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Abstract

In recent years, the deployment of satellites and unmanned aerial vehicles (UAVs) has led to 

production of enormous amounts of data and to novel data processing and analysis techniques for 

monitoring crop conditions. One overlooked data source amid these efforts, however, is 

incorporation of 3D information derived from multi-spectral imagery and photogrammetry 

algorithms into crop monitoring algorithms. Few studies and algorithms have taken advantage of 

3D UAV information in monitoring and assessment of plant conditions. In this study, different 

aspects of UAV point cloud information for enhancing remote sensing evapotranspiration (ET) 

models, particularly the Two-Source Energy Balance Model (TSEB), over a commercial vineyard 

located in California are presented. Toward this end, an innovative algorithm called Vegetation 

Structural-Spectral Information eXtraction Algorithm (VSSIXA) has been developed. This 

algorithm is able to accurately estimate height, volume, surface area, and projected surface area of 

the plant canopy solely based on point cloud information. In addition to biomass information, it 

can add multi-spectral UAV information to point clouds and provide spectral-structural canopy 

properties. The biomass information is used to assess its relationship with in situ Leaf Area Index 
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(LAI), which is a crucial input for ET models. In addition, instead of using nominal field values of 

plant parameters, spatial information of fractional cover, canopy height, and canopy width are 

input to the TSEB model. Therefore, the two main objectives for incorporating point cloud 

information into remote sensing ET models for this study are to (1) evaluate the possible 

improvement in the estimation of LAI and biomass parameters from point cloud information in 

order to create robust LAI maps at the model resolution and (2) assess the sensitivity of the TSEB 

model to using average/nominal values versus spatially-distributed canopy fractional cover, height, 

and width information derived from point cloud data. The proposed algorithm is tested on imagery 

from the Utah State University AggieAir sUAS Program as part of the ARS-USDA GRAPEX 

Project (Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment) collected 

since 2014 over multiple vineyards located in California. The results indicate a robust relationship 

between in situ LAI measurements and estimated biomass parameters from the point cloud data, 

and improvement in the agreement between TSEB model output of ET with tower measurements 

when employing LAI and spatially-distributed canopy structure parameters derived from the point 

cloud data.
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1. Introduction

Evapotranspiration (ET) is one of the key components in water and energy cycles, and its 

quantification is essential to increasing crop water use efficiency [1]. However, estimation of 

ET using physically-based models is not a straightforward process due to input requirements 

and model complexity [2]. The degree of complexity increases with non-homogeneous 

landscapes where both soil and vegetation contribute to radiometric temperature and surface 

energy fluxes [3].

One ET model that has been successful in estimating spatially distributed surface energy 

fluxes from aerial imagery over different landscapes is the Two-Source Energy Balance 

model (TSEB) [4]. The TSEB model was developed by Norman et al. [5] to compute surface 

energy fluxes using a single measurement of remotely-sensed surface temperature (at one 

view angle) to overcome the difficulties associated with characterizing the impact of canopy 

structure, fractional cover, sensor view, and sun zenith angle on the radiometric brightness 

temperature and its relationship to surface aerodynamic temperature. In recent years, 

numerous studies have evaluated the performance of TSEB-based models at different spatial 

scales, climates, and landscape heterogeneity.

Satellites and Unmanned Aerial Vehicles (UAVs) offer an opportunity to provide multi-

spectral imagery and at different pixel resolutions. Satellites can cover the globe with daily 

to bi-weekly re-visit times, while UAVs are designed to cover small areas, obtain higher 

resolution imagery, and capture information at a specific time. One important remote sensing 

application is estimation of vegetation biomass, and ultimately yield, typically with 

vegetation indices (VIs), which is easily calculated using multi-spectral imagery. Numerous 
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research studies have been conducted to fit a linear or nonlinear regression model between 

VIs and biomass parameters [6]. Basically, significant differences in plant reflectances and 

energy emission in the optical wavelengths, particularly the red (R) and near-infrared (NIR) 

region, defined as the range between 700 and 1300 nm [7] due to biochemical plant 

constitutes such as chlorophyll, have resulted in numerous VI formulas [8]. While the 

performance of VI-based models has been promising, these indices have generally been 

developed for uniformly distributed canopies, and are thus not as reliable in estimating plant 

biomass/Leaf Area Index (LAI) for strongly clumped and uniquely structured canopies such 

as vineyards [9].

A saturation issue occurs with well-developed canopies, wherein, despite significant 

increases in biomass parameters (and as a result LAI), VI values become saturated, meaning 

they plateau at a maximum value and are no longer sensitive to increases in LAI [10,11]. 

Thus, VIs are recommended to be used only in early growing stages in denser canopies [12]. 

The saturated behavior of VIs versus biomass parameters is more noticeable in normalized 

VIs, which are set to a specific range (e.g., −1, +1). For example, Diarra et al. [13] evaluated 

the TSEB model performance using Advanced Spaceborne Thermal Emission and 

Reflection Radiometer (ASTER) images and the FAO-56 dual crop coefficient approach 

versus Eddy Covariance records for monitoring actual ET and detecting water stress over 

irrigated wheat and sugar beets located in the Haouz plain in the center of the Tensift basin 

(Central Morocco). They concluded that TSEB performed very well, even at a large scale. 

However, to estimate LAI based on the vegetation indices (VIs), they found that LAI > 2.5 

saturates the normalized difference vegetation index (NDVI) and no relationship can be 

found between NDVI and LAI. In contrast, LAI < 1.5 resulted in a quite linear relationship 

between NDVI and LAI. Although LAI is a critical input for ET models, accurate estimation 

of LAI using only VIs is not possible, particularly when the canopy is well-developed or is 

uniquely structured. In addition, investigation of the relationship between direct or indirect 

in situ LAI measurements and VIs is certainly time-consuming and labor-intensive [14]. 

Thus, exploring new techniques to minimize the need for calibration of remote sensing 

retrieval of LAI has significant advantages for application in complex canopies.

The development of lightweight UAVs has provided an opportunity for acquiring very high-

resolution multi-spectral imagery (less than 50 cm pixel−1) to produce ortho-mosaics and 3D 

information products such as point-cloud and digital surface models (DSMs) using 

photogrammetry algorithms [15]. UAV imagery has been widely used in agricultural 

activities and in extensive research in areas such as yield mapping [16], plant heath 

monitoring [17], plant water status [18], irrigation efficiency [19], phenotyping [20], and 

weed and pest detection [21,22]. In comparison with satellites, UAVs are cost-effective, easy 

to operate, and portable, while offering very high-resolution products [23]. In addition to 

these features, dense 3D dense information can be generated for objects from the 

overlapping imagery captured by UAVs to be used in mapping plant canopy structure and 

volume that is likely to be more directly correlated to plant biomass and LAI than VIs.

This 3D source of information from UAV imagery is also called a point cloud, which is a 

dataset representing visible parts of objects where light is reflected [24]. This source can be 

produced by three-dimensional point-cloud modeling, photogrammetry, and computer 
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visualization algorithms. Two popular algorithms developed for generating point cloud 

datasets are Structure from Motion (SfM) and multiview-stereo (MVS), recommended for 

when optical cameras are used as opposed to expensive laser scanners [15]. Although 3D 

information for an object can be directly and accurately provided by Light Detection and 

Ranging (LiDAR) installed on manned and unmanned aerial vehicles, collecting point-cloud 

information using photogrammetry methods is much less expensive, thus representing an 

economically viable alternative. In addition, the SfM method requires neither external 

camera calibration parameters (i.e., position and orientation) nor internal parameters (i.e., 

lens properties) to perform the bundle adjustment to reconstruct a 3D scene [25]. In some 

cases, UAV point clouds provide more details of small objects than airborne LiDAR 

datasets. For instance, the authors in [26] found that 45 out of 205 trees were not detected 

when they used an airborne LiDAR dataset, while only 14 trees were missed using a UAV 

photograph-based point cloud. Compared to LiDAR technology, the main weakness of UAV 

point cloud and photogrammetry algorithms is that UAV camera sensors are incapable of 

viewing beneath the canopy, which leads to sparse points and low density information of 

bare soil [27], whereas a single laser pulse can penetrate into an object, reach the ground, 

and return with multiple pulses [28]. However, because SfM and MVS are low-cost, easy to 

access, and easy to use, they can be efficient tools for processing UAV imagery and creating 

LiDAR-like point clouds [29].

