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Abstract: Industry 4.0-based human-in-the-loop cyber-physical production systems are transforming
the industrial workforce to accommodate the ever-increasing variability of production. Real-time
operator support and performance monitoring require accurate information on the activities of
operators. The problem with tracing hundreds of activity times is critical due to the enormous
variability and complexity of products. To handle this problem a software-sensor-based activity-time
and performance measurement system is proposed. To ensure a real-time connection between
operator performance and varying product complexity, fixture sensors and an indoor positioning
system (IPS) were designed and this multi sensor data merged with product-relevant information.
The proposed model-based performance monitoring system tracks the recursively estimated
parameters of the activity-time estimation model. As the estimation problem can be ill-conditioned
and poor raw sensor data can result in unrealistic parameter estimates, constraints were introduced
into the parameter-estimation algorithm to increase the robustness of the software sensor.
The applicability of the proposed methodology is demonstrated on a well-documented benchmark
problem of a wire harness manufacturing process. The fully reproducible and realistic simulation
study confirms that the indoor positioning system-based integration of primary sensor signals
and product-relevant information can be efficiently utilized in terms of the constrained recursive
estimation of the operator activity.

Keywords: recursive estimation; performance monitoring; indoor positioning system; paced
conveyor; early warning systems

1. Introduction

In the age of digital transformation, human operators are still applied in manufacturing processes.
The Operator 4.0 concept aims to create human-cyber-physical production systems (H-CPPS) that
improve the abilities of the operators’ thanks to the dynamic interaction between humans and
production systems [1]. Smart sensors are key components of CPPS solutions [2]. Model-based
production control and performance monitoring require accurate information concerning the activity
times of the operators. Handling human factors is a challenging problem in terms of both cellular
manufacturing [3] and human-robot interaction [4]. Usually operator activity is monitored by computer
vision-based motion detection systems and Radio Frequency IDentification (RFID)-based object
tracking [5]. Context-aware systems require unobtrusive sensors to track each step of the performed
task and present the worker with the information needed at any given moment [6]. As wearable
sensors are becoming more common, their utilization is also becoming more attractive [7]. However,
hand motion-based activity recognition is still challenging [8] and requires the application of advanced
machine learning algorithms [9]. As this brief overview shows as well, the tracking of operator activity
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is a difficult, highly infrastructure-demanding task which should utilize information stream fusion
approaches to improve the robustness of the algorithms [10].

Tracing hundreds of primary activities is critical due to the enormous variability and complexity
of products. As every operator performs sequentially a specific set of actions over a period of time,
our goal is to develop a sensor system that continuously estimates the time consumption of these
elementary activities. We model the time consumptions of these actions by activity time models and
compare the estimated activity times to the performance of operators and generate early warnings
when their productivity decreases.

For the cost-effective and robust measurement of assembly times, sensors were developed to
record the timestamps related to the activity when the components are pushed into the fixtures by
operators. As the activities of operators depend on the type and number of the built-in components,
the production flow is tracked by an indoor positioning system (IPS). For the localization of the products
and identification of the status of the conveyor system, Ultra-Wide band (UWB) IPS technology is
applied with its low energy demand for transmitting information over a broad bandwidth (>500 MHz)
and its accuracy with the range of 30–50 cm, which is significantly better than the one-meter uncertainty
of Bluetooth Low Energy (BLE)-based solutions [11,12].

To integrate measurements originating from the IPS, a varying number (10–100) of active
or passive fixture sensors, and other information sources of the production management system,
a multi-sensor data fusion (MSDF) algorithm has been developed. Multiple sensors provide
redundancy enabling the robust recursive estimation of the unmeasured primary activity times of the
operators. To constrain the model parameters to lie within a reliable region and incorporate important
a priori knowledge concerning the activity times, the estimated parameters were optimally projected
on to a set of linear constraints by quadratic programming [13]. This central estimation enhances the
confidence of the nominal model which improves the performance of fault detection based on the
reconciliation of the local measurements.

The development of the proposed fault-detection algorithm is motivated by the analysis of
an industrial wire harness manufacturing process which is a typical complex modular product
manufacturing system [14,15]. To ensure our results are fully reproducible, only openly available
information on wire harness manufacturing technologies was utilized during the development of the
realistic case study. To stimulate further research, the resultant algorithm of the developed model of
the manufacturing system and the details of the products and sensor placements are publicly available
on the website of the authors (https://www.abonyilab.com/soft-sensors).

