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Abstract: Chronic hepatitis B affects more than 250 million individuals worldwide, putting them
at risk of developing liver cirrhosis and liver cancer. While antiviral immune responses are key to
eliminating hepatitis B virus (HBV) infections, insufficient antiviral immunity characterized by failure
to eliminate HBV-infected hepatocytes is associated with chronic hepatitis B. Prophylactic vaccination
against hepatitis B successfully established protective immunity against infection with the hepatitis
B virus and has been instrumental in controlling hepatitis B. However, prophylactic vaccination
schemes have not been successful in mounting protective immunity to eliminate HBV infections in
patients with chronic hepatitis B. Here, we discuss the current knowledge on the development and
efficacy of therapeutic vaccination strategies against chronic hepatitis B with particular emphasis on
the pathogenetic understanding of dysfunctional anti-viral immunity. We explore the development
of additional immune stimulation measures within tissues, in particular activation of immunogenic
myeloid cell populations, and their use for combination with therapeutic vaccination strategies to
improve the efficacy of therapeutic vaccination against chronic hepatitis B.
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1. The Challenge of Chronic Viral Hepatitis

Hepatitis B Virus (HBV) infection affects almost one-third of the world’s population,
and in most cases, is cleared by host anti-viral immunity [1,2]. However, more than
250 million individuals suffer from chronic hepatitis B [1], which puts them in danger of
developing liver cirrhosis and liver cancer. Dysfunctional anti-viral immunity is considered
the cause of persistent viral infection with virus-specific effector immune cells lacking the
capacity to eliminate HBV infected hepatocytes, which is characterized by failure to achieve
seroconversion to anti-HBs and the establishment of broad and strong HBV-specific T cell
response [2,3]. Nevertheless, liver damage during acute and chronic hepatitis B is caused by
the host´s immune response against HBV [2,4]. This suggests that a delicate balance exists
between mechanisms promoting persistent infection of hepatocytes with HBV and the
host´s HBV-specific immune response. Along this line, spontaneous clearance of persistent
HBV infection is observed in some patients with chronic hepatitis B [5], which supports
the notion that persistent HBV infection and chronic hepatitis B may be therapeutically
targeted by strengthening HBV-specific immunity.

Currently, however, efficient direct antiviral therapies using nucleoside inhibitors
are used for treatment in patients with chronic hepatitis B, which inhibit HBV replication
but fail to induce protective HBV-specific immunity. The main reason for direct antiviral
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therapies to fail to achieve a cure from chronic hepatitis B, is the establishment of a persistent
form in HBV-infected hepatocytes, the so-called covalently closed circular DNA (cccDNA)
that serves as an extrachromosomal template for viral replication [6,7]. Despite successful
control of HBV replication by direct antiviral drugs, treatment interruption is accompanied
by re-activating cccDNA and initiation of viral replication, leading again to chronic viral
hepatitis. In contrast, chronic hepatitis C is successfully treated by direct acting antiviral
agents [8], but this sensitivity towards antiviral therapy is based on the strict requirement of
the hepatitis C virus, as an RNA virus, to continuously replicate [9]. This is not the case for
HBV, which can persist via its cccDNA without replicating at all. However, HBV cccDNA
is sensitive to the anti-viral activity of cytokines, such as interferons and lymphotoxin [10],
but these mediators fail to eliminate all HBV cccDNA from infected hepatocytes for reasons
that remain to be discovered [6,11,12]. Current direct antiviral treatment options were
recently addressed in expert reviews [13–15].

The only way to achieve control of persistent HBV infection and cure patients from
chronic hepatitis B is to eliminate HBV-infected hepatocytes or at least eradicate the HBV
cccDNA pool from the liver. Thus, an urgent medical need exists to develop novel immune
therapies to strengthen HBV-specific effector responses in order to cure patients with
chronic hepatitis B from the virus. A successful therapeutic vaccination against HBV would
also provide a cure from infection with the more pathogenic hepatitis delta virus, which
requires HBV coinfection to replicate, and against which few therapeutic options exist [16].
Furthermore, therapeutic vaccinations could prevent the occurrence of the sincere sequelae
of continuous immune-mediated liver damage during chronic viral hepatitis that can result
in liver cirrhosis and liver cancer.

