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Abstract: Atrial fibrillation (AF) is a major cause of heart failure and stroke. The early maintenance
of sinus rhythm has been shown to reduce major cardiovascular endpoints, yet is difficult to achieve.
For instance, it is unclear how discoveries at the genetic and cellular level can be used to tailor
pharmacotherapy. For non-pharmacologic therapy, pulmonary vein isolation (PVI) remains the
cornerstone of rhythm control, yet has suboptimal success. Improving these therapies will likely
require a multifaceted approach that personalizes therapy based on mechanisms measured in indi-
viduals across biological scales. We review AF mechanisms from cell-to-organ-to-patient from this
perspective of personalized medicine, linking them to potential clinical indices and biomarkers, and
discuss how these data could influence therapy. We conclude by describing approaches to improve
ablation, including the emergence of several mapping systems that are in use today.

Keywords: atrial fibrillation; precision medicine; personalized therapy; machine learning; artificial
intelligence; pathophysiology

1. Introduction

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia, affecting 1–2% of the
US population [1]. The worldwide burden of AF is estimated at 30 million and is increasing
in parallel with the aging of the population and the epidemics of metabolic syndrome,
hypertension, and other various and less clear [2] risk factors. About a third of cases are
asymptomatic (silent AF), based on implanted loop recorder studies [3].

AF is defined by its typical electrocardiogram (ECG) appearance that lacks distinct
atrial activations (P waves) and shows rapid, irregular atrial waveforms (f-waves) with
irregularly irregular QRS complexes [4]. However, this definition embodies diverse pheno-
types that include, at a minimum, transient self-limited episodes of AF after a stressor (such
as thyrotoxicosis or surgery), intermittent self-limiting episodes with no clear precipitant
over a prolonged timeframe, or AF that progresses inexorably over time towards becoming
continuous in otherwise healthy individuals, and AF in tandem with sleep apnea, heart
failure, or other comorbidities. Thus, there is an urgent need to develop a framework
that separates these and other AF presentations by their pathophysiology to personalize
therapy for each patient. Recent studies applying artificial intelligence (AI) to the ECG and
other data types offer such a foundation for computational phenotypes that could guide
therapy [5,6].

In this review, we attempt to synthesize AF mechanisms from the perspective of
personalized medicine, covering bench to bedside discoveries at cell, organ, and patient
levels [7,8]. The ultimate synthesis of the mechanisms to guide patient care will require
clinical integration, potentially assisted by decision support systems such as machine
learning models (Figure 1).
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Figure 1. Patient-focused mechanistic integration to guide personalized atrial fibrillation (AF) management. Clinical 
presentation alone is suboptimal to guide care, but provides some clues to mechanistic subtypes. Phenotypes can be re-
fined by clinical testing and invasive studies. Ideally, precision phenotypes that integrate mechanisms across multiple 
biological scales, including biomarkers of omic risk, electrical and structural remodeling, and continuous data streams 
from wearables, may enable personalized AF therapy. This may be facilitated by tools such as machine learning. 

2. Risk Factors Provide Mechanistic Clues 

AF is typically subdivided into paroxysmal and non-paroxysmal (including persis-
tent, long-standing persistent, and permanent AF). Paroxysmal AF (PAF) is defined as 
self-terminating episodes lasting <7 days, persistent AF (PsAF) as episodes that last be-
tween 7 days to 1 year, and long-standing persistent AF as continuous AF lasting longer 
than one year [9]. While clinically useful, patients grouped by these detected AF episode 
durations overlap considerably in their actual AF burdens on implanted monitors [10] and 
their response to drug or ablation therapy [11–15]. Thus, these AF definitions only mod-
estly separate the mechanisms. Non-modifiable risk factors for AF include age, sex (AF is 
more common in males), and genetics [16]. Potentially modifiable risk factors include met-
abolic disorders and obesity [17], obstructive sleep apnea [18], alcohol use [19], vigorous 
endurance exercise [20], sleep deprivation [21], and risk factors from the Framingham 
Heart Study, namely, hypertension, congestive HF, coronary artery disease, valvular 
heart disease, and diabetes mellitus [22,23].  