The remaining part of the paper is structured as follows. The developed IIoT-based sensor
system is shown in Section 2. The applicability of the proposed activity-time estimation algorithm
is demonstrated in Section 3. Based on the findings and discussions reported there, conclusions are
drawn in Section 4.

2. Software Sensor for Activity-Time Monitoring

In the present section, first the conveyor and the modular production systems are characterized,
then the fixture sensors and the indoor positioning system as information sources are described. This is
followed by the mathematical formulation of the multi sensor data fusion-based recursive estimation
model and finally by the local estimation and monitoring with regard to the activity times of operators.

2.1. Problem Definition—Evaluation of Activity Times on the Paced Conveyor

The development of the proposed fault-detection algorithm is motivated by the analysis of an
industrial wire harness manufacturing process. Wire harnesses are produced by a typical complex
modular production system [14,15]. The crucial part of the studied wire harness manufacturing system
is a similar conveyor system as shown in Figure 1. The motion of the conveyor is paced and cyclic in
nature. At the beginning of the cycles, every station proceeds to the next position. The operators might
work ahead of schedule or be delayed. According to the open-station concept, when the operator
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does not finish his or her job, he or she can move with the product to the next station to reduce the
backlog. When the operator completes the task before the end of the cycle time, he or she can work
ahead of schedule [16]. Production stops when the delay exceeds a critical limit. Contrary to this open
station-type operating strategy, close-station production is referred to when the operator must stop the
conveyor even in the event of a minor delay [17].

Figure 1. The wire harness paced assembly conveyor (often referred to as a rotary) contains assembly
tables consisting of connector and clip fixtures [18].

The key idea is that in the case of modular production, the expected activity times are estimated
based on the Bill of Materials (BoM) of the manufactured products. The manufacturing is modular
meaning that the products p1, . . . , pNp are built from the set of modules m1, . . . , mNm [19]. The structures
of the products are defined by a P-matrix (also referred to as a binary/logical matrix) consisting of Np

rows and Nm columns, and the element pi,j of P is set to one when the pi-th type of product contains
the mj-th module (otherwise it is 0). The calculation of the theoretical activity times is estimated based
on which a1, . . . , aNa activities are needed to be performed and which c1, . . . , cNc components should
be built in at the w1, . . . , wNw workstations. This information is represented in the logical matrix M
that contains the activities required to produce a given product. As is shown in Table 1, the C matrix
stores which components are built in in each activity, while the W matrix assigns activities to the
workstations. The specific activity times and factors influencing them were determined based on
expert knowledge [15] as presented in Table 2. The matrix T provides information on the category of
the activity describing how the activities are classified into the activity types t1, . . . , tNt . The sequence
of the products is represented by a π vector of the labels of the types, so π(k) = pj states that type
product pj started to be produced during the k-th production cycle.

To ensure fully reproducible results, only openly available information on wire harness
manufacturing technologies was utilized during the development of this case study. To stimulate
further research, the resultant algorithm of the developed model of the production system and the
details of the products and sensor placements are publicly available on the website of the authors
(https://www.abonyilab.com/soft-sensors).

Table 1. The logical matrices defined for performance monitoring.

Notation Nodes Description Size

A product (p) - activity (a) activity required to produce a product Np × Na
W activity (a) - workstation/machine (w) workstation assigned for an activity Na × Nw
B product (p) - component/part (c) component/part required to produce a product Np × Nc
P product( p) - module ( m) module/part family required to produce a product Np × Nm
C activity (a) - component (c) component/part built in or processed in an activity Na × Nc
M activity (a) - module (m) activity required to produce a module Na × Nm
T activity (a) - activity type (t) category of the activity Na × Nt
Sw activity (a) - measured time interval (zw(k)) activity involved over a measured time interval Na × lw

https://www.abonyilab.com/soft-sensors
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Table 2. Types of activities and the related activity times according to [15]. The activity times are
calculated using a direct proportionality approach, e.g., when an operator is laying four wires over one
foot, proportionally to the parameter t4, the activity time will be 1 × 6.9 s + 4 × 4.2 s = 23.7 s.