2. Immunopathogenesis of HBV Infection and Chronic Viral Hepatitis

Understanding the immunopathogenesis of chronic hepatitis B is key for a rationale
development of novel immune-based therapies. HBV is a strictly hepatotropic virus that
selective targets hepatocytes and selectively replicates within hepatocytes [2]. This strict
hepatotropism of HBV is most likely one of the reasons why mounting of protective im-
munity poses particular challenges for the host´s immune response. Successful immunity
against HBV infection is characterized by induction of a strong CD4 and CD8 T cell re-
sponse, specific for many different viral epitopes and presence of effector CD8 T cells, as
well as induction of B cell immunity against HBV that is characterized by neutralizing anti-
bodies against HBV surface antigens [17–19]. In contrast, development of a persistent HBV
infection is associated with a dysfunctional immune response against HBV [2,20]. Several
factors have been associated with induction of persistent HBV infection (see Figure 1).
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First, HBV infection fails to elicit strong innate immunity and inflammation, which is
necessary for maturation of antigen-presenting cells to induce protective immunity and
for virus-specific immune effector cell populations to selectively localize to the site of
infection. Lacking pattern recognition and lacking induction of cell-intrinsic immunity by
HBV has been recognized as a major obstacle in raising anti-viral immunity [21–24], since
inflammation is required for functional maturation of antigen presenting cells to mount
protective immunity [25]. Activation of pattern-recognition pathways and induction of an
inflammatory environment is therefore likely to play an important role in the generation of
strong antiviral immunity in the liver.

Second, the restriction of HBV replication and gene expression to hepatocytes requires
cells that use endocytosis for antigen acquisition and present HBV antigens on MHC
molecules to virus-specific T cells. While antigen-uptake via receptor-mediated endocytosis
is well established for induction of MHC-II restricted CD4 T cell immunity, presentation
of endocytosed antigens on MHC-I molecules to CD8 T cells requires special competence
of the antigen-presenting cell for a process called cross-presentation [26]. Thus, only
certain professional antigen-presenting cells, such as functionally matured monocytes, can
execute this cross-presentation of antigens released from virus-infected hepatocytes [27].
Furthermore, a complex interaction between different immune cell populations in distinct
micro-anatomic niches within lymphoid tissues is required to generate antigen-specific
CD8 T cells through cross-presenting dendritic cells [28]. Overall, this is believed to cause
a failure to properly prime HBV-specific immunity, which then results in a dysfunctional
HBV-specific immune response.

Third, the liver microenvironment is known for its tolerogenic function and contributes
to down-tuning of effector T cell responses in the liver [29]. Liver-resident tolerogenic
antigen presenting cells, such as liver dendritic cells and liver sinusoidal endothelial cells
(LSECs), render CD4 and CD8 T cells dysfunctional, thereby attenuating anti-viral T cell
immunity locally in the liver [30–33]. Antigen-presentation by hepatocytes themselves lead
to clonal elimination of antigen-specific T cells and may thereby contribute to the attrition
of T cell responses [34,35]. Hepatic stellate cells engage in veto function preventing local
activation of specific T cells through professional antigen-presenting cells in the liver, and
liver macrophages may further contribute to development of T cell dysfunction [36,37].

Fourth, regulatory immune cell populations in the liver such as regulatory T cells,
but also myeloid-cell derived suppressor cells (MDSCs) are present in the liver microen-
vironment and contribute to local inhibition of T cell immunity [38–41]. Fifth, the liver
micromilieu is particularly rich in regulatory mediators, such as IL-10 or TGF-β, derived
from local immune cell populations in the liver, such as Kupffer cells, dendritic cells, or
hepatic stellate cells, and may contribute to local skewing of virus-specific immune effector
functions [42–44].

