,682 g,

10 min, 4°C). The supernatant was then layered onto a 10-ml linear

sucrose gradient (10–50% [w/v], supplemented with 10 mM HEPES

pH 7.4, 150 mM KCl, 10 mM MgCl2, 0.5 mM DTT, 100 lg/ml cyclo-

heximide) and centrifuged (160,000 g, 120 min, 4°C) in an SW41Ti

rotor (Beckman). Fractions were collected and digested with 200 lg
proteinase K in 1% SDS and for 30 min at 42°C. RNA from poly-

some fractions were recovered by extraction with an equal volume

of acid phenol–chloroform (pH 4.5), followed by ethanol precipita-

tion. TruSeq Stranded Total RNA libraries were prepared with

500 ng RNA according to the manufacturer’s protocol (Illumina).

The libraries were sequenced in 2 × 100 nt manner on HiSeq 2000

platform (Illumina).

Ribosome profiling

Mouse fibroblast cells were cultured and lysed in the same way as

for polysome profiling (see above). After lysis, ribosome-protected

fragments were collected as described in Ingolia et al (2012), with

minor modifications. In brief, cell lysate was treated with RNase I

at room temperature for 45 min. The nuclease digestion was

stopped by adding SUPERase InTM RNase inhibitor (Invitrogen) and

then loaded onto a linear sucrose gradient (10–50%). After ultra-

centrifugation, monoribosome was recovered and RNA was isolated

as described for polysome profiling (see above). rRNA was removed

using Ribo-ZeroTM Magnetic Kit (Human/Mouse/Rat) (Epicentre).

The 28- to 32-nt ribosome-protected fragments were purified

through 15% (wt/vol) polyacrylamide TBE-urea gel. The size-

selected RNA was end-repaired by T4 PNK for 1 h at 37°C. The

sequencing libraries were then generated using TruSeq Small RNA

Sample Preparation kit (Illumina) and sequenced in 1 × 50 nt

manner on Illumina HiSeq 2000 platform.

Reference sequences and gene annotation

The reference sequences of the C57BL/6J genome were downloaded

from the Ensembl FTP server (ftp://ftp.ensembl.org/pub/release-

72/fasta/mus_musculus/dna/; version GRCm38, Release 72). The

Ensembl gene annotation of C57BL/6J was also downloaded from

the Ensembl FTP server (ftp://ftp.ensembl.org/pub/release-72/

gtf/mus_musculus; Release 72). The RefSeq gene annotation was

downloaded from the UCSC genome browser (http://hgdownload.

soe.ucsc.edu/goldenPath/mm10/database/) on 5 June 2014. The

SNPs and indels between C57BL/6J and SPRET/EiJ were down-

loaded from the Sanger Institute (ftp://ftp-mouse.sanger.ac.uk/;

Release v3, Build 137). The vcf2diploid tool (version 0.2.6) in the

AlleleSeq pipeline was used to construct the SPRET/EiJ genome by

incorporating the SNPs and indels into the C57BL/6J genome

(Rozowsky et al, 2011). The chain file between the two genomes

was also reported as an output, which was further used with the

UCSC liftOver tool. The liftOver tool from the UCSC Genome

Browser (Kuhn et al, 2013) was applied to get the SPRET/EiJ gene

annotation. Given the genome sequences and the gene annotation,

transcriptome reference sequences of both strains were built using

custom Perl scripts.

Allele-specific sequencing read mapping

The sequencing reads were first subjected to adapter removal using

flexbar with the following parameters: -u 3 -m 32 -ae RIGHT -at 3

-ao 1 (Dodt et al, 2012). Read pairs that were concordantly mapped

to the reference sequences of rRNA, tRNA, snRNA, snoRNA and

miscRNAs (available from Ensembl and RepeatMasker annotation)

using Bowtie2 (version 2.1.0) (Langmead & Salzberg, 2012) with

default parameters (in –end-to-end & –sensitive mode) were

excluded. The remaining reads were then mapped to the both

C57BL/6J and SPRET/EiJ transcriptome reference sequences using

Bowtie2 (version 2.1.0) with the same parameters as above but

allowing no more than four mismatches per read pair. Concordantly

mapped read pairs (i.e. mates of a read pair mapped to the same

transcript with opposite orientation) were then assigned to the

C57BL/6J or SPRET/EiJ allele with less mapping edit distance; read

pairs with equal edit distance to either allele were assigned as

“common”. Read pairs that mapped to sexual chromosomes and

mitochondrial DNA were excluded for further analysis.