Several factors affect the accuracy of point cloud datasets and consequently the digital 

surface model (DSM) and crop surface model (CSM) generated from them, including flight 

height [30], terrain morphology [31], number of ground control points (GCP) [30,32], 

weather conditions [33], camera type [34], UAV types (fixed-wing versus multi-rotor) [35], 

photogrammetry software, and algorithms [36]. For instance, Martínez-Carricondo [37] 

analyzed the impact of the number and distribution of GCPs on the performance of DSMs 

produced from UAV photogrammetry. They found that the accuracy improved and the best 

performance was achieved when GCPs were placed both around the edge of and inside the 

study area. Although performance evaluation of UAV point cloud datasets requires a 

comparison with LiDAR data, recently, Aboutalebi et al. [38] developed an algorithm to 

validate point cloud geometrical information for shaded regions detected from UAV multi-

spectral imagery.

The 3D point cloud is a useful source of information about the size, position, and orientation 

of an object that can be combined with UAV multi-spectral or hyper-spectral imagery to 

explore relationships between an object’s 3D geometry information and its spectral 

information. Several classification methods, such as supervised and unsupervised machine 

learning algorithms, have been developed to generate a classified map of aerial imagery 

based on the similarities in spectral signatures [39]. While these algorithms fail to 

distinguish objects having similar spectral signatures (e.g., differentiating between water and 

shadows [40] in optical bands), point cloud would be a useful and an additional source to 

combine with multi-spectral imagery in order to improve the accuracy of classification 

methods. In addition to the capability of point clouds in segmentation and classification 

problems, point clouds are considered a crucial source of information for phenotyping.
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UAV point cloud has been used to measure canopy height [41], tree height and crown 

diameter [42–44], to detect individual trees [45] and development of annual crops such as 

rice [46] and barley [47]. In addition, several studies show that bio-geophysical properties 

such as LAI and canopy reflectance parameters such as NDVI are correlated with above-

ground biomass [48,49] and ground cover percentage [50] defined as the area of soil surface 

masked by plants from nadir view angle [51]. Matese et al. [52] generated a vineyard canopy 

height model (CHM) using an SfM point cloud and compared it with an NDVI map. They 

found that, although CHM from SfM underestimated canopy height (about 0.5m) due to 

camera resolution, it is highly correlated to NDVI maps, which means that high NDVI 

regions correspond to high canopy height areas. Ultimately, they estimated average volume 

per vine by multiplying height, width, and length of the vine canopy. Mathews and Jensen 

[53] explored the relationship between vineyard canopy LAI and several metrics from a 

UAV point cloud using a step-wise regression model. These metrics include number of 

points within each vine’s zone and height-based metrics (e.g., mean height of canopy). They 

reported a moderate positive correlation (0.57 in terms of R2) between modeled LAI and in 

situ measured LAI. Weisis and Baret [54] proposed a method to estimate row height, width, 

spacing, and vineyard cover fraction using a UAV point cloud generated from red, green, and 

blue (RGB) images acquired over a vineyard.

Although UAV point cloud datasets and the SfM algorithm have been widely used in 

characterizing vegetation structure, the full potential of the photogrammetric data has not 

been utilized. Most of the cited studies converted dense point cloud information into Digital 

Elevation Model (DEM), Digital Terrain Model (DTM), DSM, or CSM (raster versions of 

point cloud datasets) because working with pure LiDAR-like datasets is challenging, and 

algorithms and hardware that can handle such massive datasets are limited. In addition, the 

potential of 3D plant information to improve remote sensing-based ET models has not been 

explored. To the authors’ knowledge, the published studies mostly focused on assessing 

regression models to estimate biomass parameters such as LAI, which is a key parameter in 

ET models, using DSMs, CSMs, or CHMs.

In this study, we propose a methodology to incorporate the 3D information extracted from a 

UAV point cloud into the TSEB model. In particular, a new algorithm called Vegetation 

Spectral-Structural Information eXtraction algorithm (VSSIXA) is developed to extract 

canopy height, volume, surface area, and projected surface area (fractional cover) from the 

point cloud dataset without converting it to a raster file. Next, the possible relationship 

between in situ LAI measurements, radiometric temperature (Tr), spectral information, and 

3D derived structure parameters is explored. The sensitivity of the TSEB model to fixed 

values of the structural information over a vineyard block versus the spatial structural 

information is presented. The algorithm is evaluated from imagery and point cloud data 

collected by Utah State University AggieAir UAVs over a commercial vineyard located in 

California as part of the ARS-USDA GRAPEX Project (Grape Remote sensing Atmospheric 

Profile and Evapotranspiration eXperiment). Finally, the TSEB model is executed under 

different scenarios of LAI and other canopy biomass parameters and TSEB output are 

compared with flux tower measurements.
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2. Materials and Methods

2.1. Site Description

This study was conducted as a part of GRAPEX, an ongoing project started in 2013 that 

seeks to improve water-use efficiency through modeling of evapotranspiration and plant 

stress over vineyards. The vineyard test site selected is located near the town of Lodi in 

California’s Central Valley (38.29N, 121.12W, 38.4 m elev). This vineyard ranch called 

Sierra Loma (formally listed as the Borden ranch [55] consisted of two vineyard blocks, a 

northern and southern block, containing a flux tower in each block (Figure 1a). An overview 

of all continuous and episodic measurements are described in detail in [55]. The northern 

and southern vineyard blocks (referred to as Site 1 and Site 2 hereafter, respectively) were 

planted with the Pinot Noir variety in 2009 and 2011, respectively. The age differences 

resulted in lower vegetation density, biomass and leaf area at Site 2 compared to Site 1.

Both sites share similar trellis structure and vine management. Vines are grown on identical 

quadrilateral cordon fixed trellis systems with installed drip irrigation in which irrigation 

lines run along the base of the trellis at 30 cm above ground level (agl) with two emitters (4 

L/h) between each vine. The training system employs “U” shaped trellises, and canes are 

trained upwards. The vine trellises are 3.35 m (11 ft) apart, and the height to first and second 

cordons is about 1.45 and 1.9 m, respectively [55]. Vine heights vary between 2 and 2.5 m, 

with space between vines of 1.5 m and an East–West row orientation. The elevated canopy 

included significant open space between the bottom of the canopy crown and the soil 

surface. This open space (~0.7 m in height during peak growing season) is occupied by the 

narrow trellis posts and drip irrigation line (Figure 1b).

In order to regulate soil moisture early in the growing season following the winter season, an 

inter-row grass cover crop is planted in both vineyards and is mowed in either late April or 

early May. Two flux towers were installed in 2013, one at Site 1 and another at Site 2. The 

towers are installed approximately half-way North–South along the Eastern edge of each site 

as the predominant wind direction is from the West during sunlight hours in the growing 

season (Figure 1c).

2.2. AggieAir Remote Sensing Platform

AggieAir is a battery powered unmanned aerial vehicle (UAV) designed by Utah State 

University (USU) to carry multi-spectral sensor payloads and to acquire high-resolution 

aerial imagery at both optical and thermal spectra. This UAV platform consists of two 

cameras, a computer, a GPS module, an inertial measurement unit (IMU), a radio controller, 

and flight control, and it can be flown autonomously or manually [56]. The UAV can fly 

over the area of interest using a pre-programmed flight plan (in an autonomous mode) for an 

hour at a speed of 30 miles per hour [57], with the capability to provide very high-resolution 

imagery (less than 20 cm) at 1000 m agl and record the position and orientation of the 

aircraft when each image is taken. Figure 2 shows a layout of the AggieAir air-frame.
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2.3. AggieAir UAV High-Resolution Imagery

The high-resolution images for this study were collected by an AggieAir UAV over the 

GRAPEX Pinot Noir vineyard. The UAV was supplied and operated by the AggieAir UAV 

Research Group at the Utah Water Research Laboratory at USU [58]. Four sets of high-

resolution imagery (20 cm or finer) were captured over the vineyard in 2014, 2015, and 

2016. These UAV flights were synchronized with Landsat satellite overpass dates and times. 

A sample of the imagery captured by the UAV over the study area is shown in Figure 3, and 

information describing the images is summarized in Table 1.

Figure 3 shows the study area with details of sections as captured by UAV. Cameras and 

optical filter information, fieldwork dates, vineyard phenological stages, and imagery 

resolution are summarized in Tables 1 and 2.

As described in Tables 1 and 2, the imagery covers all major phenological vineyard stages. 

The cameras used in the current study ranged from consumer-grade Canon S95 cameras to 

industrial type Lumenera monochrome cameras fitted with narrowband filters equivalent to 

Landsat 8 specifications. The thermal resolution for all four flights was 60 cm, and the 

visible and near-infrared (VNIR) were 10 cm, except for the August flight.