Fifth, the continuous exposure to antigen appears to be a key driver of T cell dys-
function. For experimental viral infections, such as lymphocytic choriomeningitis virus
infection, the mechanisms mediating this dysfunction of virus-specific T cells have been
described as a state of exhaustion that is determined by the exhaustion promoting transcrip-
tion factor TOX [45–48]. In chronic hepatitis B, virus-specific T cells are also dysfunctional,
but the mechanisms determining their dysfunction remain to be discovered. Recently it
was found that HBV-specific T cells in chronic hepatitis suffer from metabolic disturbances
that can affect their effector functions [49,50]. Thus, cell-intrinsic regulation of effector
function of virus-specific T cells may also contribute to the lack of immune control of HBV
infection.

Thus, a large number of immune inhibitory mechanisms operate locally in the liver
to control immune effector cell functions and will have to be taken into account when
developing novel immune therapies that aim to increase immune effector functions in
the liver. Moreover, target cell killing in the liver also seems to be subject to regulation
by target cells themselves. Expression of antigens at low levels on MHC-I molecules by
hepatocytes and a lack of MHC-II on hepatocytes unless there is significant inflammation
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protects them from effector cell killing [51], and may thus establish a further level of T cell
dysfunction in the liver. Finally, continuous exposure towards antigens expressed in the
liver for prolonged periods of time is associated with development of immune tolerance,
which includes generation of regulatory immune cell populations [52]. Taken together,
numerous mechanisms impede generation as well as execution of virus-specific effector T
cells.

Beyond alterations in T cell immunity, there are also contributions of HBV itself to
persistence of infection. As already mentioned, the establishment of the extrachromosomal
persistence form, the covalently, closed circular HBV DNA is associated with viral per-
sistence. HBV cccDNA is extraordinarily stable and may serve as template for viral gene
expression and initiate a virus rebound even long time after the active HBV replication has
ceased [6]. It remains an open question whether a shut-down of HBV gene expression upon
cytokine exposure may help infected hepatocytes to escape from killing by virus-specific
effector T cells [53]. Presentation of antigens on MHC I molecules is typically related to
ongoing gene expression and processing of defective ribosomal products for presentation
on MCH-I molecules [54,55], so the consequences of stalling HBV gene expression for sub-
sequent recognition by virus-specific effector T cells remains unclear. Furthermore, under
immune pressure HBsAg-escape mutations develop, that can contribute to the failure of
immune control against HBV infection even after vaccination [56]. Since depletion of B
cells by anti-CD20 therapy leads to reactivation of HBV infection [57], continuous virus
control by virus-specific B cells appears to be an important part of immune control of
HBV infection. However, recent studies identified broadly neutralizing antibodies that can
overcome these escape mutants and provide protection [58].

On the other hand, there is a large amount of viral antigens expressed in hepatocytes
upon active viral replication. Recent studies indicate that expression of these viral antigens
in the liver rather that secretion of viral antigens and presentation on non-hepatic antigen
presenting cells induces antigen-specific immune tolerance [59,60].

Finally, mutated viral proteins may contribute to a viral immune escape if T cell
recognition of infected hepatocytes is impaired. Although HBV is a DNA virus, it replicates
via reverse transcription allowing mutations in the viral genome. Due to the very compact
viral genome with largely overlapping open reading frames, however, most of the resulting
variants are defective and immune escape variants remain rare.

Thus, a combination of factors influences the immune response to infection with HBV,
generation of virus-specific effector T cells and elimination of HBV-infected hepatocytes. It
is worth noting that clearance of HBV in a natural host, i.e., chimpanzees, requires several
months [61,62], which is clearly distinct from the immune response to other viruses like
influenza targeting lung tissue where rapid immune responses are observed [63]. This
requirement for a prolonged time period to clear infected hepatocytes from the liver not
only after HBV, but also after HAV or HCV infection points towards particular obstacles
that have to be overcome by the host´s immune response, to mount virus-specific immunity
and eliminate virus-infected hepatocytes.