Filtering of SNP loci with potential allelic read mapping biases

To estimate ADTE, only the reads that could be unambiguously

assigned to SNP loci from either allele were counted (see below).

Due to potentially incomplete annotation of SNPs at paralogous

gene or pseudogenes in the SPRET/EiJ genome, some reads, which

could be mapped to multiple gene loci if the C57BL/6J sequences

used as a reference, were mapped to a unique position in the

SPRET/EiJ allele. In such cases, removal of multiple mapped reads

(only from C57BL/6J allele) could lead to inaccurate calculation of

ADTE. Therefore, we filtered out SNP loci if: (i) more multiple

mapped reads than uniquely mapped reads were aligned at the loci

from either allele, and (ii) the ratio of allelic abundance at the loci

calculated based on multiple mapped reads differs by > 1.5-fold

from that using uniquely mapped reads.

Estimation of Allelic Divergence in Translational Efficiency (ADTE)

After SNP loci filtering (see above), protein-coding genes with ORF

containing at least five SNPs in constitutive exons supported by

sufficient allelic reads (i.e. for a SNP locus, PolySPRET + PolyB6 ≥ 10

and mRNASPRET + mRNAB6 ≥ 10 and mRNASPRET + PolySPRET ≥ 10
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and mRNAB6 + PolyB6 ≥ 10, where PolySPRET/B6 and mRNASPRET/B6

represent the number of poly-mRNA and total mRNA reads aligned

to the SPRET/EiJ or C57BL/6J allele at the SNP locus, respectively)

were subjected to ADTE estimation using the following formula:

ADTE ¼ log2

� X
PolySPRET=

X
PolyB6

� �

=
X

mRNASPRET=
X

mRNAB6

� ��

where Σ represents the sum of allelic reads from all the SNP loci

belonging to the same ORF.

Similar as described in Muzzey et al (2014), a bootstrapping

procedure was applied to assess the estimation uncertainty. In

short, for each ORF consisting of a list of n (n ≥ 5) SNP loci, we

generated 5,000 new lists, each consisting of n SNP loci that were

chosen at random with replacement from the original list. For each

of the 5,000 random list, ADTE was calculated and then yielded a

bootstrap distribution, from which we got the bootstrapping mean

and standard deviation, as shown in Fig 2A. Non-zero bootstrap-

ping means indicated the TE of the two alleles was not equal. To

determine the statistical significance of genes with ADTE, we calcu-

lated a P-value based on the Z-score that represented how many

folds of standard deviation the bootstrapping mean deviated from

zero. The raw P-values were then adjusted using the Benjamini–

Hochberg method. To determine the false discovery rate based on

our experimental replicates, we applied a similar permutation strat-

egy as that used in Sterne-Weiler et al (2013). In short, gene labels

were shuffled for 100 times in both replicates, and in each of the

100 shuffled sets, we counted the number of genes in both repli-

cates meeting the fold change (FC) requirement (|FC| > x) and

bootstrapping significance requirement (adjusted P-value < 0.05),

and biased towards the same allele, denoted as FP(x). Then, the

FDR in each set for each value of x was estimated as FP(x) divided

by the number of real genes passing the same criteria. We applied

the same bootstrapping procedure to assess the uncertainty of

ADTE estimated based on ribosome footprinting data. The ADTE

calculation was executed in R version 3.1.1 (R Core Team, R Foun-

dation for Statistical Computing, Vienna, Austria; http://www.

R-project.org) with custom scripts.

PacBio sequencing and data analysis

Starting from 500 ng total RNA or polysomal RNA, reverse transcrip-

tion (RT) was performed using random hexamer and SuperScript II

reverse transcriptase. PCR was followed using 1 μl of RT product as

template in 50 μl of Phusion High-Fidelity DNA Polymerase system

(NEB). PCR primers were designed for amplifying the genic region

covering ≥ 3 sequence variants between C57BL/6J and SPRET/EiJ

transcripts. PCR program was as follows: 30 s at 98°C, followed by 30

cycles of 10 s at 98°C, 30 s at 60 °C and 45 s at 72°C, and a final elon-

gation of 5 min at 72°C. The amplified RT–PCR products from total

RNA or polysomal RNA were mixed separately. The mixed products

were then purified using Agencourt AMPure XP system (Beckman

Coulter) and quantified by Qubit HS dsDNA measurement system

(Life Technology). These mixed PCR products were sequenced on

PacBio RS SMRT platform according to the manufacturer’s instruc-

tion. All the primer sequences were listed in Table EV2.