2.4. AggieAir UAV Image Processing

A three-step image processing phase followed imagery acquisition. This process included 

(1) radiometric calibration, (2) image mosaicking and orthorectification, and (3) Landsat 

harmonization. In the first step, the digital images were converted into a measure of 

reflectance by estimating the ratio of reference images from pre- and post-flight Labsphere 

[59] Lambertian panel readings. This conversion method was adapted from Neale and 

Crowther [60]; Miura and Huete [61]; and Crowther [62] and is based solely on the 

reference panel readings, which do not require solar zenith angle calculations. This 

procedure additionally corrected camera vignetting effects that were confounded in the 

Lambertian panel readings. In the second step, all images were combined into one large 

mosaic and rectified into a local coordinate system (WGS84 UTM 10N) using Agisoft 

Photoscan software [63] and survey-grade GPS ground measurements. The software 

produced hundreds of tie-points between overlapping images by using photogrammetric 

principles in conjunction with image GPS log file data and UAV orientation information 

from the on-board IMU to refine the estimate of the position and orientation of individual 

images. The output of this step is an orthorectified reflectance mosaic [56]. Since different 

optical sensors with different spectral responses are used to capture high-resolution imagery 

(Table 1) and the spectral information of vegetation will be used to model LAI, a bias 

correction method is necessary to remove the disagreement of remotely sensed information 

regardless of pixel resolution and sensor. Thus, in the third step, the UAV optical high-

resolution imagery was upscaled to Landsat resolution using the Landsat point spread 

function. If biased, it was corrected with a linear transformation [64]. For thermal imagery 

processing, only step 2 was applied. The resulting thermal mosaic consisted of brightness 

temperature in degrees Celsius. Moreover, a vicarious calibration for atmospheric correction 

of microbolometer temperature sensors proposed by Torres-Rua [65] was applied to the 

thermal images.
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2.5. Field Measurements, Multi-Spectral Imagery, Point Cloud, and LiDAR Datasets

Photogrammetric point clouds were produced from the multispectral images (Figure 4a) 

with a density of ~40 (points/m2) for the 15-cm resolution (2014 imagery) and ~100 

(points/m2) for the 10-cm resolution (2015 and 2016 imagery), after which a DSM was 

generated at the same spatial resolution as the original imagery (i.e., 15 cm for 2014 and 10 

cm for 2015 and 2016). In addition to UAV point cloud products that describe the surveyed 

surface, a LiDAR derived bare soil elevation (DTM) product for the same location, collected 

by the NASA G-LiHT (Goddard’s LiDAR, Hyperspectral & Thermal Imager) project in 

2013, was used [66] (Figure 4b).

In addition, ~80 LAI measurements for each flight were acquired using the Plant Canopy 

Analyzer (PCA, LAI2200C, LI-COR, Lincoln, NE, USA) as the indirect in situ LAI 

measurements (Figure 5). These LAI measurements were validated with direct LAI (i.e., 

destructive sampling) measurements [14].

The location of each measurement is recorded with a precise Real-time kinematic (RTK) 

GPS (Figure 5). To evaluate the relationship between vine spectral-structural information 

and in situ LAI measurements, first the footprint of the LICOR-2200C must be defined. 

According to White et al. [14], it was assumed that the LICOR-2200C was measuring LAI 

in a rectangle 1 m wide and 3 m long. However, the smallest valid resolution in applying the 

TSEB model for the study area was determined to be 3.6-m grid [67], which means that all 

required inputs for the TSEB model must be set to 3.6-m grids. Due to inconsistency 

between the LICOR-2200C footprint and the TSEB model resolution and its unknown 

impact on the LAI map, vine spectral-structural information is extracted for both rectangular 

and square buffers around LAI measurements (Figure 6).

Eddy covariance and micrometeorological data, surface fluxes, and meteorological 

conditions are being collected year round at each of the vineyard sites for starting in 2013. 

The raw high-frequency data have been fully processed and evaluated for quality control and 

are stored as hourly block-averaged data. Wind speed and wind direction are measured via 

sonic anemometer (CSAT3, Campbell Scientific) mounted 5 m agl facing due west (270°). 

Air temperature is measured via a humidity/temperature sensor (HMP45C, Vasaila) mounted 

at 5 m agl. Water vapor density is measured via a humidity/temperature sensor (HMP45C, 

Vasaila) mounted at 5 m agl. Atmospheric pressure is measured by a pressure sensor 

(EC150, Campbell Scientific) mounted 5 m agl facing due west (270°). Incident long-wave 

radiation and net radiation are measured via a 4-component net radiometer (CNR-1, Kipp & 

Zonen,) mounted 5 m, agl facing southwest (225°). Sensible and latent heat flux are derived 

from CSAT and EC150 data. Soil heat flux is the mean of the five measurements collected 

along a transect across the inter-row.

For the post-processing of the turbulent fluxes, the high-frequency data was screened to 

identify and remove flagged values (CSAT or infrared gas analyzer (IRGA) diagnostic), 

physically unrealistic values, and statistical outliers (data spikes). The sonic temperature was 

converted to air temperature following Schontanus [68] and Lui [69]. The measurements of 

the wind velocity components were rotated into the mean streamwise flow following the 2D 

coordinate rotation method described by Tanner and Thurtell [70]. The wind velocity and the 
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scalar quantities were adjusted in time to account for sensor displacement and optimize the 

covariance. The frequency response correction of Massman [71] was applied. The turbulent 

fluxes were calculated. The initial estimates of the latent heat flux and the carbon dioxide 

flux were then corrected for density effects following the Webb et al. method [72]. The 

initial estimates of the sensible heat flux were corrected for buoyancy effects [73]. The soil 

heat flux was corrected for heat storage in the overlying soil layer [74]. The data were 

quality controlled via visual inspection to remove physically unrealistic values due to 

rainfall, dew, and similar events. Output of fluxes and ancillary micrometerorlogical data are 

stored as hourly block-averaged data.

Traditionally, any imbalance of net radiation (Rn) - soil heat flux (G) versus sensible heat 

flux (H) + latent heat flux (LE) is considered a lack of energy balance closure. It is often 

assumed that H and LE have been underestimated by the eddy covariance method, and the 

level of underestimation is often used to indicate the reliability of the eddy covariance 

estimates of H + LE [75]. The value of the ratio of (Rn-G)/(H+LE) should ideally be equal 

to 1, but, generally, values over 0.80 are considered reliable [75,76]). In this study, for any 

imbalance between Rn-G and H+LE, closure was forced by assuming that the Bowen ratio 

H/LE is correct because both are probably underestimated. Moreover, recent studies indicate 

that flow distortion for non-orthogonal sonics underestimate vertical wind and hence the 

turbulent fluxes [77–80]. Therefore, energy is added to H and LE (HBR and LEBR) according 

to the Bowen ratio (BR) to reach a closure value of 1.0; this is typically called forcing 

energy balance closure [75]. Therefore, H and LE from eddy covariance are modified by 

Equations (1) and (2):

HBR = H
H + LE × (Rn − G − H − LE) + H, (1)

LEBR = LE
H + LE × (Rn − G − H − LE) + LE . (2)

2.6. Vegetation Structural-Spectral Information Extraction Algorithm (VSSIXA)

To analyze and extract 3D information from the point cloud dataset and spectral information 

from the high-resolution imagery, a new algorithm called Vegetation Structural-Spectral 

Information eXtraction Algorithm (VSSIXA), using Python and ArcGIS Pro libraries, was 

developed. The code of this algorithm is available at [81]. Figure 7 shows components of 

VSSIXA in a flowchart diagram.

As shown in Figure 7, the VSSIXA algorithm requires a point cloud dataset as the primary 

input and a shapefile, optical and thermal imagery, and a ground point as the secondary 

inputs. In the first step, a vine spacing grid shapefile is read and point cloud, ground points, 

and UAV imagery are clipped for each grid of the shapefile. In this step, the average of the 

UAV imagery for each band and for each grid, and consequently the partitioning of Tr into 

soil temperature (Ts) and canopy temperature (Tc) are executed and stored. In this step, Ts 

and Tc estimations are by-products of VSSIXA. Next, clipped ground points and point cloud 

datasets are converted to individual point datasets, Red (R), Green (G), Blue (B), near-
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infrared (NIR), and Tr bands from UAV imagery along with z-values from ground points are 

assigned to each single point cloud based on nearest distance, and relative height (Point 

cloud z-Ground z) is calculated. Therefore, the Attribute Table of each point constitutes 

point cloud height, ground height, relative height, RGB, NIR, and thermal information. 