3. Strategies for Therapeutic Vaccination against Chronic Hepatitis B

Different approaches have been used to establish a therapeutic vaccination against
chronic hepatitis B. These were most often based on novel insights into the immunopatho-
genesis of HBV infection and novel technologies to improve the strengths of virus-specific
immunity. However, one of the major problems in developing immune therapies against
chronic hepatitis B is the lack of a suitable animal model that faithfully reflects all features
of HBV infection in humans [64]. Human HBV shows strict species restriction. Only chim-
panzees are susceptible for HBV infection, and important discoveries were made on HBV
infectiousness and anti-viral immune responses in this model [4,62,65], before research
was stopped for ethical reasons. While infection models exist for individual animal species
with their particular hepatitis B viruses, such as, e.g., the duck and duck hepatitis B virus
(DHBV), the woodchuck and woodchuck hepatitis B virus (WHBV), these models are
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restricted by important differences between the viruses and human HBV, with antigen
being non-compatible as well as marked differences in immune responses and a lack of
tools to study virus-specific immunity. Mice, as preferred preclinical animal models to
study immune pathogenesis, are also employed for the study of HBV pathogenesis. How-
ever, to deliver HBV into hepatocytes in a species were infection is not possible, different
strategies have been developed: first, genetic manipulation (transgenic mice expressing the
HBV genome); second, hydrodynamic injection of HBV genomes or third, viral carriers for
delivery of HBV genomes into hepatocytes [66,67]. Thus, most of our knowledge on the
immunopathogenesis in persistent HBV infection and experimental approaches targeting
particular immune mechanisms to control persistent infection have been generated in
non-optimal models of HBV infection.

Numerous clinical trials have been performed in patients with chronic hepatitis B to
explore the importance of particular concepts how to re-install protective immunity once
persistent HBV infection had established [68–70]. In prophylactic vaccines, an emphasis
is on the induction of immunity against the surface antigens of HBV in order to elicit
neutralizing anti-HBs antibodies and prevent infection. The induction of HBs-specific CD8
T cells that target and eliminate HBsAg-expressing infected hepatocytes is less important.
In contrast, in therapeutic vaccination also other viral antigens, in particular, HBcore
antigen and the viral polymerase are targeted to increase the breadth of the virus-specific
effector T cell response and a focus is on the induction of potent CD4 and CD8 T cell
responses. In general, all strategies for developing therapeutic vaccination against chronic
hepatitis B included a lowering of viral replication.

In the following, we will review the different strategies used for development of
therapeutic vaccination for chronic hepatitis B and their outcome.

4. Strengthening the Immunogenicity of Vaccination against Chronic Hepatitis B

The conceptual idea behind the strategy for therapeutic vaccination lies in the assump-
tion that a defective induction of HBV-specific B and T cell immunity is responsible for
the lack of virus clearance [69,71–73]. Numerous approaches have been taken to increase
the immunogenicity of vaccines against chronic hepatitis B, and thereby mount strong
virus-specific immunity against the surface, nucleocapsid, or polymerase antigens of HBV
that should then control HBV infection by induction of virus-specific neutralizing anti-
bodies and elimination of virus-infected hepatocytes through effector T cells. The first
attempts to establish therapeutic vaccination against chronic hepatitis B in patients were
undertaken by increasing the number of administrations of vaccines, which were originally
developed for use as prophylactic vaccines and, therefore, targeted HBsAg. Most vaccines
contain alum as adjuvant, which has been shown to involve induction of innate immunity
through still rather ill-defined pathways [74] and induces a strong Th2 bias. In an attempt
to increase immunogenicity, prophylactic vaccines were injected at different sites and
in particular intradermally, because local intradermal activation of immune responses is
considered to be superior [75]. In addition, T cell-targeted vaccines or combinations of
HBsAg and HBcAg as immunogens were investigated for their efficacy of therapeutic
vaccination [76–78]. However, all these approaches failed to achieve a cure in patients with
chronic hepatitis B [59,70,71].