Sequence reads from the PacBio RS SMRT chip were processed

through PacBio’s SMRT-Portal analysis suite to generate circular

consensus sequences (CCSs). The CCSs were then mapped to both

alleles of target genes using BLASR (part of SMRT analysis, version

2.2.0) with default parameters except -minReadLength 300. The CSS

reads were assigned to C57BL/6J or SPRET/EiJ allele with fewer

mismatches. The numbers of reads assigned to either allele of each

gene from total mRNA and poly-mRNA were counted and used to

calculate ADTE.

Azidohomoalanine (AHA) pulse-labelled samples

A similar approach as applied in Khan et al (2012) was used to

measure allele-specific protein abundance. Parental SPRET/EiJ,

C57BL/6J and the F1 fibroblasts were cultured in stable isotope

labelling by amino acids in cell culture (SILAC) DMEM (Life Tech-

nologies) (supplemented with 10% dialysed FBS (Sigma-Aldrich)

and 1% penicillin/streptomycin) containing either standard or

heavy versions of lysine [light Lys-0 (L), medium Lys-4 (M) or

heavy Lys-8 (M)] and arginine [light Arg-0 (L), medium Arg-6 (M)

or heavy Arg-10 (H)] (Ong et al, 2002). In this way, we fully labelled

the SPRET/EiJ-derived proteins light, C57BL/6J proteins medium

and F1 heavy. Cells were washed twice in pre-warmed PBS before

being depleted from methionine in DMEM lacking methionine

(Sigma-Aldrich) (supplemented with 10% dialysed FBS (Sigma-

Aldrich) and 1% penicillin/streptomycin) for 90 min. The cells were

then pulsed with 1 mM of the methionine surrogate azidohomoala-

nine (AHA, Anaspec) for 90 min. During the pulse, newly synthe-

sized proteins incorporate the unnatural amino acid containing an

azido group. The azido group is subsequently used to covalently

link the nascent proteins to alkyne-bearing agarose beads by click

chemistry (Dieterich et al, 2006). AHA-labelled cells were scraped in

ice-cold PBS and snap-frozen. Cell lysis, click reaction between

AHA-containing newly synthesized proteins and alkyne agarose

beads, reduction and alkylation was performed according to the

protocol of the “click-it protein enrichment kit” (Sigma). Beads were

washed sequentially in SDS buffer [1% SDS, 100 mM Tris, 250 mM

NaCl, 5 mM EDTA (pH 8) (Sigma)], 8 M urea in 100 mM Tris (pH

8) and 80% acetonitrile before finally being washed in 50 mM

ammonium bicarbonate (pH 8). Proteins were digested “on bead”

first by lysyl endopeptidase (LysC, Wako chemicals) before being

trypsinated (Trypsin, Promega) overnight. Digested peptides were

acidified by adding trifluoroacetic acid and then stored on C18 Stage-

Tips (Rappsilber et al, 2003). To clean the sample from polymers,

which easily accumulate during the sample preparation, peptides

were eluted from the StageTips with 80% acetonitrile and 0.5%

acetic acid (Buffer B), vacuum-dried and resuspended in no-salt

buffer (0.5% formic acid and 15% acetonitrile) before being put on

strong cation exchange (SCX) tips (Empore, 3M). SCX tips were

washed in no-salt buffer before peptides were eluted by adding high-

salt buffer (0.5% formic acid, 15% acetonitrile and 500 mM ammo-

nium acetate). Peptides were put back on StageTips and desalted

with Buffer A (5% acetonitrile and 0.1% formic acid).

