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Abstract
Oxaliplatin, in combination with 5-fluorouracil plus folinate (or capecitabine), has increased survival substantially in
stage III colorectal cancer and prolonged life in stage IVpatients, but its use is compromised because of severe toxicity.
Chemotherapy-induced peripheral neuropathy (CIPN) is the most problematic dose-limiting toxicity of oxaliplatin.
Oncologists included for years calciumandmagnesium infusion aspart of clinical practice for preventingCIPN.Results
from a phase III prospective study published in 2014, however, overturned this practice. No other treatments have
been clinically proven to prevent this toxicity. There is a body of evidence that CIPN is caused by cellular oxidative
stress. Clinical and preclinical data suggest that the manganese chelate and superoxide dismutase mimetic
mangafodipir (MnDPDP) is an efficacious inhibitor of CIPN and other conditions caused by cellular oxidative stress,
without interfering negatively with the tumoricidal activity of chemotherapy. MnPLED, the metabolite of MnDPDP,
attacks cellular oxidative stress at several critical levels. Firstly, MnPLED catalyzes dismutation of superoxide (O2

•−),
and secondly, having a tremendous high affinity for iron (and copper), PLED binds and disarms redox active iron/
copper, which is involved in several detrimental oxidative steps. A case report from 2009 and a recent feasibility study
suggest that MnDPDP may prevent or even cure oxaliplatin-induced CIPN. Preliminary results from a phase II study
(PLIANT) suggest efficacy also of calmangafodipir, but these results are according to available data obscured by a
surprisingly low number of adverse events and a seemingly lower than expected efficacy of FOLFOX.
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Background
Colorectal cancer (CRC) is the second or third most common cancer in
Europe and the United States. About half of the CRC patients in
Europe will ultimately die of the disease, corresponding annually to
about 200,000 people [1], whereas about one third of the patients in the
United States will die of the disease, corresponding to about 50,000 [2].
In about one third of the diagnosed CRCs, the disease is locally

advanced to one or more lymph nodes (stage III). Postoperative
adjuvant chemotherapy in stage III colon cancer patients, for many
years with 5-fluorouracil (5-FU) plus levamisole and later folinate,
increased 5-year survival from about 47% to 65% [3–5]. When 5-FU
(+ folinate) was combined with oxaliplatin [FOLinate, 5-FU, and
OXliplatin (FOLFOX)], 5-year survival alternatively 3-year
disease-free survival was further increased in this group to more than
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70% [6,7]. The objective response rate (ORR) and the progression-free
survival in palliative treatment of stage IV patients with the combination
have increased from about 27% to 45% and from about 7 to 9 months,
respectively, compared to 5-FU alone [2,8–10]. Sørbye and coworkers
[11] reported an ORR of 46% in metastatic CRC patients treated with
Nordic FLOX, an oxaliplatin-containing regimen similar to FOLFOX.
Addition of oxaliplatin is, however, compromised by vigorous increase
in dose-limiting toxicity.

Oxaliplatin-associated chemotherapy-induced peripheral neuropathy
(CIPN) is the most frequent cause of complete discontinuation of an
otherwise successful therapy [12]. About 12% to 18% of the patients
experience grade 3 CIPN on the The National Cancer Institute's
Common Terminology Criteria for Adverse Events (NCI-CTCAE)
grade 1 to 3 scale [6,8], where persistent grade ≥ 2 neuropathy usually
results in complete discontinuation of oxaliplatin therapy. Furthermore,
almost every CRC patient treated with FOLFOX experiences some
grade of neutropenia, and 40% to 50% of the patients experience grade
3/4 neutropenia (according to the NCI CTCAE 1-4 scale)
[6,8–10,13,14], in addition to a multitude of other adverse events
(AEs). Sørbye and coworkers [11] reported 58% grade 3/4 neutropenia
in their study using Nordic FLOX.

Oxaliplatin-associated CIPN differs from cisplatin-associated CIPN in
one particular sense. Both cause a peripheral stocking-glove neuropathy that
worsens with the cumulative dose, but oxaliplatin is also associated with an
acute neuropathic problem that generally occurs after each oxaliplatin dose
and often resolves within a few days [15]. Although the acute form can be
quite bothersome, it is the chronic CIPN that is the general dose-limiting
problem and the main cause of complete discontinuation of oxaliplatin
treatment. It has been suggested that oxaliplatin may directly alter
axonal voltage-gated sodium channels, inducing an acute neurotoxicity
manifested by peripheral nerve hyperexcitability [16].