Next, the individual points are separated into vegetation and non-vegetation points using a 

VI threshold (e.g., NDVI > 0.6), and volume, surface area, height, and the average of Tr and 

optical bands for vegetation points using a triangulated irregular network (TIN) are 

calculated and appended into the Attribute Table. In the last stage, vegetation points are 

separated into vine canopy and cover crop points based on a relative height threshold (0.5 m 

in this study) and derived structural and spectral information for vine and cover crop points 

is separately recalculated. Because structural and spectral information for each point has 

been extracted and geographical information for those single points has been accessed, a 

profile of information, such as average height, vine temperature, and VIs, can be extracted. 

VSSIXA is able to extract and store these profiles in a comma-separated values (CSV) 

format.

VSSIXA is coded in two different versions, VSSIXA-I and VSSIXA-II. VSSIXA-I requires 

only a point cloud dataset, while VSSIXA-II requires both point cloud data and LiDAR 

ground points. In VSSIXA-I, after appending multi-spectral information to each point in 

each grid, the point cloud is classified into the ground and non-ground classes based on an 

NDVI threshold. The relative height is calculated based on Point Cloud z and the minimum 

value of ground point heights. Therefore, the structural information is calculated between 

TIN created from non-ground points and a surface with height zero. If there are no multi-

spectral data to separate ground points from non-ground points or if a grid has no ground 

points (e.g., fully covered by vegetation), VSSIXA-I considers the minimum z-value from 

all points to calculate relative height. In contrast, the classified ground points exist for 

VSSIXA-II, due to LiDAR penetration into vegetation and detection of ground. Therefore, 

z-values from LiDAR ground points are affixed to the point cloud from a spatial perspective 

(e.g., closest distance) to calculate relative height and then, similar to VSSIXA-I, the 

structural information is calculated. Since VSSIXA-I assigns one value (minimum z value of 

ground points) to non-ground points in each grid, it assumes that the slope of the ground 

surface in each grid is close to zero. Thus, VSSIXA-I is appropriate for flat terrain, even 

though it requires only a point cloud dataset. In contrast, because VSSIXA-II assigns ground 

z values to each point, the impact of slope is considered, albeit it requires both point cloud 

and LiDAR ground point datasets (Figure 8).

The difference between VSSIXA-I and VSSIXA-II in relative height calculation may lead to 

differences in the estimation of canopy volume. It is expected that VSSIXA-II estimates 

higher values for canopy volume compared to VSSIXA-I. In contrast, there should not be a 

significant difference between surface area or projected surface area estimated by VSSIXA-I 

and VSSIXA-II (Figure 9). Thus, if all the structural parameters are used to evaluate the 

relationship between LAI and VSSIXA outputs, either VSSIXA-I or VSSIXA-II must be 

employed for the entire study area due to inconsistency between canopy volume and height 

estimated by VSSIXA-I and -II unless the slope of each grid can be considered as zero 

(similar to the current study area).
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Genetic Programming: GP—Genetic Programming (GP) is a machine learning method 

inspired by the genetic algorithm (GA). In contrast to a trained network with Artificial 

Neural Network (ANN) and Support Vector Machine (SVM), the output of GP is a trained 

equation that researchers can simply use and calibrate in different study areas. Similar to 

GA, GP uses a searching process to solve optimization problems. It starts with many 

possible solutions in the form of chromosomes, in which each gen could be a function (sin, 

log, cos, and exp), an operator (+,−, /), an input variable (x1, ⋯ , xn), or a number (1, 2, 3, 

⋯ , n). In iteration 1, chromosomes (equations) are generated by a random initial solution. 

Then, chromosomes are ranked (from the best to the worst) based on an objective function 

(e.g., Root Mean Square Error (RMSE) calculated for each chromosome. In other words, 

input data X = x1, ⋯, xn  are input to each chromosome (equation) to calculate outputs 

f1(X ), ⋯, fn(X ) ; the outputs of each chromosome f1(X ), ⋯, fn(X )  are compared with 

observed values (y1, ⋯ , yn); an objective function (e.g., RMSE) is calculated for each 

chromosome (equation); and these initial solutions are sorted based on objective function 

values. In subsequent iterations, solutions (chromosomes) must be updated. Each 

chromosome can be modified in each iteration of the search process using cross-over and 

mutation functions. Cross-over is responsible for interpolation between two chromosomes, 

and mutation is designed for extrapolation. In each iteration, if the stopping criteria (e.g., 

number of iterations < 1e6) is satisfied, GP will stop, and the first among the sorted 

chromosomes, which is a fitted linear or nonlinear equation, is reported as the best solutions. 

Figure 10 shows the evolving process for one chromosome after one iteration using mutation 

and cross-over functions.

In this study, spectral-structural information (e.g., canopy volume and surface area) 

estimated by VSSIXA for each in situ LAI domain (input dataset) and in situ LAI (output 

dataset) is used train GP. Thus, GP is employed to search possible linear and nonlinear 

relationships (equations) between VSSIXA outputs (e.g., canopy volume and surface area) 

and in situ LAI in order to create an LAI map for the TSEB model.

One of the advantages of GP is access to a formula in which inputs are related to outputs, 

whereas the trained networks of popular machine learning methods such as ANN and SVM 

do not explicitly provide a formula, only results and performances. Without access to trained 

networks (weights, bias, and sometimes kernel parameters), reproducing results or 

evaluation of the performance of the trained network for a different case study is not 

possible. In contrast, the trained network of GP is reported in the form of an equation 

(sometimes a complex equation). This feature makes GP a tool [82] with a transferable 

trained network, although the proposed GP models should be confirmed under different 

planting geometries, and local calibration may be needed.

A software called “Eureqa” [83,84] is used to execute GP, wherein 70% of the dataset 

records are considered for training the network, and 30% are allocated for the testing 

procedure. To train GP, basic (e.g., +,−,*,/), trigonometric (sin, cos), and exponential 

formula building-blocks are used, and maximizing R-square is considered the objective 

function.
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2.7. TSEB-2T Model

TSEB-2T is a version of the TSEB model that was developed for when both Ts and Tc can 

be derived from nadir and off nadir Tr viewing angles [85] or by deriving pure vegetation 

and soil/cover crop pixels in a contextual spatial domain, namely VI-Tr space [67]. The 

contextual domain is a 3.6 × 3.6 m grid mapping NDVIs versus Tr (Figure 11). Next, a linear 

function via least squares regression is fit to the NDVI-Tr pairs. Pure vegetation and soil/

cover crop pixel values are defined using histogram analysis or an LAI-NDVI empirical 

relationship for the entire field. These threshold values are substituted into the fitted linear 

equation, and two temperatures are retrieved. The lowest and highest temperatures are 

assigned for Tc and Ts, respectively.

In addition to Ts and Tc, TSEB requires LAI, fractional cover, soil and canopy emissivity, 

albedo, information of the canopy structure (leaf width, canopy height), and atmospheric 

forcing, air temperature (Ta), wind speed coming, solar radiation and vapor pressure. 

VSSIXA is able to produce LAI, fractional cover, and canopy structure information such as 

canopy height based on the point cloud information. Without VSSIXA, LAI is estimated 

based on empirical relationships between VIs and in situ LAIs, and fractional cover and 

canopy height are fixed values for the entire domain.

In TSEB with Tc and Ts estimates (Figure 12) using the TSEB-2T version [67,85], net 

shortwave (Sn) and longwave radiation (Ln) are generally calculated at the first steps. Next, 

net longwave radiation is separated into canopy and soil net longwave radiation (Lns and 

Lnc) using a formulation developed by Kustas and Norman [86] (Equations (3) and (4)):

Lnc = 1 − exp −kLΩLAI Lsky + Ls − 2Lc , (3)

Lns = exp −kLΩLAI Lsky + 1 − exp −kLΩLAI Lc − Ls, (4)

where kL is the long-wave radiation extinction coefficient, Ω is the vegetation clumping 

factor proposed by [86], and Ls, Lc and Lsky (W/(m2)) are the long-wave emissions from 

soil, canopy and sky, respectively.