Mass spectrometry (MS)

Samples were eluted from StageTips by Buffer B. Acetonitrile was

evaporated using a speed vac and samples resuspended in Buffer A.
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Peptides were separated on a 2,000 mm monolithic column with a

100-lm inner diameter that were kindly provided by Yasushi

Ishihama (Kyoto University). We applied an 8-h gradient of increasing

acetonitrile concentration with a flow rate of 300 nl/min on a nLC

1000 HPLC system (ThermoScientific). In addition, peptides were

separated on a 150-mm column with 75-lm inner diameter packed

in-house with ReproSil-Pur 120 C18-AQ 3-lm resin (Dr. Maisch

GmbH) using 4-h gradients and 250 nl/min flow rate. An electro-

spray ion source (ThermoScientific) was used to ionize the peptides

that were subsequently analysed using a Q-Exactive mass spectro-

meter (ThermoScientific). The system was run in data-dependent

mode selecting the 10 most abundant ions for fractionation for

higher energy collision-induced dissociation. The full scans were

performed with a resolution of 70,000, a target value of 3,000,000

ions and a maximum injection time of 20 ms. The MS/MS scans

were performed with a 17,500 resolution, a 1,000,000 target value

and a 60-ms maximum injection time.

MS data analysis

Raw files were analysed using MaxQuant v1.5.1.2 (Cox & Mann,

2008) using default settings. MS/MS spectra were searched against

two in silico digested databases created from the 1-frame translated

ORFs of B6 and SPRET with common contaminants added. This

way all proteins were present in two forms during the search: one

from the B6 and one from SPRET database distinguishable by

amino acid changes caused by the non-synonymous SNPs. In

parallel, the MS/MS spectra were searched against a reversed

version of the two databases to control the false discovery rate

that was set to 1% at both the peptide and protein levels. C-termi-

nal carbamidomethylation was set as a fixed modification while

acetylation of protein N-termini and methionine oxidation were set

as variable modifications. Lys4 and Arg6 were set as medium

labels and Lys8 and Arg10 were set as heavy labels. Trypsin/P

was set as the protease and “match between runs” was activated.

We used reQuantified values only for the “SNP peptides” to

retrieve peptide ratios, but more accurate non-reQuantified values

for “shared peptides” to obtain quantifications on the protein

level.

For downstream analysis, the non-normalized peptide ratios

(peptides.txt output of MaxQuant) were used. This was necessary

since MaxQuant only reports SILAC ratios in the evidence.txt for

all label combinations (H/L, H/M, M/L) when peptides are

detected in all three SILAC states. Peptides were grouped into

proteins according to the MaxQuant protein identifications.

Peptides identified in both the B6 database and the SPRET data-

base (shared peptides) were combined with peptides identified in

only one of the two databases (SNP peptides). Shared peptides

should have all three SILAC labels present (L (SPRET), M (B6)

and H (F1)) while SNP peptides should have only two SILAC

labels present (either H (F1) and L (SPRET) or H (F1) and M

(B6)). The allele-specific expression was calculated based on the

difference in the abundance between the shared peptides and the

SNP peptides as follows:

SPRET allele ½%�=
median H

L ratio
� �

SNP peptides

median H
L ratio

� �
shared peptides

� 100

B6 allele ½%�=
median H

M ratio
� �

SNP peptides

median H
M ratio

� �
shared peptides

� 100:

Peptide ratios from the peptide.txt were weighted against their

ratio counts before the median was taken for the allele-specific

protein expression calculation. All analysis on MaxQuant output was

performed by R version 3.1.1 (R Foundation for Statistical Comput-

ing, Vienna, Austria). Out of the proteins detected with shared and

allele-specific peptides (n = 737), we retained only proteins with 1

or more MS/MS counts of both SNP and shared peptides (n = 168)

(Cox & Mann, 2008). Summed percentages of B6 and SPRET alleles

were calculated for each protein. Proteins were finally filtered to be

within the range of a summed percentage of 100 � 20% (n = 54).

miRNA profiling

Total RNAs from mouse fibroblast cells were extracted using TRIzol

reagent (Life Technologies) following the manufacturer’s protocol.

Small RNA sequencing libraries were prepared with 1 lg total RNA

using TruSeq Small RNA Sample Preparation Kit (Illumina), as

described before (Li et al, 2013). The libraries were sequenced in

1 × 50 nt manner on HiSeq 2000 platform (Illumina).