The chronic neuropathy is characterized by bilaterally symmetrical
sensory symptoms (e.g., numbness, tingling, and pain) appearing in the
feet, or in both the feet and hands, and occurs with chemotherapeutics
across drug classes with distinctly different antitumormechanisms, such
as taxanes (e.g., paclitaxel) and platinum compounds (e.g., oxaliplatin).
Despite potential diverse mechanisms underlying the development of
CIPN, common degenerative pathways may be triggered when the
normal processes and energy delivery mechanisms of the peripheral
nervous system become disrupted [16]. Experimental studies in rats
suggest that the common underlying mechanism in the development of
these neuropathies is oxidative stress [17,18] and subsequent
mitochondrial toxicity in primary nerve sensory axons arising from
reduced mitochondrial bioenergetics, e.g., adenosine triphosphate
production deficits due to compromised respiratory complex I and II
activity [19–22]. Contrary to the central nerve system, the peripheral
nerve system lacks a blood-brain barrier, a draining lymph system, and
cerebrospinal fluid. This makes potentially dangerous substances
substance, such as chemotherapy drugs, to accumulate in the peripheral
nerve system and cause oxidative stress [22], as schematically illustrated
in Figure 1. In fact, oxidative stress is identified to be responsible for the
neuronal damage in different models of neuropathies such as diabetic
neuropathy, acrylamide-induced neuropathy, and Charcot-Marie-Tooth
neuropathy [22]. Furthermore, gene therapy in rats with mitochondrial
superoxide dismutase (SOD) protects the retinal ganglion cells from
chronic intraocular pressure elevation–induced injury via attenuating
oxidative stress and improving mitochondrial function [23].

Numerous compounds to prevent CIPN have been tested in
patients. A recent Cochrane review [24] shows, however, that those
tested so far, more or less, lack efficacy in human patients. Intravenous
infusion of calcium and magnesium (CaMg), given before and after
FOLFOX therapy, represent the most thoroughly studied and, up to
2014, the most commonly used clinical regimen for the prevention of
oxaliplatin-associated CIPN [25–28]. However, a phase III clinical trial
(N08CB/Alliance) did not demonstrate any significant effects of CaMg
in preventing oxaliplatin-associated CIPN [15]. The SOD mimetic
mangafodipir (MnDPDP) has shown protective efficacy against
oxaliplatin-associated CIPN in both rats and humans [29].

As both preclinical and clinical studies suggest that CIPN is
associated with cellular oxidative stress and a subsequent mitochon-
drial toxicity, the present review will focus on oxaliplatin-associated
CIPN in CRC patients and its possible relationship to cellular
oxidative stress and MnDPDP as a selective cytoprotective agent, i.e.,
an agent that protects normal tissue but not tumor tissue.

Cellular Oxidative Stress
Aerobic organisms exist in a catch-22 situation. Oxygen and
transition metals sustain them, but they also poison them, primarily,
via reactive oxygen species (ROS) and, secondarily, via reactive
nitrogen species (RNS). The mitochondrial route of O2 reduction to
H2O is by a series of univalent electron transfers. Hence, ROS
intermediates will be encountered on this univalent pathway, and
these are, by turn, superoxide (O2

•−), hydrogen peroxide (H2O2), and
hydroxyl radicals (•OH). It is these intermediates that are primarily
responsible for the toxicity of O2. Furthermore, transition metals are
essential components for all living organisms, as they participate in
key biological processes such as cellular respiration, gene transcrip-
tion, and many enzymatic reactions. Their ability to oscillate between
different redox states is the main feature that allows them to act as
cofactors in cellular enzymes. The most abundant transition metals in
human cells are, by turn, iron, copper, and manganese. They can be
found in various forms: mainly bound to proteins, but also in
association with low–molecular weight species, and as “free” ions.
Under certain conditions, these transition metals can catalyze
generation of secondary ROS and RNS that leads to oxidative
damage of proteins, lipids, and DNA [30].

Oxidative stress can be defined as a situation where the production of
ROS andRNS outcompete the endogenous cellular defense. Endogenous
SODs, in particular, the mitochondrial manganese-containing SOD
(MnSOD), attack and disarm O2

•−, the first ROS in the route of O2

reduction to H2O. Except for peroxidases, according to our knowledge,
cells lack direct defense against •OH and other secondarily produced
ROS and RNS, such as •NO2. SODs are hence essential in the defense
against detrimental oxidative stress.