ID Activity Unit Time [s]

t1 Point-to-point wiring on chassis Number of wires 4.6
t2 Laying in U-channel 4.4
t3 Laying flat cable 7.7

t4 Laying wire(s) onto harness jig Per wire 6.9
4.2

t5 Laying cable connector (one end) onto harness jig Per wire 7.4
2.3

t6 Spot-tying onto cable and cutting 16.6
t7 Lacing activity 1.5
t8 Taping activity 6.8
t9 Inserting into tube or sleeve 3.0
t10 Attachment of wire terminal 22.8
t11 Screw fastening of terminal 17.1
t12 Screw-and-nut fastening of terminal 24.7
t13 Circular connector 11.3
t14 Rectangular connector 24.0
t15 Clip installation 8.0
t16 Visual testing 120.0

Based on the data published in [14,15], the number of types of products Np is assumed to be 64
and defined as the combination of Nm = 7 modules: base module m1, left- or right-hand drive m2,
normal/hybrid m3, halogen/LED lights m4, petrol/diesel engine m5, 4 doors/5 doors m6, and manual
or automatic gearbox m7. The number of activities/tasks Na is defined as 654 and categorized into
Nt = 16 types of activities. The time consumptions of these activities are approximated using a direct
proportionality approach with regard to the primary activities (see Table 2). During the activities
involved in the production of the base harness 115 different part families (component types, Nc) are
built in (among these Ct = 162 terminals, Cb = 63 bandages, Cc = 25 clips, and Cw = 89 wires).
The conveyor consists of 10 workstations (tables, Nw). For every table (workstation) one operator is
assigned, therefore, No = 10.

Hereinafter, the term primary activity time denotes the estimated average period of time required
for a certain type of activity to be performed, while the term local activity time refers to the time period
required by a specific operator at the w-th workstation to perform the activity in question. The structure
of the developed production-monitoring model is determined by the available information [15].
The proposed matrix-based mathematical formulation is beneficial as it allows the compact estimation
of the individual ŷw

i (k), i = 1, . . . , Na activity times in every k cycle step (discrete time):

ŷw
i (k) = [ti, ci] xw(k) , (1)

as the time consumption of the i-th activity depends on how many elementary activities of a given type
should be performed (represented as ti which is the i-th row of the matrix T), the number of built in
components (the row vector ci is the i-th row of the matrix C) and the ’efficiency’ of the operator xw(k),
which is the vector of the estimated local activity times. Therefore, the aim of our investigation is to
provide a continuous local estimate of this state vector and its workstation independent x(k) version
providing a reference value and the opportunity for the isolation of operator-independent problems.

2.2. Fixture Sensor- and Indoor Positioning System-Based Activity-Time Measurements

To measure the activity times, fixture sensors were designed as depicted in Figure 2.
The fixture-based activity sensors generate timestamps when the component is inserted into the
fixture. The sensors on an illustrated assembly table are shown in Figure 3.
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Figure 2. The designed connector fixture sends timestamps when the operator inserts a component
into a fixture.

The fixtures were positioned based on how the measurable activities at the workstations are
distributed. For example, the sensor f1 sends a timestamps when the operator inserts the component
c1 which represents the starting time of the first activity a1. Details concerning the placement of the
sensors are given in Table 3.

Table 3. The placement of the sensors is defined based on the activity IDs. As can be seen in the table,
not all the fi i = 1, . . . , 16 fixtures are active at every wj j = 1, . . . , 10 workstation.

Sensor ID w1 w2 w3 w4 w5 w6 w7 w8 w9 w10

f1 1 79 159
f2 12 90 170
f3 21 99 175
f4 31 109 181
f5 44 121 185 226
f6 422 486 595
f7 438 514 603
f8 448 535
f9 451 540 615
f10 132 192 275 324 373 453
f11 323 372 482
f12 419
f13 617
f14 630
f15 547
f16 654

The activity-dependent sequence of the timestamps recorded by the active sensors in the k-th
cycle of the conveyor is represented by vector s(k) =

[
s1(k), . . . , sj(k) . . . , sNs(k)

]T which serves as the
raw input of the performance-monitoring algorithm.
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Figure 3. Illustration of the distribution of the fixtures on an assembly table. As the fixtures
move according to the tables of the conveyor system, the fixtures are identically placed at every
workstation. The fixtures labeled with gray text are inactive as there are no related activities at the
depicted workstation.

As is shown in Figure 4, two timestamps clasp a set of activities, therefore,
the zw

i (k) = sw
β(i)(k)− sw

α(i)(k) difference between any two timestamps provides the sum of the
activity times that are situated between the two sensors. If the timestamps sw

α(i)(k) measures the start
of the first activity at the w-th workstation, the station time of the w-th workstation can be measured
as zw

i (k) = sw
α(i)(k + 1)− sw

α(i)(k). Based on this concept, a set of measurements can be defined for the

workstations zw(k) =
[
zw

1 (k), . . . , zw
i (k), . . . zw

lw(k)
]T

which is much more interpretable and applicable
information with regard to activity-time monitoring than the s(k) values of the raw measurements.