While the existence of these comorbidities influences the risk for stroke and the need 
for anticoagulation, they do not substantially alter AF management. Clinical scores such as 
CHA2DS2-VASc and HATCH only modestly predict incident AF [24–27], outcomes from 
ablation [28,29] and, in fact, even risk for stroke [30]. Weight loss as a lifestyle intervention 
can reduce the symptoms and severity of AF [31]; however, this is less clear in patients with 
diabetes mellitus [32] or those with paroxysmal AF undergoing ablation [33]. 

3. Pathophysiology of AF at the Genetic Level 
It is well established that individuals with familial AF and a first-degree relative with 

AF have an increased risk for incident AF [16]. This risk likely comes from two mecha-
nisms. First, rare monogenic mutations in channels and gap junction proteins with large 
effect sizes occur in families with AF [34] and are more common in early-onset AF [35]. 
This includes germline mutations that pass to descendants as well as somatic mutations. 

Figure 1. Patient-focused mechanistic integration to guide personalized atrial fibrillation (AF) management. Clinical
presentation alone is suboptimal to guide care, but provides some clues to mechanistic subtypes. Phenotypes can be refined
by clinical testing and invasive studies. Ideally, precision phenotypes that integrate mechanisms across multiple biological
scales, including biomarkers of omic risk, electrical and structural remodeling, and continuous data streams from wearables,
may enable personalized AF therapy. This may be facilitated by tools such as machine learning.

2. Risk Factors Provide Mechanistic Clues

AF is typically subdivided into paroxysmal and non-paroxysmal (including persistent,
long-standing persistent, and permanent AF). Paroxysmal AF (PAF) is defined as self-
terminating episodes lasting <7 days, persistent AF (PsAF) as episodes that last between
7 days to 1 year, and long-standing persistent AF as continuous AF lasting longer than one
year [9]. While clinically useful, patients grouped by these detected AF episode durations
overlap considerably in their actual AF burdens on implanted monitors [10] and their
response to drug or ablation therapy [11–15]. Thus, these AF definitions only modestly
separate the mechanisms. Non-modifiable risk factors for AF include age, sex (AF is
more common in males), and genetics [16]. Potentially modifiable risk factors include
metabolic disorders and obesity [17], obstructive sleep apnea [18], alcohol use [19], vigorous
endurance exercise [20], sleep deprivation [21], and risk factors from the Framingham Heart
Study, namely, hypertension, congestive HF, coronary artery disease, valvular heart disease,
and diabetes mellitus [22,23].

While the existence of these comorbidities influences the risk for stroke and the need
for anticoagulation, they do not substantially alter AF management. Clinical scores such as
CHA2DS2-VASc and HATCH only modestly predict incident AF [24–27], outcomes from
ablation [28,29] and, in fact, even risk for stroke [30]. Weight loss as a lifestyle intervention
can reduce the symptoms and severity of AF [31]; however, this is less clear in patients
with diabetes mellitus [32] or those with paroxysmal AF undergoing ablation [33].

3. Pathophysiology of AF at the Genetic Level

It is well established that individuals with familial AF and a first-degree relative with
AF have an increased risk for incident AF [16]. This risk likely comes from two mechanisms.
First, rare monogenic mutations in channels and gap junction proteins with large effect sizes
occur in families with AF [34] and are more common in early-onset AF [35]. This includes
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germline mutations that pass to descendants as well as somatic mutations. When identified,
such features motivate family screening to identify early-onset AF [35]. Second, common
variations in a network of over 100 genes now identified from genome-wide association
studies (GWAS) confer a smaller, yet additive, risk for AF [36]. However, these currently
known genetic variants do not readily separate AF phenotypes nor explain the success
from therapy [37]. It is hoped that a wider application of next generation sequencing,
enhanced AF monitoring using mHealth technology, mechanistic studies focusing on gene
networks, and machine learning to integrate multiomics data may, in the near term, reveal
genomically informed phenotypes that guide patient management [38].