ROS are generated during chemotherapy with several structurally
dissimilar anticancer drugs [31–33]. The resulting increase in cellular
oxidative stress is proposed to be the main cause of toxicity to normal
cells, including CIPN [17–19,21,22]. However, it may also be a
contributing factor to death of cancer cells. Consequently, to be
clinically useful, a chemotherapy protectant should selectively protect
normal tissue from chemotherapy-induced toxicity but not tumor
tissue. So far, two antioxidants, amifostine (a noncatalytic antoxidant)
and dexrazoxane (an iron chelator), have reached the clinic. However,
their uses have been restricted due to suspicions of negative influence on
the tumoricidal activity of chemotherapy and/or adverse events [34].

The mechanisms behind platinum-associated CIPN seem to result
from accumulation of platinum in dorsal root ganglion cells [35] and
a subsequent increase in oxidative stress. The oxidative stress



Figure 1. The susceptibility of the peripheral nerve system to chemotherapy drugs is schematically illustrated. The central nerve system
lacks a blood-brain barrier, a draining lymph system, and cerebrospinal fluid. This makes potentially dangerous substances, such as
chemotherapy drugs, to accumulate in the peripheral nerve system and cause oxidative stress and detrimental nerve injuries (modified
from [22]).
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mechanisms involve peroxynitrite (ONOO−)-mediated nitration and
irreversible inactivation of the mitochondrial manganese-containing
SOD [18].

SODs and Their Relation to Cellular Oxidative
Stress
Irwin Fridovich and Joe McCord discovered the first SOD enzyme,
containing copper (Cu) and zinc (Zn), in the late part of the 1960s
[36,37]. A few years later, Fridovich together with Richard A.
Weisiger discovered the mitochondrial MnSOD [38,39]. SOD
enzymes catalyze dismutation of O2

•− to H2O2 and molecular oxygen,
and are the most essential parts of the cellular defense against ROS.
Mammals have three different types of SODs: an extracellular
CuZnSOD, a cytosolic CuZnSOD, and a mitochondrial MnSOD
[34]. These metal (M)-containing enzymes dismutate O2

•− [36], as
follows:

Mnþ1‐SODþ O2
•‐‐NMn‐SODþ O2

Mn‐SODþ O2
•‐þ2Hþ‐NMnþ1‐SOD þH2O2

∑ 2O2
•‐þ2Hþ‐NO2þH2O2

Under normal conditions, endogenous SODs keep ROS in check,
and H2O2 is subsequently decomposed into water and oxygen by
peroxidases (hydrogen peroxidase and glutathione peroxidase). Nitric
oxide (•NO) is an endogenously synthesized free radical with many
physiological functions, like vasodilation and neurotransmission.
During situations of more extreme oxidative stress, the production of
O2

•− and •NO increases to levels where O2
•− escapes the endogenous

SODs. Superoxide then reacts with •NO and gives rise to highly toxic
peroxynitrite (ONOO−) [40,41], which subsequently nitrates
tyrosine (Tyr) residues of proteins through a transition metal
(Mn+)–driven process [30,41,42]:

ONOO− þMnþX� NONOO−MnþX� N•NO2 þ• O−MnþX

�NNO2 þ O ¼ Mðnþ1ÞþX

As a result of this reaction, •NO2 and oxometal complexes, e.g.,
O = Fe4+X and O = Mn4+X, are generated. These two species are
able to oxidize and nitrate Tyr residues. So, in the presence of
transition metal centers (X; low–molecular weight complexes or
metalloproteins) that react with ONOO− by the above-described
reaction, NO2Tyr is produced. Peroxynitrite-dependent Tyr nitra-
tion is mediated mainly by the abovementioned two oxometal
complexes [30,42,43]. Interestingly, nitration of Tyr34 in the
mitochondrial MnSOD is catalyzed by intraenzymatic manganese,
as follows [43]:

Tyr34 þ O ¼ Mn4þSOD� N•Tyr34 þ Mn3þSODþ OH−

NO−
2 þ• OH� N•NO2 þ OH−

•Tyr34 þ• NO2 � NNO2Tyr34

Tyr nitration can also be achieved by ONOO−-independent routes
as well, depending on the transition of metal-catalyzed oxidation, like
that of nitrite (NO2

−) to •NO2 in the presence H2O2. These processes
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can be achieved either by hemeperoxidase-dependent reactions or by
ferrous (Fe2+) and cuprous (Cu+) ions through Fenton-type
chemistry. The nitration of Tyr residues represents an oxidative
modification that causes disruption of normal •NO signaling and
metabolism and severely exacerbates oxidative stress further.

Peroxynitrite-dependent nitration in mitochondrial MnSOD
occurs site-specifically at Tyr34 located 5 Å from the active site, a
process catalyzed by SOD-coordinated manganese [43]. By nitrating
human Tyr34, ONOO− irreversibly inactivates endogenous SOD
activity and hence causes a vicious circle that enhances the production
of ONOO− further.