In addition, net shortwave radiation is separated into canopy and soil net shortwave radiation 

(Sns and Snc) based on the canopy radiative transfer model developed by Campbell and 

Norman [87]. Then, net radiation at the soil and canopy are calculated based on the 

summation of net longwave and shortwave radiation for each component (Rns and Rnc; 

Equations (5) and (6)):

Rnc = Lnc + 1 − τs 1 − αc S, (5)

Rns = Lns + τs 1 − αs S, (6)

where τs is solar transmittance through the canopy, S (W/(m2)) is the incoming short-wave 

radiation, αc and αs are the canopy and soil albedo, respectively.
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Since soil heat flux (G) is assumed to be a portion of Rns (e.g., 30%), it is simply computed 

at this step. Next, sensible heat flux is estimated for the canopy and soil components (Hs and 

Hc) initially assuming a neutral atmospheric stability, but it is corrected in an iterative loop 

until changes in the Monin–Obukhov stability length scale reach a minimum (i.e., changes 

between consecutive calculations of the Monin–Obukhov length is less than 0.00001). 

Ultimately, latent heat flux for soil and canopy (LEs and LEc) are calculated as residuals of 

the soil and canopy energy balance equations, namely Equations (7) and (8), respectively:

LES = RnS − G − HS, (7)

LEC = RnC − HC . (8)

2.8. Data Analysis

The relationship between VSSIXA outputs and in situ LAI measurements, as well as the 

accuracy of the TSEB model considering different inputs against eddy covariance 

measurements, is evaluated using coefficient of determination (R2), mean absolute error 

(MAE), RMSE, and relative root mean square error (RRMSE) (Equations (9)–(12)):

R2 = 1 −
∑i = 1

n Mi − Ei
2

∑i = 1
n Mi − Mi

2 , (9)

MAE −
∑i − 1

n |Mi − Ei|
n , (10)

RMSE =
∑i = 1

n Mi − Ei
2

n , (11)

RRMSE − RMSE
Mi

× 100, (12)

in which n is the number of observations, Mi is measured value, Ei is estimated value, and 

Mi is the average of measured values. R2 is often used to estimate the performance of the 

models and shows the fraction of the estimated values that are closest to measurement data. 

MAE is an indicator for average model performance error and is less sensitive to outliers 

[88]. RMSE is designed to show the predictive capability of a model in terms of its absolute 

deviation [89]. RRMSE is a dimensionless version of RMSE, and model accuracy is 

connoted excellent when RRMSE < 10%, good if 10%< RMSE < 20%, fair if 20% < RMSE 

< 30% and poor if RRMSE > 30% [90].
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3. Results

3.1. VSSIXA Outputs

VSSIXA is able to provide information such as canopy height, volume, surface area, and 

projected surface area (PSA) directly from the point cloud data. Due to the presence of both 

grass cover crop and grapevine canopy in the study area, a 0.5-m threshold is considered to 

separate grapevine canopy from grass. After the separation, the vegetation structure 

information is executed for three categories: (1) vine canopy, (2) cover crop, and (3) 

vegetation (both vine canopy and cover crop). Examples of this information derived from a 

2015 July point cloud dataset is shown in Figure 13.

Vegetation volume and vine volume (Figure 13) show similar patterns, indicating Site 1 

(northern site) clearly has higher biomass compared to Site 2 (southern site). These 

differences in biomass amount are likely related to the difference in age, with vines at Site 1 

more mature than Site 2. The grapevines planted in Site 1 have greater height and surface 

area versus those planted in Site 2. As expected, canopy volume, height, and surface area 

values in an area between the north and south blocks and roads are close to zero since these 

areas contain no grapevine. Although zero plant height regions are not of interest in this 

study, these zero height values do show the accuracy of the point cloud data since overlaying 

the high resolution imagery of Figure 3 has a very high correspondence with roads and the 

non-vineyard field separating north and south vine blocks. Low, dense, and short vegetation 

in the area separating the two vineyard blocks, which is visible in Figure 3, appeared in 

vegetation volume and vegetation surface area maps (Figure 13b,c). The horizontal lines of 

missing data are due to a lack of sufficient data points in the UAV point cloud acquisition 

and are probably a result of inadequate overlapping in the UAV imagery. This can be solved 

by increasing the overlap in adjacent image acquisitions.

As illustrated in Figure 13, volume and surface area are separately calculated for vegetation 

and vine canopy points due to the presence of grass cover crop. In terms of volume and 

surface area estimation, the main difference between vegetation and vine canopy is that the 

vegetation TIN file is created based on all non-zero heights, while, in the vine TIN file, 

points with height less than 0.5 m are excluded (Figure 7). As shown in Figure 14, this 

exclusion leads to increasing vegetation surface area and decreasing vegetation volume 

compared to structural vine information if gaps inside the vines are detected in the 

photogrammetry process (Figure A2c vs. Figure A2d and Figure A2a vs. Figure A2b).

3.2. Computation Time of VSSIXA

Although VSSIXA can precisely estimate structural information from point cloud data, the 

speed of the computational process is relatively slow due to the massive calculations needed 

to append spectral information into point cloud data and create TIN files. We used a 

relatively fast computer with a 2-terabyte Solid-state drive (SSD), 12 cores, 24 logical 

processors, and 128 gigabytes of Double Data Rate 4 (DDR4) RAM to execute VSSIXA 

over the study area. However, for each 3.6-m grid, both VSSIXA-I and VSSIXA-II require 

~40 s to extract and store spectral-structural information. The study area contains ~77,000 

grids. Therefore, each flight takes 35 days (77,000 × 40/3600/24) to be processed by 
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VSSIXA. The 2015 July point cloud was processed by four fast computers to decrease the 

total running time to two weeks. Due to the long computational time of VSSIXA, spectral-

structural information of other flights was extracted for footprints of the eddy covariance 

instrument and in situ LAI domains. It is possible that parallelization can enhance VSSIXA 

performance, but further investigation is needed.

3.3. In-Situ LAI versus VSSIXA Outputs

To evaluate the relationship between VSSIXA outputs and in situ LAI measurements, first 

the footprint of the LICOR-2200C must be defined. According to [14], it was assumed that 

the LICOR-2200C is measuring LAI in a rectangle 1 m wide and 3 m long. However, the 

smallest valid resolution of the TSEB model for the study area is a 3.6-m grid (square), 

which means that all required inputs for the TSEB model must be set to 3.6-m grids. Due to 

inconsistency between the LICOR-2200C footprint and the TSEB model resolution and its 

unknown impact on the LAI map, VSSIXA is executed for both rectangular and square 

buffers around LAI measurements (Figure 6).

To assess the performance of VSSIXA-I and VSSIXA-II, and particularly the importance of 

precise ground points (ground LiDAR dataset), spectral and structural information of the 

vegetation and canopy are computed by both versions of VSSIXA (VSSIXA-I and VSSIXA-

II) and for both rectangular and square buffers (Figure 6). The relationship between in situ 

LAIs and VSSIXA outputs based on R2 are illustrated in Table 3.

Table 3 shows R2 calculated between in situ LAI and VSSIXA outputs. In general, results 

showed that structural information is more correlated to LAI compared to UAV spectral 

information, and among all the structural-spectral information extracted by VSSIXA, nine 

parameters had stronger correlation with LAI: NDVI, Tr, Nv, Volumev, SAreav, Areav, 

Volumevc, SAreavc, Areavc. According to the definition of LAI [total one-sided leaf area per 

unit ground surface area], the strongest correlation was expected to be between LAI and 

surface areas (SAreav and SAreavc). Table 3 shows that, in most cases, the strongest 

correlations associated with surface areas. The magnitude of those correlations was up to 

44% in terms of R2, whereas vine canopy volume and vegetation volume (Volumev and 

Volumevc) have reached 51%. Except for the June 2015 flight, no significant correlation was 

noted between vegetation and canopy height (hv and hvc) versus LAI. Projected areas (Areav 

and Areavc) are related to fractional cover, and fractional cover is nonlinearly related to LAI. 

Table 3 shows that the correlation between projected area, specifically vine canopy projected 

areas (Areavc), and LAI is comparable with volume information. In addition, results revealed 

that NIR and Tr bands, and consequently indices utilizing these two bands, have the 

potential to be used for LAI prediction for late vine growth stage.

Concerning the buffer shapes (square or rectangular) around LAI measurements, Table 3 

shows that the correlation between spectral information and LAI is insensitive to the shape 

of the buffer, which means that the average values of spectral information in both grid sizes 

are close to each other. In contrast, changing the buffer grids from the rectangular to the 

square shape, in most cases, improves R2. For example, in the June 2015 flight at the 

Landsat time overpass (10:43 a.m.), Volumev, Volumevc, and SAreavc’s R2 doubled (16% to 

38%, 15% to 36%, and 11% to 25%, respectively). Although the improvement in R2 with 
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buffer shape change is not significant, VSSIXA-I’s performance appears to be more 

sensitive to the buffer shape. When VSSIXA-I is used along with the square buffer, the 

chance of ground point detection increases and may lead to improvements in the estimation 

of structural information. In other words, if narrower buffers are occupied by vine, VSSIXA-

I considers the lowest height values of the vine canopy as the ground points, leading to a 

bias in structural information, particularly in vegetation and vine volumes (Volumev and 

Volumevc).