The key for the success of prophylactic recombinant vaccines is the use of adju-
vants [74] that are the basis for providing signal 3 to antigen presenting cells and induction
of local inflammation and, therefore, properly prime T cell immunity. Hereby alum, by
inducing a strong Th2 bias, prevents the induction of effector T cell responses. Using other
adjuvants, in combination with particulate HBV antigens, have shown promising results at
least in preclinical models [79]. The discovery of ligands for immune sensory molecules,
such as ligands for TLR7, TLR8, TLR9, and cyclic-di-AMP as a ligand for the cGAS/STING
pathway, as well as ligands for the cytosolic RNA-recognition receptor RIG-I or MDA-5,
triggered substantial interest in their therapeutic use for chronic hepatitis B. Adjuvants
serve the purpose of triggering inflammation and, more specifically, functional maturation
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of dendritic cells, thereby increasing the strength of the immune response against recombi-
nant antigens. For instance, TLR9 is expressed on professional antigen-presenting B and
dendritic cells, and ligands of TLR9 used as an adjuvant may therefore have a positive
effect on the immunogenicity against antigens included in a vaccine [74,80]. Recently,
a new prophylactic vaccine against hepatitis B was brought to the market that includes
a TLR9-ligand as adjuvant showing superiority to alum-based vaccines [81]. It will be
interesting to see whether it will show efficacy in a therapeutic setting against chronic
hepatitis B.

Given the constant exposure of the persistently infected host to HBV antigens, in
particular high levels of circulating HBsAg, it was reasoned that application of adjuvants
might suffice to trigger HBV-specific immunity [74]. Along this line, oral delivery of TLR-
ligands, considered to lead through the portal venous drainage of the gut to delivery of
TLR-ligands to the liver, was evaluated as a treatment option for chronic hepatitis B [82,83].
Moreover, ligands for cytosolic immune sensory receptors, such as for the helicase RIG-I,
were shown to be effective in controlling experimental HBV infection [84–86]. In clinical
trials, neither control of HBV nor cure from chronic hepatitis B has been achieved using
TLR agonists so far, indicating that the application of a TLR agonist may not result in
induction of HBV-specific immunity, and triggering innate immunity and inflammation
alone may not be sufficient to overcome immune tolerance and achieve control of chronic
hepatitis B. However, alternative pattern-recognition receptor agonists triggering TLR8,
Rig-I, or STING are currently evaluated in clinical trials; it will be interesting to see the
outcome.

The choice of the immunogen in a vaccine is also of key importance. Whereas prophy-
lactic vaccines only need to elicit neutralizing antibodies directed against the HBV envelop
proteins, therapeutic vaccines most likely need to induce a broad T cell response and, thus,
should include other HBV antigens, such as HBV core and polymerase [70]. An interesting
approach identified the HBV X protein as a valuable target for vaccinations using a preclin-
ical model of persistent HBV infection [87]. The HBV X protein is expressed at much lower
levels than other viral proteins and its low abundance in the infected liver may provide a
better target for a vaccination, since high antigen expression levels of model viruses are
often associated with development of T cell exhaustion [88]. However, hepatocytes with
their low-level MHC-I expression may also fail to present any peptide from this small X
protein.