Crystallographic data and molecular dynamics simulations indicate
that Tyr34 nitration leads to enzyme inactivation via generation of a
large energy barrier for the entry of O2

•− through the access channel of
the enzyme [43]. Cytochrome c is another mitochondrial target for
ONOO−, resulting in nitration of Tyr74 that triggers a conformational
change in the protein, resulting in an alternative conformation lacking
its normal electron transport capacities and increased capacity to react
with peroxides and promote oxidation of a second substrate [43].

Nitrated proteins are found in several pathological conditions,
including inflammatory process [42], chronic rejection of human
renal allografts [44], tumor-associated immunosuppression [45],
paracetamol (acetaminophen) intoxication [46], and oxaliplatin (and
paclitaxel)-associated CIPN [18]. Interestingly, CIPN is associated
with mitochondrial Tyr34 nitration of mitochondrial MnSOD and a
subsequent inactivation of enzyme activity, an effect prevented by the
SOD mimetic compound [47]/ONOO− decomposition catalyst,
MnTE-2-PyP(5+) [18]. Such conditions seem to encompass opening
of the mitochondrial membrane permeability transition pore,
resulting in a collapse of mitochondrial membrane potential and
cessation of adenosine triphosphate synthesis, which in turn trigger
apoptotic/necrotic cell death [48].

Oxidative stress promotes metal mobilization from proteins by
mechanisms that include O2

•−-mediated oxidation of labile iron-sulfur
clusters, redox-dependent metal release from storage or transport
proteins (transferrin, ferritin, and ceruloplasmin), oxidative modifi-
cations of heme proteins that result in heme release and/or
degradation (myoglobin and cytochrome c), and histidine oxidation
with disruption of metal coordination sites of, e.g., CuZn and
MnSODs, among others [42].

MetalChelationandSODtoCombatOxidativeStress
Metal chelators with high affinity for iron (and copper) may be
helpful during the above-described conditions. Importantly, iron can
coordinate six ligands in an octahedral arrangement; thus, iron
chelators with the highest affinity will normally be hexadentate,
binding iron in a 1:1 ratio (chelator:iron), with one example being
deferoxamine [49]. By contrast, iron chelators that do not bind in this
ratio may be redox active and extremely cytotoxic by catalyzing free
radical generation.

It was early realized that SOD enzymes might be clinically useful
for treating conditions of cellular oxidative stress, such as those seen
during conditions of ischemia-reperfusion, and doxorubicin toxicity.
However, their use is restricted owing to their large molecular weight
and poor cellular uptake. A clinical study published as late as 2014
demonstrated no efficacy of human recombinant SOD against
doxorubicin toxicity [50]. A more successful approach is the
development of low–molecular weight SOD mimetics. Kensler et
al. [51] described anticarcinogenic activity of the first generation of a
CuSOD mimetic in 1983. They were followed by MnSOD
mimetics, particularly of the so-called porphyrin, salen, cyclic
polyamine, and MnPLED types [34]. The MnPLED type has
among other things demonstrated borderline statistical efficacy in a
small feasibility study in patients with acute myocardial infarction
going through percutaneous coronary invention [34], a procedure
known to cause severe oxidative stress. This type has also shown
efficacy against doxorubicin cardiotoxicity in mice (see below).

The SOD Mimetics MnDPDP and Calmangafodipir
[Ca4Mn(DPDP)5] as Selective Cytoprotective Agents
During the development of MnDPDP (Figure 2) as a magnetic
resonance imaging (MRI) contrast agent at the beginning of the
1990s, clinical studies showed that rapid intravenous injection into
patients caused cardiovascular effects and facial flushing. A
mechanistic study was conducted in isolated arteries with and
without endothelial cells. This study demonstrated that MnDPDP
protected endothelium-derived •NO from reacting with O2

•− [52].
The results from this study further suggested that this effect was the
result of an SOD mimetic activity of MnDPDP, which was later
confirmed by electron spin resonance spectroscopy (Figure 3). After
injection, MnDPDP is rapidly dephosphorylated to the much more
lipophilic and cell-permeable MnPLED (Figure 2). MnPLED also
possesses SOD activity, whereas ZnDPDP and free Mn2+ are deprived
of such activity (Figure 3) [53]. Paradoxically, Asplund et al. [52]
showed similar vasodilator effects ofMnCl2 as those ofMnDPDP. This
in vitro effect is presumably caused by Mn2+ complexed to phosphoric
acid and carbonic acid of the used Krebs' buffer. These metal complexes
are known to possess SOD activity. In fact, the prokaryote Lactobacillus
plantarum and related lactic acid bacteria lack SOD enzymes. In these
organisms,Mn2+ forms complexes with various organic acids, including
phosphoric acid, lactic acid, and carbonic acid [34]. However, this effect
of MnCl2 is not expected to occur under in vivo conditions in
multicellular eukaryotes.