4. Pathophysiology for AF at the Cellular Level

Several cellular mechanisms for AF have been described at the electrical, structural,
and autonomic levels, although few biomarkers have been defined to identify which is
operative in any one patient. In general, AF is triggered and sustained due to several forms
of remodeling (Figure 2).
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Figure 2. Progression of atrial fibrillation from a pulmonary vein–focused disease to a non-pulmonary vein–focused dis-
ease. Early AF is initiated by triggers near the pulmonary veins (PVs), that are exacerbated by stretch, inflammation, and 
other factors. The remodeling of electrical, structural, and neural elements can increasingly be measured in patients. Late 
AF is characterized by substrates that maintain AF, which are often located outside the pulmonary veins, and likely in-
volve an interplay between electrical and structural components. Bottom right figure is reproduced with permission from 
Marrouche et al. [39]. 

 

 

 

Figure 2. Progression of atrial fibrillation from a pulmonary vein–focused disease to a non-pulmonary vein–focused
disease. Early AF is initiated by triggers near the pulmonary veins (PVs), that are exacerbated by stretch, inflammation,
and other factors. The remodeling of electrical, structural, and neural elements can increasingly be measured in patients.
Late AF is characterized by substrates that maintain AF, which are often located outside the pulmonary veins, and likely
involve an interplay between electrical and structural components. Bottom right figure is reproduced with permission from
Marrouche et al. [39].

4.1. Electrical Modeling

Electrical remodeling in AF patients is indicated by altered atrial refractory periods
due to changes in Ca2+ currents and outward K+ currents [40,41], and conduction slowing
from an altered expression and the localization of connexins between myocytes [42]. These
factors interact with structural remodeling (see below), ischemia, stretch, and autonomic
stimuli to facilitate ectopic triggers from the PVs and other regions, and may maintain
AF by promoting re-entry or focal beats. These mechanisms explain the success of phar-
macotherapy in some patients to block Na+ (class I agents), K+ (class III agents), or Ca2+
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mechanisms (class IV agents) in AF. It is unclear, however, how best to use the knowledge
regarding these mechanisms to guide optimal pharmacotherapy in any one individual.

Abnormal calcium signaling is a well-established mechanism in AF. Abnormalities in
subcellular Ca2+-dependent signaling and in Ca2+/calmodulin-dependent protein kinase II
(CaMKII) activity can cause triggered ectopy [43] and affect the calcium (ICa) current, which
alters atrial refractory periods. Spatial heterogeneities in calcium homeostasis creates a
substrate for action potential duration (APD) alternans, wavebreak, and AF [44,45]. L-type
calcium channel antagonists have a relatively modest impact on suppressing AF, although
they have been shown to reduce AF in some scenarios, such as after cardioversion [46].
Inhibitors of CaMKII are being studied as potential antiarrhythmic interventions in AF [47].

Cardiac nitroso-redox imbalances are increasingly linked to AF. This may represent
the regional uncoupling of cellular nitric oxide synthase and the production of reactive
oxygen species that modulate the signaling pathways. The oxidation of CaMK-II via
angiotensin-II increases Ca2+ leak from the sarcoplasmic reticulum that increases AF
susceptibility in mice [48]. The atrial-specific upregulation of small non-coding RNAs may
disrupt neuronal nitric oxide signaling, shorten refractoriness, and predispose individuals
to AF [49]. These pathways are being investigated as novel therapeutic targets. General
anti-oxidant therapies such as vitamin C and E have not been effective in suppressing
AF in randomized trials [50]. Oxidative stress in epicardial adipose tissue may be the
mechanism linking obesity with AF and has been shown to cause atrial fibrosis and
predispose individuals to AF [22,51].