SNP density enrichment

Genes were first divided into 50UTR, CDS and 30UTR according to

RefSeq annotation, and SNP density was calculated in each of the

three regions, and then divided by the overall SNP density of the

same genes, to eliminate the effect of difference in overall SNP

density between different gene groups. Genes with multiple isoforms

or without 50UTR/30UTR annotation in RefSeq were excluded in this

analysis, which resulted in 634 genes with significant ADTE and

1,291 control genes (allelic TE fold change < 1.2 in both replicates).

To further examine the 50UTR region, particularly the region

close to the start codon, for each of the 634 and 1,291 genes, within

the 50UTR proximal to the start codon (up to upstream 200 nt), we

calculated enrichment of SNP density (over the SNP density of the

same gene) in a 100-nt sliding window with a step size of 20 nt. To

assess the significance of the difference in SNP density enrichment

between the two gene groups, we permuted for 1,000 times the

genes’ group labels, calculated the difference in mean SNP density

enrichment of the two gene groups and counted the probability

reflecting how often a greater difference would be observed in the

permutated datasets. The raw P-values were then adjusted using the

Benjamini–Hochberg method.

We also performed the above analysis with increased number of

ADTE genes by releasing the allelic TE divergence fold change from

2.0 to 1.5, which resulted in 1,140 genes. These results were

presented in Fig EV4.

Local RNA secondary structure

Local RNA secondary structure minimum free energy (MFE) was

calculated using RNAfold from the ViennaRNA package version

2.1.9 with default parameters at a temperature of 37°C (Lorenz

et al, 2011). We compared the MFE of mRNA segments (of length

20–50 nt) surrounding the start codon between the two alleles and
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correlated such difference with ADTE. Genes without SNPs in the

sliding window were excluded. To access the significance of the

correlation between ADTE and MFE allelic difference, that is to

determine the false discovery rate (FDR) for the observed correla-

tion coefficients, we permuted for 1,000 times the gene labels of the

ADTE and MFE values, re-calculated the correlation coefficients for

each individual segment separately and then computed the FDR as

the ratio between the frequency of observing in the whole permuted

dataset correlation coefficients equal to or greater than a specific

value, and the frequency in the real data.

Other sequence features including miRNA binding sites,
codon bias and GC content

miRNA target sites in 30UTR were counted using custom Perl script

by matching three site types (i.e. 8mer, 7mer-m8, 7mer-1A). Codon

adaptation index (CAI) of coding sequence was calculated using

CodonW version 1.4.4. GC content of transcript sequences was

calculated with R package seqinr (version 3.1-3). Genes with multi-

ple isoforms in RefSeq were excluded in the analyses, and those

without 50UTR/30UTR annotation were excluded in parts of the anal-

ysis. In the analysis of these sequence features, we further split the

genes with significant ADTE into two sets, one with TE biased

towards the C57BL/6J allele and the other with TE biased to the

SPRET/EiJ allele. Together with the control gene sets, we tested

whether there were any significant differences in each sequence

feature among the three gene sets.

Gene ontology enrichment analysis

The gene symbols were mapped to GO terms using R packages

GO.db, AnnotationDbi and org.Mm.e.g.db. The 7,156 genes exam-

ined for ADTE in this study were chosen as the background set, and

GO terms with at least 10 genes from this background set were

tested for enrichment in each of the three gene sets (compensatory

genes, reinforcing genes, genes without allelic bias) using a hyper-

geometric test. To adjust the P-values resulting from multiple compar-

ison due to a number of GO terms being tested, we determined a

family-wise false discovery rate (FDR) by permuting gene assign-

ments, repeating the above testing procedure for 1,000 times, and

only keeping the most significant P-value observed in each permuta-

tion. Then, an FDR for each GO term was obtained by counting how

often a P-value of greater significance would be observed in the

permutated datasets. The GO analysis was executed in R version

3.1.1 (R Core Team, R Foundation for Statistical Computing, Vienna,

Austria; http://www.R-project.org) with custom scripts.

Data access

All raw sequencing data from this publication have been deposited

to the European Nucleotide Archive (http://www.ebi.ac.uk/ena)

with the accession number ERP009292. The mass spectrometry

proteomics data have been deposited to the ProteomeXchange

Consortium (http://proteomecentral.proteomexchange.org) via the

PRIDE partner repository with the dataset identifier PXD002337.

Expanded view for this article is available online:

http://msb.embopress.org
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