MnDPDP and Ca4Mn(DPDP)5 (Figure 2) have in preclinical models
been shown to protect normal cells against chemotherapy-induced
toxicity without interfering negatively with the tumoricidal activity
of several chemotherapeutic drugs, including oxaliplatin [34].
Findings from a case report [54] and a feasibility study [55]
reported to the Swedish Medical Product Agency in 2010 (Table 1)
suggested that MnDPDP, through its SOD mimetic activity,
protects blood, nervous, and mucous tissues in patients during
chemotherapy with FOLFOX. Other important properties of
DPDP and its metabolite PLED are their high affinities for iron and
copper. The 10log formation constants [ 10log(KML)] of DPDP and
PLED for Fe3+are 33.5 and 36.9, respectively. The corresponding
constants of DPDP and PLED for Cu2+ are 22.1 and 21.5,
respectively [56], whereas the formation constants of DPDP and
PLED for Mn2+ are 15.1 and 12.6. Theoretically, MnDPDP,
MnPLED, and DPDP are hence expected to inhibit the iron- or
copper-driven Fenton reaction. In fact, these compounds inhibit
the iron-driven Fenton reaction in a one to one manner, that is, an
equimolar concentration of MnDPDP, MnPLED, or DPDP to
that of iron in the reaction mixture fully quenches the Fenton
reaction [57]. This finding quite clearly suggests that the resulting
iron complexes are not redox active. Hence, MnDPDP and
MnPLED, through their combined SOD mimetic activities and
iron-binding properties, are expected to be efficacious inhibitors of
cellular oxidative stress, including the above-mentioned



Figure 2. Chemical structure of MnDPDP (manganese dipyridoxyl diphosphate; generic name mangafodipir), MnPLED (manganese
pyridoxyl ethyldiamine), and Ca4Mn(DPDP)5 [tetracalcium monomanganese penta(dipyridoxyl diphosphate); calmangafodipir].
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incorporation of nitrate to the Tyr34 residue of mitochondrial
MnSOD and nitration of other proteins. Interestingly, MnDPDP
has been shown to inhibit the mitochondrial membrane perme-
ability transition pore and, as indicated in Figure 4, subsequent loss
of inner membrane potential and cell death [58].
An in vitro mouse model was employed by Towart et al. [59] to

test the cardioprotective potential of MnDPDP against doxorubicin
toxicity, seen as a decrease in contractility of an electrically paced
mouse left atrium. MnDPDP did not protect when added directly
into the organ bath. However, after having been intravenously
injected 30 minutes before the mouse was killed and the left atrium
was dissected out, 1 to 10 μmol/kg MnDPDP displayed cardiopro-
Figure 3. The proposed vasodilator mechanism for MnDPDP is illust
endothelial NO synthase (eNOS) in the innermost (endothelial) cellula
smooth muscle cells to produce increasing amounts of cGMP which c
considerable fraction of •NO reacts with superoxide (O2

•−), forming
dismutating O2

•− into H2O2 and O2. Electron spin resonance spectra
xanthine oxidase reaction in the presence of the spin trap DMPO. C
DMPO-OOH evolved rapidly (within 1 minute) toward the hydroxyl ad
panel) markedly reduced the signal intensity, indicating SOD mimetic
tective efficacy. MnDPDP was shown to be about 100 times more
efficacious than clinically available dexrazoxane, i.e., 1 μmol/kg
MnDPDP gave similar protection to that of 93 μmol/kg dexrazoxane.
Most importantly, the fully dephosphorylated metabolite of
MnDPDP, MnPLED, was about 100 times more efficacious than
MnDPDP (unpublished data). Furthermore, when added directly
into the organ bath, MnPLED but not MnDPDP protected against
doxorubicin cardiotoxicity [57]. Indirectly, these results suggested
that MnDPDP undergoes in vivo dephosphorylation before it can
exert the therapeutic effect, i.e., MnDPDP should be looked upon as
a prodrug to MnPLED. Whereas the prodrug with polar phosphate
groups is readily soluble in water, its dephosphorylated metabolite is
rated at the left [52]. Vasodilator nitric oxide (•NO) is produced by
r layer of the artery, and NO stimulates guanylate cyclase (sGC) in
ause relaxation and hence vasodilation. Under in vivo conditions, a
peroxynitrite (ONOO−). MnDPDP preserves vasodilator •NO by

are shown in the right part of the figure; O2
•− was generated in the

ontrol reaction (upper panel) revealed that the superoxide adduct
duct DMPO-OH (4 minutes). Ten micromolars of MnDPDP (lower
activity [53].