Abnormal atrial metabolism is a novel mechanistic cascade, which may operate in AF
due to rapid atrial rates for prolonged periods of time. Each sinus rhythm beat expends 2%
of myocardial adenosine triphosphate (ATP) stores. This mechanism may explain the link
between AF and conditions which impact atrial metabolism, including diabetes mellitus,
obesity, heart failure, and thyroid abnormalities. Such abnormalities may in turn drive
abnormalities in calcium homeostasis, abnormal nitroso-redox state, and electrical and
structural remodeling [52]. Therapy should address each of these identified targets, but
other specific therapies are currently unclear.

4.2. Structural Remodeling

Several structural abnormalities are observed in patients with AF (Figure 2), although
it is unclear to what extent these are a cause or effect of AF. In experimental models, AF
can be exacerbated by structural remodeling in the form of atrial enlargement, fibrosis,
or epicardial fat accumulation. Conversely, AF can accelerate the progression of atrial
dilatation and fibrosis.

Left atrial (LA) dilatation is the most clearly identified form of structural remodeling
in patients, and is independently correlated with disease progression and outcome [53–56].
Intriguing GWAS studies have recently identified genetic loci for atrial dilatation [57].
A smaller LA volume index was associated with a lower risk for AF recurrence in the
CABANA trial of ablation or pharmacotherapy [58]. Increasing data implicates right atrial
enlargement in conferring a worse prognosis after ablation or cardioversion [59,60]. Atrial
enlargement provides more tissue for disordered wavelets or drivers, and also correlates
with the presence of fibrosis [61]. The lower incidence of AF in African Americans and
Asians compared to Caucasians is associated with the smaller size and altered geometry of
the left atrium [62] but, again, it is unclear if this is cause or effect.

Fibrosis is an intensely studied component of atrial structural remodeling, which has
been shown in autopsy studies to co-migrate with the presence of AF rather than age
per se [61]. Fibrosis introduces heterogeneities in electrical repolarization and conduction,
which can facilitate multiple wavelet re-entry or anchor driver regions in optical mapping
studies of human AF [63]. It remains unclear how best to quantify fibrosis clinically,
although groups have used signal intensity on gadolinium-enhanced magnetic resonance
imaging [64] and low-amplitude electrograms in electrophysiology study [65].
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Pericardial fat comprises epicardial adipose tissue (EAT), which lies between the vis-
ceral pericardium and the epicardium, and paracardial adipose tissue, which lies outside
the visceral pericardium. EAT may secrete adipokines, inflammatory cytokines, and reac-
tive oxygen species leading to fibrosis [66]. In the Framingham Heart cohort of 3217 partic-
ipants, the pericardial fat volume quantified by computed tomography was independently
associated with AF. EAT volume is associated with incident persistent AF, with recurrent
AF after cardioversion, and potentially with recurrent AF after ablation [67,68]. Although
show salutary effects on AF from weight loss have been shown in animal models [69],
and left atrial adipose tissue attenuation is associated with human AF recurrence [70],
further studies are needed. Weight loss can reduce the symptoms and severity of AF in
patients [31], although this was not shown in the LOOK-AHEAD trial of 5067 diabetics [32],
or in the recent SORT-AF trial of 133 patients undergoing ablation [33].

4.3. Autonomic Remodeling

The heart is richly supplied by the parasympathetic nervous system (via the vagus
nerve) and by the cervical sympathetic chain. In animal models, autonomic modulation has
been shown to produce early or late after-depolarizations that create triggers or sustain AF.
Clinically, the ablation of ganglionated plexus regions has had mixed success in eliminating
AF [71], but there has been some success in ablating the renal autonomic ganglia [72].
Another approach is to non-invasively apply low-level vagal nerve stimulation to the
tragus of the ear to modulate autonomics rather than denervate the heart [73,74]. Stimulus
strengths lower than those which slow the sinus node were shown to modestly reduce AF
burden in patients with paroxysmal AF in the TREAT-AF trial [73].