Regarding VSSIXA-I and VSSIXA-II performances, since VSSIXA-II takes advantage of a 

more accurate ground point dataset (LiDAR ground data), it provides a more accurate 

estimation of structural information. Except for the May 2016 flight, volumes, surface areas, 

and projected surface areas calculated by VSSIXA-II are more correlated to in situ LAI. Our 

preliminary investigation on 2016 ground points extracted by the point cloud and LiDAR 

data shows that ground point cloud data are significantly lower than LiDAR data, which 

could be due to generating the point cloud using only two bands (R and NIR) compared to 

2014 and 2015 point cloud data generated by four bands (R, G, B, and NIR).

3.4. Modeled LAI with Machine Learning Algorithms

Although VSSIXA-II outputs with the square buffers, in general, show higher correlations in 

terms of R2, this statistical analysis shows that a simple linear regression model cannot lead 

to an accurate LAI model across different vine growth stages, and exploring the ability of 

sophisticated algorithms such as machine learning techniques becomes necessary in 

modeling LAI. Machine learning techniques are not as simple as the regression models, but 

they can explore both linear and nonlinear relationships between output and several inputs 

through training and testing procedures that minimize error functions. Here, GP is employed 

to model LAI, exploring linear and nonlinear fitting curves between VSSIXA-II outputs 

extracted in square buffer domains. To remove the dependency of GP LAI models to the grid 

size, structural information (such as canopy volume and surface area) was divided by the 

area of the square grid (3.6 × 3.6 m). To evaluate the importance of structural information in 

modeled LAI, three different scenarios were defined, including LAI models with only 

spectral information (Model 1), with only structural information (Model 2), and with both 

spectral and structural information (Model 3). According to Table 3, N, NDVI, Tr, Nv, and 

Nvc are the main inputs in Model 1. In Model 2, Volumev, SAreav, Areav, Volumevc, 

SAreavc, and Areavc are considered as the main descriptors for the LAI model. In Model 3, a 

combination of Model 1 and Model 2 inputs are used to train GP and create the LAI map. 

Figure 15 and Table 4 show the results of the LAI modeled by GP and ~310 LAI 

measurements in the 2014, 2015, and 2016 flights, except for those lacking NIR or R bands.

As shown in Figure 15 and Table 4, employing GP with both spectral and structural 

information (Model 3) can significantly increase the accuracy of modeled LAI up to 70% in 

terms of R2 and enhance the performance of the models from fair to good (RRMSE of 

Model 1 and Model 2 < 30% compared to RRMSE of Model 3 < 20%). Despite flight time 

and vine phenological stage, GP was able to produce a reliable model if both spectral and 

structural information are provided. Equations (13)–(15) show the relationship between 

inputs and outputs found by GP for Models 1, 2, and 3, respectively:

Aboutalebi et al. Page 16

Remote Sens (Basel). Author manuscript; available in PMC 2020 April 30.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



LAI1 = 5.85 + 17.37 × N × Nv + 0.85 × NDV I × Tr − 0.52 × Tr − 8.51
× Nvc

2 − 14.96 × NDV I2, (13)

LAI2 = 0.47 + 2.39 × Areavc − 2.29 × Areavc × Areav0.41 × 43.07Volumev, (14)

LAI3 = 2.69 × N × Volumevc + 0.11 × Tr × Areav + − 0.67 × Areav
Nvc

− 0.38

× 1.54Tr × N2 × NDV I26.92 × Nvc
4

Volumevc
.

(15)

The unit of Tr in Equations (13)–(15) is Celsius degree, and the unit of structural parameters 

is m as they are divided by the area of the square grids (m3/m2).

3.5. TSEB-2T Model versus Eddy Covariance Measurements

To evaluate the importance of point cloud data on the TSEB model, three different scenarios 

are defined. In scenario 1 (the spectral-based scenario, S1), the LAI map is created with GP 

Model 1. Canopy height (hvc), fractional cover (fc), and canopy width (wc) are set to fixed 

values. In scenario 2 (the structural-based scenario, S2), GP Model 2 is used to create the 

LAI map. hvc, fc (vine projected surface area/the grid area), and wc maps (3.35fc [67]) are 

estimated by VSSIXA outputs instead of the fixed values used in S1. In Scenario 3 (the 

spectral-structural-based scenario, S3), the LAI map is created using GP Model 3 and other 

TSEB inputs the same as S2 (Table 5). Considering these three scenarios, the results of the 

modeled flux components by TSEB (Rn, LE, H, and G) are compared with the surface 

energy balance measurements from the Eddy Covariance flux tower footprints.

To create LAI maps for each scenario at the TSEB resolution, VSIXXA-II with the square 

buffer is employed to extract spectral and structural information from the 2014, 2015, and 

2016 flights. Next, an LAI map for each flight is created based on Models 1, 2 and 3. Due to 

the computation time of VSSIXA discussed in Section 3.2, VSSIXA-II is executed only for 

the flux tower footprints (see Figures A1 and A2). As shown in Figure 1, the study area 

includes two flux towers, the footprint of each tower contains ~ 2500 3.6-m grids that 

requires ~ 24 h (2500 × 40 s/3600 s) to process (Figures A1 and A2). The footprint of the 

flux tower is produced using a method presented by [91].

The results of the TSEB model compared to the eddy covaraince measurements are shown in 

Figure 16 and Table 6.

Figure 16 shows the agreement between TSEB model outputs versus eddy covariance 

measurements for each scenarios. Each subplot contains 32 pairs of estimated and observed 

energy fluxes (4 flights × 2 eddy covariance × 4 fluxes). From Figure 16, the agreement 

between modeled and observed fluxes improves going from using as LAI input GP Model 1 

(S1) to GP Model 3 (S3), with the most significant improvement using S3 versus S1. Since 

differences between the performance of TSEB using GP Model 1 versus GP Model 2 for 
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estimating LAI was not significant (Figure 16 and Table 6), it is likely that the improvement 

is mainly attributed to the use of a spatially-distributed map of the fractional cover, canopy 

height, and canopy width instead of using a fixed value. Using the spatially-distributed maps 

of the fractional cover, canopy height, and canopy width appears to have the largest effect on 

modeled H, with marginal impact on Rn, G, and LE. Comparing TSEB model results using 

S3 versus S2 and S1 reveals how a more accurate LAI map can affect the TSEB model 

output, particularly H and LE. The differences between TSEB output using S3 versus S2 

illustrates the impact of the LAI maps, as the only difference between these two scenarios is 

related to the estimated LAI (LAI2 via Equation (13) and LAI3 via Equation (14)). 

According to Table 6, using GP Model 3 estimates of LAI in the TSEB model yields the best 

agreement with the observed H and LE fluxes. In terms of the RRMSE statistic for accuracy 

or performance of the TSEB model changes from “fair” to “good” rating for LE and “poor” 

to “fair” rating for H (i.e., poor rating is if RRMSE > 30%, fair rating if RRMSE < 30%, and 

a good rating if RRMSE < 20%). For Rn, all three GP model inputs of LAI produce an 

RRMSE value with “excellent” accuracy rating. On the other hand, the RRMSE value for G 

using all three GP models results in a “poor” rating. This “poor” performance is due in part 

to the assumption that G is a simple fraction of modeled soil net radiation (e.g., G = 

0.30Rns), but also the large spatial and temporal variability in measured G due to a 

nonuniform vine canopy cover [92] and the fact that the source area/flux footprint 

contributing to the tower fluxes and the area used in aggregating the TSEB model flux 

output is much greater than the sampling area used for the flux tower.