Table 1. AEs Occurring in the Placebo Group and theMnDPDP (Mangafodipir) Group According
to NCI-CTCAE Version 3 or Sanofi-NCI Criteria (No Effect = 0, Mild = 1, Moderate = 2,
Severe = 3, and Life Threatening = 4)

Placebo
(7 Patients; 18 Cycles)

Mangafodipir
(7 Patients; 20 Cycles)

Adverse, Event Gr 1 Gr 2 Gr 3 Gr 4 Gr 1 Gr 2 Gr 3 Gr 4

Neutropenia 3 1 1 1 4 1 ** 0 0
Other hematological toxicity 15 1 0 0 13 0 0 0
Neurosensory toxicity 9 0 1 0 9 0 0 0
Oral mucocitis 2 2 0 0 0 0 0 0
Nausea 7 3 0 0 9 1 ** 0 0
Vomiting 1 1 1 0 2 0 0 0
Diarrhea 0 0 0 0 8 0 0 0
Fatigue 4 2 0 0 4 0 0 0
Other AE 3*,†,§ 1 ‡ 1 ¶ 0 1 # 0 0 0
Σ AE 44 11 4 1 50 2 0 0

* Chest wall pain.
† Dyspnea.
‡ Pain in lower extremities.
§ Skin reaction (face).
¶ Ileus.
# Nasal mucositis.
** Patient received a 10% too high dose during the first FOLFOX6 cycle.
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nonpolar and lipid soluble. MnPLED, in contrast to MnDPDP, is
therefore able to enter target cells and act at the intracellular site, like
in mitochondria.

In vivo and in vitro experiments, utilizing human breast cancer cells
(MX-1) and ovarian cancer cells (A2780), suggested that cardiopro-
tection takes place without interfering negatively with the anticancer
activity of doxorubicin [57]. In vitro experiments in fact suggested the
opposite, i.e., MnDPDP, and in particular DPDP, exerted an
anticancer activity of its own. In addition to the above-described
potential use of MnPLED derivatives in anthracycline-induced
Figure 4. The proposed cytoprotective mechanisms for the MnDPD
intracellular level of O2

•− directly through its MnSOD mimetic activ
copper, and thus arrests incorporation of •NO2 into Tyr34 and Tyr7
inhibits production of highly toxic OH• radicals; and iii) it replaces en
inactivated SOD mimetic activity and preserves the NO signaling.
cardiotoxicity, preclinical studies have demonstrated that MnDPDP
protects against myelosuppressive effects of paclitaxel [32]. Further-
more, coadministration of MnDPDP with paclitaxel dramatically
improved the survival rate of mice infected with Staphylococcus aureus
[32], revealing a possible preventive effect on febril neutropenia.
Importantly, the cytoprotective effect of MnDPDP was obtained
without diminishing the anticancer efficacy. Contrary, MnDPDP was
shown to enhance the anticancer effect of oxaliplatin toward colon
cancer cells under in vitro and in vivo conditions, and it displayed a
distinct anticancer effect of its own [31,32]. The reason why
MnDPDP exerts anticancer activity is poorly understood. However,
cancer cells require more iron in order to support their increased rates
of proliferation [60]. So “iron starvation” through chelation to PLED
may explain this phenomenon.