5. AF Pathophysiology within the Heart

Identifying the locations of AF mechanisms in the whole heart could enable the spatial
targeting of ablation, surgical therapy, pacing, or novel modalities such as external beam
irradiation [75]. The recent Early Treatment of Atrial Fibrillation for Stroke Prevention Trial
(EAST) Atrial Fibrillation Network (AFNET)-4 trial showed that the early maintenance of
sinus rhythm reduces major adverse events [76]. Ablation is more effective at maintaining
sinus rhythm than pharmacologic therapy [11], but it needs to improve. Briefly, the
success of ablation focused on pulmonary vein isolation (PVI) at 12–18 months ranges from
50–60% for patients with persistent AF [77] to 65–75% for those with PAF using state-of-
the-art contact sensing and cryoablation technologies [11,15,78]. The complex physiology,
structure, and innervation of PVs may explain their contribution to AF, one that likely
extends beyond PVs as source of ectopic triggers [79]. A substantial number of patients
have success after AF ablation despite PV reconnection, while many patients with fully
isolated PVs have recurrent AF [80–83]. The identification of additional spatial regions to
modify in patients who fail PVI is thus of the utmost importance.

5.1. Triggers

AF commences from sinus rhythm through triggers, typically premature beats, as
do other supraventricular arrhythmias. Unlike other arrhythmias, AF triggers have a
predilection for the pulmonary vein regions of the left atrium. Once initiated, AF is
maintained by a series of mechanisms which are less well defined, but again likely
comprise electrophysiological, structural, and autonomic factors in each individual
patient (Figure 2).

Haïssaguerre et al. reported in 1998 that ectopic impulses near the PVs can trigger
paroxysmal AF [84]. Myocardial sleeves within PVs [79,85–88] are the source for such
ectopy, which may be facilitated by the transient factors of stretch, ischemia, or autonomic
imbalance [86,89–91]. Triggers from other areas (non-PV triggers) can arise from diverse
regions, including the superior vena cava, coronary sinus, left atrial appendage, ligament
of Marshall, crista terminalis, and the left atrial posterior free wall, and may reflect any
of the above mechanisms [85,92–95]. Unfortunately, beyond the PVs, no single trigger
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site is dominant; for instance, the large multicenter adjunctive-MAZE (aMAZE) trial
recently showed that isolation of the left atrial appendage did not convey benefit over PVI
alone [77,96].

5.2. Which Triggers Initiate AF?

Relatively little research has investigated why some ectopic beats initiate AF while
others do not. As an analogy, premature atrial contractions (PACs) that initiate AV nodal
re-entrant tachycardia exploit the relative atrial refractoriness in fast versus slow AV nodal
tissue. Our group used monophasic action potentials to study refractoriness (similar to
ERP) at the PV antra, other left atrial sites, and right atrial sites in patients with and without
AF. We found that PACs initiated PAF if they arose near sites where the restitution slope
(rate of change with altering rate) of action potential duration (APD) >1. Conversely, PACs
at sites with an APD restitution slope <1 did not initiate PAF. Intriguingly, patients with
persistent AF typically showed a APD restitution slope <1 near PVs, while those with
paroxysmal AF typically showed a APD restitution slope >1 near PVs. This provides one
explanation for why the PVs are less critical in persistent AF [97]. Further work has shown
that rapid atrial rates unmask abnormalities in calcium handling that may lead to APD
alternans [98,99], regional conduction slowing, and AF onset [100]. Others have shown
that AF causes electrical remodeling with longer effective refractory periods and slower
conduction, predominantly in the PVs, which begets AF [101]. Together, these studies
explain why beta-blockers, which ameliorate autonomic influences, slow the heart rate,
and flatten APD restitution [102], may prevent AF in some patients [103]. They may also
motivate the role of class I agents, which slow atrial conduction [104].

5.3. Mechanisms for the Maintenance of AF Once Initiated (Substrate)

There are different schools of thought regarding how AF is maintained once started.
The central debate is whether AF is sustained by localized regions in the atria, which would
potentially be amenable to ablation, or by spatially non-localized processes. This has pivotal
implications for guiding ablation. It is now widely recognized that AF is not spatially
uniform within human atria, with marked differences in regional spatial disorganization,
rate gradients, spectral gradients between atria, and within each atrium [105–118]. The
debate has shifted to the significance of these non-uniformities, and if and how they may
be used to guide ablation (Figure 2, right panel).