4. Discussion

In this study, a new algorithm, called VSSIXA, is developed to extract canopy spectral and 

structural information from multi-spectral UAV imagery and point cloud data. Although the 

computation time of VSSIXA is long (40 s for each 3.6-m grid), several aspects of this 

algorithm make it an efficient tool for improving remote sensing-based ET models, 

particularly the TSEB model. First, VSSIXA is able to separately extract vine canopy and 

cover crop canopy spectral and structural information, which cannot be achieved with solely 

spectral information. In other words, at the early phenological stage of the vine (April, 

May), when the presence of the cover crop is dominant, the spectral-based analysis cannot 

assign a unique class for vine and cover crop classes separately as their spectral responses 

are similar to one another. However, the structural information, particularly canopy height, 

can be an efficient measure for separation. This feature of VSSIXA can be useful for 

partitioning total flux into vine and interrow flux. Second, although vegetation indices (such 

as NDVI) are popular and well-known inputs for modeling LAI, these indices by themselves 

cannot fully describe the variability in LAI when the amount of active cover crop in the inter 

row is significant [67]. Therefore, 3D structural metrics can be used as other sources of 

information to derive spatial maps of LAI. The dominancy of the cover crop is more 

pronounced in the flights in May 2016 in which the active cover crop was present. In 

addition, several studies have indicated that satellite or UAV-derived LAI solely based on 

VIs may lead to the saturation situation that occurs within the relationship between VIs and 

LAI for well-developed canopies [6,10,11,13]. The saturation issue resulted from modeling 

a non-scaled parameter, namely LAI using scaled parameters such as VIs. However, as 
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VSSIXA computed non-scaled structural metrics such as canopy height, surface area, and 

volume, the saturation issue does not occur in LAI estimated by Model 2 and Model 3, 

whereas most LAI values estimated by Model 1 ranged between 1 and 2 (Figure 15). Third, 

this study showed that, compared to using fixed-values, spatially-distributed structural 

metrics such as hvc, fc, and wc can be more effective. However, a question may arise on how 

canopy structural properties can be re-generated or integrated into satellite imageries for 

estimation of daily canopy properties when no point cloud data exist for that coarse of pixel 

resolution or even for other dates. One approach is to fit empirical curves between in situ 

LAI values collected during different canopy phenological stages (bloom to harvest, Table 2) 

and structural information estimated by VSSIXA. Next, Landsat LAI obtained by fusing the 

MODIS LAI (MCD15A3H) product and Landsat surface reflectance [93,94] are trained with 

upscale structural canopy parameters (e.g., Landsat LAI vs. hvc at 30-m resolution). 

Ultimately, for each of the Landsat LAI products, spatially-distributed maps of canopy 

structural information at the satellite scale can be estimated based on satellite LAI products 

[95].

Although sensitivity analysis of canopy 3D metrics in remote sensing-based ET models, and 

particularly the TSEB model, require a further investigation, the authors in [96] performed a 

sensitivity analysis of the vegetation structural information (hc, LAI, fc, etc.) that is used in 

estimating soil resistance to heat transfer in sparse semiarid stands. Their results showed that 

the turbulent bulk heat transfer model for the sensible heat flux was sensitive to variations in 

crop height. The authors in [97]) conducted a simple model sensitivity analysis of TSEB to 

LAI and found that a variation on the LAI value of 30% would increase the final TSEB 

model error on a range of 4% and 7%. Thus, an error in LAI could significantly impact the 

accuracy of ET [98], which is compatible with the results presented in this study (decreasing 

LE from 72 (S2) to 39 (s3) in terms of RMSE). Generally, in the TSEB model, LAI is a key 

input for partitioning Tr into Ts and Tc and canopy and soil net radiation.

In TSEB-2T, the selection criterion for determining bare soil/cover crop stubble NDVI is 

based on the empirical relationship between NDVI and LAI [67]. In other words, NDVIS in 

Figure 13 corresponds to the extrapolation of the NDVI-LAI curve for LAI = 0. Moreover, 

the spatial map of LAI is an input in the canopy radiative transfer model [87] to estimate soil 

and canopy net radiation (Equations (3)–(6)). Therefore, the partitioning of Rn between Rns 

and Rnc is controlled by the LAI estimates. These equations (Equations (3) and (4)) indicate 

how and why the temporal trend in transpiration of the canopy (LEC) over LE follows the 

temporal variation in LAI [99]. In addition, LAI is inversely related to the the boundary 

layer resistance of the canopy of leaves (Equation (16)):

Rx = C
LAI × lw

Ud0 + Z0m
, (16)

in which d0 is the zero-plane displacement height, and z0M is the roughness length for 

momentum. C is assumed to be 90s
1
2

m , and lw is the average leaf width (m). Equation (16) 

indicates that overestimation of LAI leads to underestimation of Rx then overestimation of 

Hc and possibly an overestimation of H assuming a relatively small change in Hs (H = Hs + 
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Hc). As LE is calculated as a residual term of the land surface energy balance (LE = Rn − G 
− H), a lower Rx likely yields lower LE, assuming Rn and G are not highly sensitive to LAI.

In addition to relating LAI to NDVI thresholds of vegetation and bare soil/cover crop 

stubble, partitioning Rn into Rns and Rnc and the boundary layer resistance of the canopy in 

the TSEB model, LAI is used to indirectly (through the partitioning of Rn into Rns and Rnc) 

estimate G via the expression G = 0.3Rns. This resulted in estimated G from TSEB to be in 

relatively poor agreement with observed G (see Table 6). However, modifications to this 

simple expression have been proposed (Nieto et al. [67]), which considers empirically the 

effect of the cover crop on G.

5. Conclusions

This paper explored the utility of incorporating UAV point cloud products into the remote 

sensing-based TSEB model. A new algorithm called VSSIXA in Python and ArcGIS Pro 

was developed to extract both spectral and structural information for a vineyard. VSSIXA is 

developed in two modes, VSSIXA-I and VSSIXA-II. VSSIXA-I only requires point cloud 

data to calculate vegetation structural information, while VSSIXA-II requires a precise and 

separate ground point data (e.g., LiDAR data). In this study, both versions of VSSIXA along 

with different buffer shapes around in situ LAI measurements are employed to create LAI 

maps. Three different estimates of LAI using Genetic Programming (GP) machine learning 

are considered to evaluate the impact of structural information for computing LAI. First, 

results indicated that VSSIXA-II with wider buffers is more efficient for calculating 

vegetation structural information. Among the three GP-based models for estimating LAI, 

Model scenario 1 (S1) and Model scenario 2 (S2), which require only spectral and structural 

information, respectively, had similar performance, while Model scenario 3 (S3), which 

takes advantage of both spectral and structural information, could estimate LAI with 70% 

accuracy in terms of R2.

To assess the impact of the structural information in modeling fluxes, the remote sensing-

based TSEB model was applied using the three LAI modeling scenarios, S1–S3 and using 

fixed values versus a spatially-distributed map of canopy height, width, and fractional cover. 

The TSEB model output of the fluxes using derived soil and canopy temperatures 

(TSEB-2T), which avoids the need for the Priestley–Taylor assumption for canopy 

transpiration, are compared with eddy covariance flux tower measurements. Results 

indicated that significant improvement in the agreement of modeled output with the flux 

tower observations is achieved by using a reliable LAI map, more so than a map of spatially-

distributed canopy structure parameters. The statistical results suggest that a more robust 

LAI map derived from both spectral and structural information can lead to significant 

improvement in TSEB model performance in estimating the turbulent fluxes H and LE. 

There was much less of an impact from the three different model estimates of LAI in TSEB 

output of Rn and G. In particular, the relatively poor performance rating given by the 

RRMSE statistic for G has to do with both the simple model assumption that G is a constant 

fraction of Rns and the significant spatial and temporal variation in individual G 

measurements observed by [92]. Improvements on this simple formulation for estimating G 

have been proposed by Nieto et al. [67].
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Figure A1. 
Examples of (a) NDVI, (b) NDVIV, (c) NDVIc, (d) Tr, (e) Ts and (f) Tc in centigrade 

calculated by VSSIXA-II for each 3.6 m grid of the northern flux tower foot print for July 

2015 flight. Void cells are areas of missing data.
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Figure A2. 
Examples of (a) VolumeV, (b) VolumeC in m3, (c) SAreaV, (d) SAreac in m2, (e) hv and (f) 
hvc in m estimated by VSSIXA-II for each 3.6 m grid of the northern flux tower foot print 

for July 2015 flight. Void cells are areas of missing data.