When an MRI dose (i.e., 5-10 μmol/kg) is injected into humans or
rats, about 80% of the Mn2+ is released from DPDP or its
dephosphorylated counterparts, and only about 20% stays bound to
the chelator. Release of paramagnetic Mn2+ is in fact a prerequisite for
the diagnostic MRI properties of MnDPDP [34], whereas the in vivo
SOD mimetic activity fully depends on the intact manganese
complex [53]. Manganese is an essential as well as potentially
neurotoxic metal [61]. It has been known for many years that, under
conditions of chronic exposure to manganese, a syndrome of
extrapyramidal dysfunction similar to Parkinson's disease may
occur. The neurological symptoms correlate with accumulation of
manganese in the basal ganglia, seen as hyperintensity on a
T1-weighted MRI [61,62]. For MRI purposes and for occasional
therapeutic use, dissociation of Mn2+ from MnDPDP does not result
in an increase in T1-weighted MRI signal of the basal ganglia in
humans [63]. However, for more frequent use, as in therapeutic use,
cumulative manganese toxicity can represent a problem.
P metabolite MnPLED are schematically illustrated. i) It lowers the
ity; ii) it binds and disarms transition metals, particularly iron and
4 of mitochondrial MnSOD and cytochrome c, respectively, and
dogenous mitochondrial MnSOD that already has been irreversible
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Manganese bound to DPDP or PLED is most probably nontoxic
and is readily excreted through the kidneys [64]. A considerable part
of Mn2+ release from MnDPDP is governed by the presence of a
limited amount of free or loosely bound plasma Zn2+ [64].
Replacement of 80% of Mn2+with Ca2+, generating a compound
known as Ca4Mn(DPDP)5, is enough for binding a considerable
amount of the readily available plasma Zn2+, resulting in considerably
less Mn2+ release and retention in the brain and other organs.
Karlsson et al. [64] reported that replacement of 80% of the Mn2+

with Ca2+ more than doubles the in vivo stability of the Mn complex
and results in significantly (∼40%) less retention of manganese in the
brain compared with MnDPDP (at equimolar manganese doses) after
repeated dosing (39 doses) at more than 30 times the assumed clinical
dose (per dose) in rats. At equivalent Mn2+ doses, Ca4Mn(DPDP)5 is
significantly more efficacious than MnDPDP to protect BALB/c mice
against myelosuppressive effects of the chemotherapy drug oxaliplatin
[64], and it displayed distinct tumoricidal effects [64].

Clinical Evidence That MnDPDP Protects Against
Oxidative Stress and CIPN
In a recent feasibility study, a relatively small number of stage III
colon cancer patients were followed throughout the first 3 of 12
scheduled FOLFOX cycles [55] and randomized to a 5-minute
infusion of either MnDPDP or placebo (7 in each group). AEs were
evaluated according to the NCI-CTCAE and the Sanofi-NCI criteria.
There were four AEs of grade 3 (severe) and one AE of grade 4 (life
threatening) in four patients in the placebo group, whereas there were
none in the MnDPDP group (Table 1). Of the grade 3 and 4 events,
two were neutropenia and one was neurosensory toxicity (CIPN).
There were 16 AEs grade ≥ 2 in the placebo group, whereas there
were only 2 in the MnDPDP group. Furthermore, white blood cell
counts were significantly higher in the MnDPDP group than in the
placebo group (P b .01) after treatment with FOLFOX.
There were eight events (in four patients) of mild (grade 1) diarrhea

in the MnDPDP group but none in the placebo group (Table 1).
When MnDPDP is used as an MRI contrast agent, mild diarrhea has
been reported to occur. Interestingly, a phase III randomized trial of
adding topical nitroglycerin to first-line carboplatin chemotherapy for
advanced non–small cell lung cancer showed a statistical higher
frequency of diarrhea in the nitroglycerin group compared to the
placebo group, 23% versus 14% [65]. Both MnDPDP and
nitroglycerin increase the intracellular content of cGMP through an
NO-mediated activation of guanylate cyclase (see Figure 3), which
may stimulate intestinal secretion and hence strengthen
FOLFOX-induced diarrhea. Addition of topical nitroglycerin to
carboplatin-based chemotherapy in non–small cell lung cancer did
not offer any tumoricidal benefit.
Findings from a case report [54] and the above-mentioned

feasibility/translational study in stage III colon cancer patients [55]
suggest that MnDPDP, through its SOD mimetic activity, protects
blood, nervous, and mucous tissues in patients during chemotherapy
with Nordic FLOX/FOLFOX (oxaliplatin + 5-FU) (Table 1). Coriat
and coworkers [29] have also published promising results with
MnDPDP in patients with preexisting oxaliplatin-associated CIPN.
The case report of Yri et al. [54] described a patient who received 15