The multiwavelet theory posits that fibrillatory wavelets in AF self-replenish due to
the collision between unstable spiral waves and wavebreak. This could be facilitated by
factors including transmural dissociation between epi- and endo-myocardium [119,120]
and percolation theory [121]. This theory was supported in early computational studies
by Moe et al. [122] and experimentally by Allessie et al. [123]. Since this theory does not
posit any preferred regions of interest, therapy would require widespread debulking of the
atrium to be effective.

Driver theory posits that fibrillatory wavelets in AF are generated, at least in part, by
localized regions, i.e., “drivers” that may represent different mechanisms. Focal activity
or re-entrant activity, the two predominant electrophysiological mechanisms, have been
demonstrated as being AF drivers in several studies. Rotational circuits in AF (also termed
“rotors”) are sustained by re-entry around an unexcited, yet excitable, core activating too
rapidly for the surrounding tissue to keep up, resulting in wavebreak and fibrillatory
conduction, as posited and demonstrated by Jalife et al. [124–126]. Re-entrant drivers have
been demonstrated by optical mapping in human AF [127]. Focal activity has also been
shown to drive AF in animal models and patients [128]. AF drivers could be marked by
rapid rate or high dominant frequency [111,129,130]. Less defined localized mechanisms
include regions of scar that anchor fibrillatory wavelets [131,132], localized autonomic
innervation sites [133], and others.

Studies should move towards defining the regions of the atrium that are critical to
AF, even if they are sometimes obscured. This would circumvent the uncertainties over
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whether a mapping epoch of AF is representative of all epochs of AF, and so on. An
analogy is the routine ability to detect and interpret coronary stenosis in patients without
angina during the procedure. Potential solutions may include, in patients with specific
genomic or clinical profiles [36], the identification of sites of conduction slowing in sinus
rhythm and/or rapid pacing [105], sites of scar [39], and potentially sites of abnormal
repolarization [98] or abnormal electrogram characteristics.

5.4. Clinical Mapping of Driver Regions

Clinical interest in AF drivers is motivated, in part, by AF drivers identified by optical
mapping in human hearts, by clinical observations that limited ablation often terminates
persistent AF before PVI is achieved, and by data that AF shows spatial non-uniformities.
An increasing variety of tools and methods are available in 2021–2022 to map AF and
identify potential drivers. These methods differ in whether signals are recorded by contact
or non-contact electrodes, whether the atria are mapped globally or in small regions
(locally), and how the signals are processed (Figure 3). It is thus rather surprising, although
reassuring, that these divergent systems show many similarities in AF maps: ~3–5 localized
regions within disordered AF, showing orderly activation in focal or rotational patterns, in
patient-specific locations in either atrium, often outside the pulmonary veins and where
ablation can impact or terminate AF in at least some patients.

We summarize the reported AF mapping methods based on whether their primary
recording approach is global (panoramic) or small field of view (and hence sequential) in
the atria. We also compare mapping systems based on whether they use contact electrodes,
which are the gold standard, or non-contact recordings, such as charge density mapping or
body surface mapping. These methods are summarized in Figure 3, separated into contact
and non-contact approaches.
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Figure 3. Several mapping systems for atrial fibrillation are now available to guide ablation. Each modality localized regions,
typically 3–5 per patient in both atria, that are sufficiently stable in space, although intermittent in time, such that localized
ablation may be effective. FIRM shows focal and rotational sites by activation (and phase) annotation. Electrographic flow
indicates vectors (here of a rotational site). Cartofinder shows focal (shown) or rotational sites. STAR mapping shows the
earliest sites (in warm colors). RADAR shows composite conduction vectors (rotational site shown). Non-contact charge
density maps from a non-contact ultrasound-based catheter (illustrated) indicate rotational (shown), focal, or localized
irregular activity patterns. ECGI and body surface mapping may reveal rotational (shown) or focal sites using body surface
electrodes in proprietary configurations (illustrated for CardioInsight). See text for details and clinical results.
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5.5. Contact Mapping
5.5.1. Global or Panoramic Mapping