A further approach to increase immunogenicity of vaccines in the setting of chronic
hepatitis B is the development of heterologous prime-boost vaccination strategies [70]. The
combinations of adjuvanted protein-based vaccines, DNA vaccination, and vector-based
immunizations have been tested in various preclinical models of persistent HBV infections,
and have yielded promising results [89–91]. Conceptually, development of vaccines using
viral vectors to deliver HBV antigens and to elicit strong anti-viral immunity provides an
interesting approach for development of a therapeutic vaccine. Viral vectors employed for
this purpose include adenoviral vectors (mostly non-human adenoviral vectors e.g., from
chimpanzee), yellow fever virus vectors, and modified vaccinia virus Ankara (MVA)-based
vectors [89,91,92]. The combination of a protein prime followed by an MVA-boost, referred
to as TherVacB, has proven to be very successful in different preclinical models of persistent
HBV infection [59,91,93], making it an excellent candidate for a therapeutic vaccination
strategy to cure HBV. A key advantage of heterologous prime-boost vaccination is the
induction of both, CD8 and CD4 T cell responses. Since CD4 T cells are instrumental for
overcoming experimental chronic infection and have been shown to be associated with
clearance of chronic hepatitis B in patients [18,94], the concomitant induction of anti-viral
CD8 and CD4 T cell immunity may be critical for vaccine efficacy. Different combinations of
prime and boost vaccinations are currently tested in clinical trials for efficacy in overcoming
HBV-specific immune tolerance and control of chronic hepatitis B (Table 1).
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Table 1. List of current clinical trials investigating heterologous prime boost therapeutic vaccines
against chronic hepatitis B.

Vaccine Candidates Components Stage Reference

GSK3528869A
ChAd155-hIi-HBV
HBc-HBs/AS01B-4

MVA-HBV
Phase 1 NCT03866187

VTP-300
ChAdOx1-HBV

MVA-HBV
Nivolumab

Phase 1/2 NCT04778904

TherVacB
HBs and HBcore

antigen
MVA-HBV

Phase 1 (in prep)

Available online: https:
//www.thervacb.eu/

(accessed on
5 October 2021)

The necessity for induction of potent HBV-specific immunity to overcome HBV-specific
tolerance in the setting of chronic hepatitis B [2,95] may be best addressed by heterologous
vaccination strategies. Such heterologous prime-boost vaccination strategies have proven
beneficial for increasing immunity in other viral infection, such as SARS-CoV-2 [96,97].
The ongoing clinical trials will provide us with important information on the potency of
heterologous prime-boost therapeutic vaccination in patients with chronic hepatitis B.

5. Local Support for T Cell Immunity in the Liver to Increase Efficacy of Therapeutic
Vaccination

The liver has unique functions of as tolerogenic organ [2,29,71,98], and may curtail the
effector function of T cells generated by a therapeutic vaccination, once they recognize their
antigen in the liver. Such a threat of reducing the efficiency of therapeutic vaccination might
not be possible to address by increasing the immunogenicity of therapeutic vaccination,
but may require additional measures to enable effector T cells locally in the liver to control
viral replication and to eliminate virus-infected cells. Three different approaches have
surfaced over the last years that have the potential to increase the efficacy of therapeutic
vaccination

Combination of therapeutic vaccination with inhibition of co-inhibitory receptor
signaling in T cells may be an option to increase efficacy of vaccination. Expression of PD1
was shown to be increased in virus-specific T cells during persistent infection with different
viruses and blockade of PD-1 was shown to increase the effector function of HBV-specific
T cells from patients with chronic hepatitis B or in preclinical models [99–103]. However,
anti-PD-1 treatment of patients with chronic hepatitis B and hepatocellular carcinoma did
not reveal an effect of checkpoint inhibition on restoration of HBV-specific immunity and
consequent reduction in viral replication [104]. Notwithstanding this lack of an immunity-
restoring effect of anti-PD-1 therapy, the combination of therapeutic vaccination with
checkpoint inhibition may be beneficial to overcome the local tolerogenic microenvironment
of the liver, where high expression levels of PD-L1 are observed [33,105]. Currently, one
clinical trial explores the potential of an anti-PD-1 antibody in the context of therapeutic
vaccination in chronic hepatitis B patients (Table 1).