Abbreviations

The following abbreviations are used in this manuscript:

UAV
Unmanned Aerial Vehicles

TSEB
Two-Source Energy Balance Model

VSSIXA
Vegetation Structural-Spectral Information eXtraction Algorithm

LAI
Leaf Area Index
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GRAPEX
Grape Remote sensing Atmospheric Profile and Evapotranspiration eXperiment

VIs
Vegetation indices

R
Red

G
Green

B
Blue

NIR
Near-Infrared

NDVI
Normalized Difference Vegetation Index

DSM
Digital Surface Models

SfM
Structure from Motion

MVS
Multiview-Stereo

LiDAR
Light Detection and Ranging

CSM
Crop Surface Model

GCP
Ground Control Points

CHM
Canopy Height Model

DEM
Digital Elevation Model

DTM
Digital Terrain Model

Tr

Radiometric Temperature
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USU
Utah State University

IMU
Inertial Measurement Unit

VNIR
Visible and Near-Infrared

Ts

Soil Temperature

Tc

Canopy Temperature

TIN
Triangulated Irregular Network

CSV
Comma-Separated Value

ANN
Artificial Neural Network

SVM
Support Vector Machine

GP
Genetic Programming

IOP
Intensive Observation Period

ASTER
Advanced Spaceborne Thermal Emission and Reflection Radiometer

agl
above ground level

ESRI
Environmental Systems Research Institute

USU
Utah State University

G-LiHT
Goddard’s LiDAR, Hyperspectral & Thermal Imager

IRGA
Infrared Gas Analyzer
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GA
Genetic Algorithm

Sn

Shortwave Radiation

Ln

Longwave Radiation

Lnc

Canopy Net Longwave Radiation

Lns

Soil Net Longwave Radiation

Snc

Canopy Net Shortwave Radiation

Sns

Soil Net Shortwave Radiation

Rnc

Canopy Net Radiation

Rns

Soil Net Radiation

G
Soil Heat Flux

Hc

Sensible Heat Flux for Canopy

Hs

Sensible Heat Flux for Soil

LEc

Latent Heat Flux for Canopy

LEs

Latent Heat Flux for Soil

R2
Coefficient of Determination

MAE
Mean Absolute Error

RMSE
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Root Mean Square Error

RRMSE
Relative Root Mean Square Error

RTK
Real-Time Kinematic

Rv

Average of R for Vegetation

Gv

Average of G for Vegetation

Bv

Average of B for Vegetation

Nv

Average of N for Vegetation

NDVIv

Average of NDVI for Vegetation

hv

Average of Vegetation Heights

Volumev

Volume of Vegetation

SAreav

Surface area of Vegetation

Areav

Projected of SAreav

Rvc

Average of R for Vine Canopy

Gvc

Average of G for Vine Canopy

Bvc

Average of B for Vine Canopy

Nvc

Average of N for Vine Canopy

NDVIvc

Average of NDVI for Vine Canopy
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hvc

Average of Vine Canopy Height

Volumevc

Volume of Vine Canopy

SAreavc

Surface Area of Vine Canopy

Areavc

Projected of SAreavc

fc

Fractional Cover

wc

Canopy Width

S1
Scenario 1

S2
Scenario 2

S3
Scenario 3
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Figure 1. 
World Imagery of the study area from Environmental Systems Research Institute (ESRI) 

along with the locations of the flux towers (a), drip irrigation system (b), and eddy 

covariance instrument (c) installed in the area of study.
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Figure 2. 
AggieAir airframe layout flying and capturing imagery over the study area.

Aboutalebi et al. Page 36

Remote Sens (Basel). Author manuscript; available in PMC 2020 April 30.

N
A

S
A

 A
uthor M

anuscript
N

A
S

A
 A

uthor M
anuscript

N
A

S
A

 A
uthor M

anuscript



Figure 3. 
Example of high-resolution imagery captured by AggieAir over the study area in August 

2014.
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Figure 4. 
Example of a point cloud dataset produced by AgiSoft using AggieAir imagery and SfM 

method (a) versus LiDAR dataset collected by NASA G-LiHT (b) for the area of study.
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Figure 5. 
(a) leaf area sampling locations, (b) measuring LAI according to GRAPEX protocol [14].
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Figure 6. 
Square and rectangle buffers around LAI measurements.
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Figure 7. 
A workflow of proposed VSSIXA algorithm.
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Figure 8. 
Differences between VSSIXA-I and VSSIXA-II determination of ground elevation and 

canopy height.
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Figure 9. 
Differences between VSSIXA-I and VSSIXA-II in estimation of canopy surface area, 

projected surface area, volume, and average height.
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Figure 10. 
A graphical visualization of the various stages of GP to update solutions (chromosomes).
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Figure 11. 
Example of a contextual NDVI-Trad scatterplot used for searching Ts and Tc within a 3.6-m 

grid.
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Figure 12. 
Connections between TSEB model components for the energy fluxes calculation.
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Figure 13. 
Examples of (a) vine volume, (b) vegetation volume, (c) vine surface area, (d) vegetation 

surface area, (e) vine height and cover crop height calculated for a 2015 July point cloud 

dataset using VSSIXA-II (horizontal lines are areas of missing data).
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Figure 14. 
Impact of filtering z < 0.5 m on the vegetation/canopy volume and surface area.
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Figure 15. 
In situ LAI measurements versus modeled LAIs by GP based on Model 1 (a), Model 2 (b), 

and Model 3 (c).
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Figure 16. 
Scatterplot of observed vs. predicted fluxes using the different scenarios. (a) S1: LAI Model 

1 and fixed values for hvc, fc, wc (b) S2: LAI Model 2 with the map of hvc, fc, wc (c) S3: LAI 

Model 3 with the map of hvc, fc, wc.
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Table 1.

Dates, times, cameras 
1
, and optical filters used to capture images with the UAV.

Date

UAV Flight Time 
(PDT)

UAV 
Elevation 

(agl) 
Meters

Bands Cameras and Optical Filters
Spectral 
ResponseLunch 

Time Landing RGB NIR Radiometric 
Response MegaPixels

9 August 
2014

11:30 
a.m. 11:50 a.m. 450 Cannon S95

Cannon S95 
modified

(Manufacturer 
NIR block filter 

removed)

8-bit 10

RGB: typical 
CMOS

NIR: extended 
CMOS NIR

Kodak Wratten 
750 nm0020

LongPass filter

2 June 
2015

11:21 
am. 12:06 p.m. 450

Lumenera
Lt65R
Color

Lumenera
Lt65R

Monochrome
14-bit 9

RGB: typical 
CMOS

NIR: Schneider 
820 nm

LongPass filter

11 July 
2015

11:26 
a.m. 12:00 p.m. 450

Lumenera
Lt65R
Color

Lumenera
Lt65R

Monochrome
14-bit 12

RGB: typical 
CMOS

NIR: Schneider 
820 nm

LongPass filter

2 May 
2016

12:53 
p.m. 1:17 p.m. 450

Lumenera
Lt65R
Mono

Lumenera
Lt65R
Mono

14-bit 12

RGB: Landsat 8 
Red Filter 
equivalent

NIR: Landsat 8 
NIR Filter 
equivalent

1
The use of trade, firm, or corporation names in this article is for the information and convenience of the reader. Such use does not constitute 

official endorsement or approval by the US Department of Agriculture or the Agricultural Research Service of any product or service to the 
exclusion of others that may be suitable.
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Table 2.

Dates, optical and thermal resolution, point cloud density and phenological stages of the vine and cover crop 

when the images were captured by the UAV.

Date Optical Resolution Thermal Resolution
Point Cloud 

Density 
(Point/m2)

Vine Phenological Stage Phenological Stage of 
Cover Crop

9 August 2014 15 cm 60 cm 37 Veraison towards harvest Mowed stubble

2 June 2015 10 cm 60 cm 118 Near veraison Senescent

11 July 2015 10 cm 60 cm 108 Veraison Mowed stubble

2 May 2016 10 cm 60 cm 120 Bloom to fruit set Active/green
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Table 4.

Performance of the Models 1, 2 and 3.

Stats Model 1 Model 2 Model 3

R2 0.56 0.54 0.70

MAE 0.35 0.37 0.30

RMSE 0.43 0.44 0.32

RRMS 25% 26% 19%
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Table 5.

TSEB Inputs for each scenario.

Scenario LAI hvc (Canopy Height) fc (Fractional Cover) wc (Canopy Width)

S1: Spectral-based GP Model 1 a fixed value a fixed value a fixed value

S2: Structural-based GP Model 2 estimated by VSSIXA estimated by VSSIXA = 3.35 * fc

S3: Spectral-Structural-based GP Model 3 estimated by VSSIXA estimated by VSSIXA = 3.35 * fc
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Table 6.

Performance of the TSEB model based on GP model estimate of LAI using model scenarios 1, 2, and 3 (S1, 

S2 and S3) for each energy flux component.

Variable Scenario MAE RMSE RRMSE

Rn

S1 46 53 10%

S2 39 47 8%

S3 39 42 8%

H

S1 87 93 49%

S2 64 67 35%

S3 35 40 21%

LE

S1 65 72 26%

S2 65 69 25%

S3 35 39 14%

G

S1 46 52 65%

S2 38 49 61%

S3 37 41 51%
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