a. Focal Impulse and Rotor Modulation (FIRM) is a prototypical system that maps
AF in order to guide ablation. FIRM maps widely within the atria using 64 pole baskets
(also used by other systems below), interpreted by activation and phase mapping, that
were filtered algorithmically by electrogram features trained to action potential and
conduction velocity studies in patients (Rhythmview, Abbott, IL, USA). This approach
revealed ~3–5 focal or rotational drivers in each patient, with two-thirds in the left atrium
and one-third in the right atrium. Drivers were intermittent yet relatively stable in space for
prolonged periods of time. The results of FIRM are ~80% concordant with the concurrent
optical mapping of AF in explanted human atria [127], with promising results by targeted
ablation in meta-analyses [128,134,135]. The pivotal trial of this approach (REAFFIRM)
showed no difference between PVI and PVI plus driver ablation on intention-to-treat
analysis. However, a high number of cross-overs between limbs (~50%) diluted its power.
On-treatment analysis revealed 77.8% freedom from all atrial arrhythmias by PVI plus
driver ablation versus 65.5% for PVI (p = 0.08) at 1 year. This hypothesis-generating
result has motivated several techniques to map AF. While studies using FIRM included
control against PVI alone, reports of newer techniques to date have mostly been single
limb. Randomized controlled trials of these approaches are ongoing. Several improved
algorithms have been proposed using existing forms of global contact mapping.

b. Electrographic flow mapping uses similar panoramic basket catheter recordings,
instead analyzed using the Horn–Schunck optical flow algorithm to calculate the average
electrical flow of propagation of action potentials that is proposed to be resistant to noise
and artifacts [135]. Applied retrospectively to FIRM data, the approach has been used
to identify FIRM regions that may be of higher or lower importance, including sites
where targeted ablation terminated AF [136]. The commercially available system, Ablacon
(AblamapTM, Ablacon Inc. Wheat Ridge, CO, USA), is currently undergoing prospective
evaluation to guide AF ablation [137].

5.5.2. Local Contact Mapping, i.e., Small Regions Mapped Sequentially

a. Spatiotemporal dispersion mapping identifies areas of stable electrogram patterns
across the splines of a high-density catheter (Pentaray, Biosense-Webster, Diamond Bar, CA,
USA) that span the AF cycle length and represent the electrogram fingerprints of nearby
rotational drivers. About 40% of the patients had dispersion areas in the right atrium [138].
These areas were higher in persistent AF than in paroxysmal AF. Targeting these drivers
for ablation enabled a 95% acute termination rate and 85% freedom from AF at 18 months
in a diverse AF population (paroxysmal AF had better acute and long-term outcomes than
long-standing persistent AF) [138,139].

b. Stochastic trajectory analysis of ranked signals (STAR) analyzes either global
recordings from basket catheters or localized signals from multiple catheters to identify
regions in AF that most often precede the activation of the neighboring areas. This is
done by creating a statistical model from hundreds of activations, ranking the regions
of the atrium by the amount of time that their activations precede those of the adjacent
regions. Per patient, 2.6 ± 0.8 early sites of electrical activity (ESA) were identified, 73.8%
of which persisted after PVI. One-fourth of the patients (8/32) underwent right atrial
mapping, of whom three had one ESA each. Ablation of all sites lengthened cycle-length
by ≥30 ms [140]. ESAs resulting in AF termination were more likely to be identified on
both pre- and post-PVI maps than on those associated with cycle length slowing (23 of
24 vs. 16 of 49; p < 0.001). At 12 months follow-up, 80% of these PsAF patients were free
from AF/AT [140].

c. Real-Time Electrogram Analysis for Drivers of Atrial Fibrillation (RADAR): using
the coronary sinus as a reference, this system sorts and compiles electrograms recorded
in small regions using a standard mapping catheter. An elegant approach bins localized
recordings at several hundred locations with a similar coronary sinus electrogram pattern
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into one global map to calculate 3-D conduction vectors, then a driver density map. This is
repeated for all observed coronary sinus patterns. Multiple maps are fused probabilistically
based on the repetition of rotational or focal drivers at the border of low-voltage areas
to highlight putative AF drivers, which are targeted for ablation. A total of 5% of de
novo and 23% of redo ablation patients had right atrial drivers in this study, with an
average of 2.5 drivers per patient [141]. Initial results from ablation using this approach in
a population of 64 patients showed 74% freedom from arrhythmias on/off drug (and 68%
off drug) at 13 months follow-up [141].