High-level antigen expression has been identified as a key factor in reducing the
efficacy of effector T cell responses [88,106] and has been suspected to play a role in
attenuating HBV-specific immunity during chronic infection [95,106,107]. Recently, we
have demonstrated that reduction of HBV-replication and gene expression through an
siRNA or shRNA approach before therapeutic vaccination in two different models of
persistent HBV infection in mice increased the efficacy of therapeutic vaccination, to
eliminate HBV-expressing hepatocytes and achieve control of persistent infection [59]. Of
note, neither induction of neutralizing antibodies reducing circulating HBsAg levels nor
siRNA/shRNA-mediated knockdown of HBV gene expression alone was able to restore
HBV-specific immunity [59]. This strengthens the notion that local inhibition of T cell

https://www.thervacb.eu/
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effector function in the liver adds a separate hurdle to T cells generated by therapeutic
vaccination to achieve control over persistent infection.

Although the liver is known for its tolerogenic function and has the capacity to curtail
T cell effector functions, strong immunity can be built in the liver against pathogens,
which seems to be strongly linked to the composition of myeloid cells in the liver [108].
In particular, replacement of tolerogenic liver macrophages (Kupffer cells), through pro-
inflammatory monocytes, is correlated to the induction of immunity in the liver [109].
Recently, a distinct population of Kupffer cells was identified that is capable of cross-
presenting hepatocyte-derived antigens to CD8 T cells upon stimulation by IL-2 and,
thereby, increase HBV-specific immunity against infected hepatocytes [110].

Importantly, the accumulation of inflammatory monocytes in the liver as a conse-
quence of TLR-induced inflammation leads to a massive expansion of T cells in the liver
within dedicated anatomic niches termed iMATEs (intrahepatic myeloid cell aggregates
associated with T cell expansion) [111]. The T cells expanding within iMATEs have potent
effector potential and are capable of rapidly eliminating virus-infected hepatocytes [111].
Such TLR-induced and myeloid cell-mediated increase in effector T cell numbers in the
liver also triggers elimination of hepatocytes expressing transgenes and establishes mem-
ory responses [112]. Recently, we have combined therapeutic vaccination and iMATE-
induction in a model of persistent HBV infection in mice. The combination of heterologous
prime-boost vaccination (HBV antigen prime vaccination followed by MVA-HBV boost
vaccination) with iMATE induction leads to increased numbers of HBV-specific effector
T cells in the liver [113]. Furthermore, it also improves the efficacy of therapeutic vac-
cination to eliminate HBV-expressing hepatocytes from the liver and clearing persistent
infection [113]. This demonstrates a synergistic activity of therapeutic vaccination followed
by local amplification of T cell immunity in the liver (see Figure 2). High numbers of
HBV-expressing hepatocytes limit the efficacy of the heterologous prime-boost therapeutic
vaccination [91]. The ability of the combination of therapeutic vaccination with iMATE-
induced T cell expansion in the liver to control infection, higher levels of HBV infection
than that controlled by therapeutic vaccination alone, further strengthens the notion that
therapeutic vaccination to generate high numbers of virus-specific effector T cells, pre-
sumably in secondary lymphoid tissues and local expansion of T cells in the liver, are
two separate mechanisms that synergize to increase the efficacy of therapeutic vaccination
against virus-infected hepatocytes in the liver.

In summary, heterologous prime-boost vaccination strategies employ synergistic prin-
ciples to increase the efficacy of vaccinations against chronic viral infections. Opportunities
for a further increase in vaccine efficacy may lay in the combination of local amplification
of vaccine-induced immune responses, such as the above-mentioned boosting of vaccine-
induced T cell immunity by increasing the strength of T cell immunity locally in the liver.
Furthermore, improvement of hepatic targeting and delivery strategies for molecules boost-
ing T cell immunity in the liver may provide further benefits for overcoming immune
tolerance during chronic inflammation.
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