palliative cycles of oxaliplatin plus 5-FU/LV (Nordic FLOX regimen).
It suggested that MnDPDP protects against oxaliplatin-associated
CIPN. In 14 of the cycles, the patient received pretreatment with
MnDPDP. The patient received an accumulated dose of 1275 mg/m2
oxaliplatin, which is a dose likely to give cumulative CIPN symptoms.
No such symptoms were detected except during the fifth cycle, when
MnDPDPwas deliberately left out and the patient experienced an acute
grade 2 CIPN. After five cycles, the performance status for the patient
was drastically improved, and the demand for analgesics was
significantly reduced. Neutropenia did not occur during any of the
chemotherapy cycles. This patient however over 7 months received a
cumulative MnDPDP dose as high as 140 μmol/kg and showed
Parkinson's disease–like symptoms and increased MRI signal intensity
in the basal ganglia. FromdiagnosticMRI, it is known that a cumulative
dose of 15μmol/kg, corresponding to 15μmol/kgMn2+ (5 + 10), does
not cause any increase in theMRI signal (Wang et al., 1997). However,
the upper limit is not known. Karlsson et al. [55] used 2 μmol/kg
MnDPDP in three cycles. Coriat et al. [29] used 5 μmol/kg in up to
eight cycles, giving rise to a cumulative dose of 40 μmol/kg. They
reported that the mean plasma manganese content increased from
11.8 ± 5.5 nM to 19.8 ± 4.3 nM after eight cycles of MnDPDP
cotreatment, all within normal values. However, plasma manganese is
considered a weak predictor of manganese neurotoxicity. A much more
reliable predictor is T1-weighted MRI [62]. When it comes to
Ca4Mn(DPDP)5, it seems realistic to reduce the dose down to
1 μmol/kg Mn2+, which should be low enough to allow at least 15
repeated treatments without causing manganese toxicity. However, this
is a theoretical assumption that has to be proven clinically by brainMRI.

In the Coriat study, 22 cancer patients with grade ≥ 2
oxaliplatin-associated CIPN received intravenous MnDPDP follow-
ing oxaliplatin. Neuropathic effects were monitored for up to eight
cycles of oxaliplatin and MnDPDP. In 77% of the patients treated
with oxaliplatin andMnDPDP, CIPN improved or stabilized after four
cycles. After eight cycles, CIPNwas downgraded in six of seven patients.
Prior to enrollment, patients received an average of 880 ± 239 mg/m2

oxaliplatin. Patients treated withMnDPDP tolerated an additional dose
of 458 ± 207 mg/m2 oxaliplatin despite preexisting CIPN. MnDPDP
responders managed a cumulative dose of 1426 ± 204 mg/m2

oxaliplatin. The clinical findings were further backed up by relevant
preclinical tests in mice. These tests demonstrated convincingly that
MnDPDP prevented motor and sensory dysfunction [29]. As an
indicator of oxidative stress, advanced oxidized protein products
(AOPPs) were monitored both in the patients and in the mice. In mice,
serum AOPPs decreased after 4 weeks of MnDPDP cotreatment, and
serum AOPPs were lower in human responders compared with those
in nonresponders.

In opposite to MnDPDP, no preclinical data are present showing
efficacy of Ca4Mn(DPDP)5 against CIPN. However, preliminary
results from a phase II study (PLIANT) on Ca4Mn(DPDP)5
(ClinicalTrials.gov Identifier: NCT01619423) may suggest efficacy
also of this compound against oxaliplatin-associated CIPN (Pled-
Pharma's web site; Devalingam Mahalingam at the MASCC meeting
in Copenhagen 2015; and Bengt Glimelius at the ASCO meeting in
Chicago 2016). However, these results are obscured by a surprisingly
low number of grade 3 to 4 neutropenias and a seemingly lower than
expected efficacy of FOLFOX in the placebo group (Mahalingam D;
MASCC meeting in Copenhagen, June 26, 2015). The reported
ORR of 27% in the placebo group is more or less identical to what
one expects from 5-FU alone. As stated earlier in the review, addition
of oxaliplatin to 5-FU has increased the ORR from about 27% to
45% [2,8–10].

Nevertheless, there is little or nothing suggesting any major
difference in pharmacological activity between MnDPDP and

http://ClinicalTrials.gov
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Ca4Mn(DPDP)5, except that the latter has a considerably higher
therapeutic index at equivalent manganese doses [64]. The
therapeutic index of Ca4Mn(DPDP)5 probably allows use in at
least 15 cycles of chemotherapy.

Conclusion
MnDPDP, after being metabolized into MnPLED, attacks cellular
oxidative stress at three levels: 1) it lowers the intracellular level of O2

•−

directly through its MnSODmimetic activity; 2) it binds and disarms
transition metals, particularly iron and copper, and thus arrests
incorporation of •NO2 into Tyr-34 and Tyr-74 of mitochondrial
MnSOD and cytochrome c, respectively, and production of highly
toxic OH• radicals; and 3) it replaces endogenous mitochondrial
MnSOD that already has been irreversibly inactivated (Figure 4).
Through its combined MnSOD mimetic activities and iron- and
copper-binding properties, MnDPDP and Ca4Mn(DPDP)5 are
highly efficacious inhibitors of CIPN and other pathological
conditions caused by oxidative stress.
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