5.5.3. Mixed (Both Local and Global)

a. Cartofinder uses combined unipolar and bipolar electrogram annotation to construct
high-density activation maps using either a panoramic basket catheter [142] or a high-
density localized catheter (Biosense-Webster, CA, USA) in recent series [143]. Focal drivers
are more common with this approach than rotational drivers, with 82% reproducibility, of
which 55% following PVI, motivating the need to ablate areas beyond PVI [142]. About 7%
of focal and 4% of rotational activations were seen in the right lateral area (including the
right atrium) with this approach [143]. Ablating these areas was associated with higher
acute termination rates than PVI alone (75% vs. 38%, p = 0.006) [143]. However, 47% of
patients undergoing such ablation recurred on median follow-up of 531 days [144].

5.5.4. Non-Contact Mapping

a. Non-contact charge density mapping: this approach is based on the physical
principle that the membrane charge layer is the true source of the cardiac field, and
therefore, the calculated charge density provides the most accurate localization of drivers.
Mapping is done with a specialized non-contact catheter with 48 ultrasound emitters and
electrodes. The ultrasound emitters are used in real time to generate a 3D anatomy by
rotation of the assembly in the center of the atrial chamber, and unipolar electrograms
(150 k s−1) acquired by the electrodes are used to calculate the charge density at fixed times
using a governing Poisson formulation. This is displayed as a movie on a dedicated console
(Acutus Inc, Carlsbad, CA, USA) [145,146]. With caveats that validation against contact
electrograms may be modest in AF, especially in larger atria [147], the system identifies
localized rotational activity, focal beats, and localized irregular activity in AF. Ablation at
these areas has shown 72.3% freedom from AF at 12 months with an index procedure that
combined AF trigger mapping and ablation with PVI [148].

b. Electrocardiographic Imaging (ECGi): using an inverse solution to reconstruct
biatrial unipolar electrograms from torso potentials acquired using a 252-electrode surface
vest (ECVUE, Cardioinsight, Medtronic, Palo Alto, CA, USA) and a non-contrast thoracic
computed tomography scan, activation maps are computed using the traditional unipolar
electrogram intrinsic deflection-based [(−dV/dT) max] method. Movies of activation
and/or phase are then used to show “driver domains” biatrially, which can then be used
to guide ablation to reduce the complexity of AF to atrial tachycardias. Of all drivers,
28% were found in the right atrium in the AFACART study [149]. This approach has
been associated with higher freedom from AF compared to historical stepwise ablation
cohorts [150], although with up to a 50% recurrence rate of atrial tachycardia [149].

6. Conclusions

AF can progress from a disease with sporadic episodes, relat to mechanisms near the
pulmonary veins, to a persistent disease encompassing mechanisms at genetic, cellular,
organ, and patient levels. This argues strongly against the use of “one size fits all” therapies
which, indeed, have had modest success in clinical trials. To personalize ablation, it seems
increasingly necessary to map AF in each patient to identify the non-stereotypical targets.
Contemporary AF mapping tools must be improved to realize this goal, although several
approaches show promise. To personalize therapy more broadly, it is necessary to consider
the nuanced relationship between the clinical, demographic, metabolic, and genomic mech-
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anisms for each patient. Future tailored approaches may integrate mechanistic markers at
these biological levels, which could be achieved using machine learning to develop indi-
vidualized models of AF onset, progression, and response to therapy. This exciting goal for
precision medicine is increasingly tractable, and we look forward to further developments
in this field.
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