Figure 4. The concept of activity time measurements. The differences between the timestamps (si)
define the time period required by a set of activities (aj), the totals of which are considered as measured
variables at each workstation (zw

i ), where w represents the index of the workstation.

To put zw(k) into context, the information on which products are assembled at each station and
the details of the activities that are assigned to the measured time interval zw

i (k) are required.
The assignment of the activities and the measured time intervals are represented by a set of logical

matrices Sw (see Table 1). In the case of modular production the set of activities qa = MpT
p should

be calculated based on which modules are included in the produced p-th product (represented as pp

which is the p-th row of the product-module matrix P) and whose activities are required to produce
the modules (such information is stored in the relation matrix M). The activities that are assigned to
the zw(k)-th intervals are defined by the operation diag(qa)Sw.
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TTdiag(qa)Sw groups the activities according to activity types, while the number of components
installed over a specific time interval is calculated as CTdiag(qa)Sw, which can also be grouped
by activity types according to

(
TTC > 0

)
C′diag(qa)Sw. Based on the proposed matrix-type

representation, the estimated time intervals at the w-th workstation can be calculated as:

ẑw(k) =
[
TTdiag(qa)Sw ,

(
TTC > 0

)
CTdiag(qa)Sw

]
xw(k) = Hw(k)xw(k) (2)

The model equation zw(k) = Hw(k)xw(k) + ew and the related measurements zw(k) can be used
for the continuous estimation of the vector of operator efficiencies (namely estimated local activity
times), xw(k), where ew(k) is assumed to be a serially uncorrelated white-noise vector of observational
errors with covariance matrix Rw(k).

As Hw(k) depends on the actual product, which product is produced at the w-th workstation
must be tracked. For the localization of the products and identification of the status of the conveyor
system, an Ultra-Wide band (UWB) Indoor Positioning System (IPS) technology with its low energy
demand for transmitting information over a broad bandwidth (>500 MHz) and accuracy within the
range of 30–50 cm, which is significantly better than the uncertainty of one meter that the BLE based
solutions posses [11,12], was applied.

In comparison with outdoor environments, sensing location information in indoor environments
requires higher precision which is a more challenging task because various objects reflect and disperse
signals. Ultra-Wideband (UWB) is an emerging technology in the field of indoor positioning [20] that
has shown better performance compared to others [21] even in the presence of severe multipath [22,23].
Depending on the positioning technique, the angle of arrival (AOA), the signal strength (SS), or time
delay information can be used for positioning [12]. Received signal strength (RSS) UWB positioning
methods also can be divided into Time of Arrival (ToA), Angle of Arrival (AoA) and Received Signal
Strength (RSS)-based systems [24].

The concept of identification of the products at workstations to extract product-relevant
information from the Bill of Materials (BoM) and other structured information sources are widely used
to support production management [25], value stream mapping [26], and Industrial Internet of Things
(IIoT)-based lifecycle management [27]. In the developed system the IPS beacons are mounted to the
flat wire-harness and the raw signals of the receivers (shown in Figure 5) are processed to assign the
cables to the workstations.

Figure 5. Illustration of how the internal positioning system (IPS) tracks a product in the conveyor
at the table. The tracking is accurate and nicely depicts the rotations of the table at the edges of
the conveyor.

2.3. Multi-Sensor Data Fusion-Based Recursive Estimation

Multiple sensors provide redundancy which enables the robust recursive estimation of the
unmeasured primary activity times of the operators. Therefore, the estimation problem is defined as a
sensor-fusion task [28]. The presented sensor fusion algorithm combines all sensory and production
data such that the estimates of the activity times have less uncertainty than would be possible when
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these sources were used individually. The elements of the monitoring system are structured as shown
in Figure 6.

Figure 6. The sensor fusion-based architecture of the proposed monitoring system.

The fusion center receives and synchronizes all the zw(k), w = 1, . . . , Nw measured time intervals
and the related Hw(k), w = 1, . . . , Nw time-variable regressors, which means all data collected from
the workstations are time-stamped and arranged according to k-th cycle of the conveyor:

z(k) =

 z1(k)
...

zNw(k)

 , H(k) =

 H1(k)
...

HNw(k)

 , (3)

The linear structure of the developed production-monitoring model (see Equation (1)) is adequate
for the studied problem as the time consumption of the activities linearly depend on how many
elementary activities should be performed and what is the number of the built in components [15].
When a linear sensor-fusion model is assumed, the previously presented linear time-variant model can
be represented as

z(k) = H(k)x(k) + e(k) , (4)

where the e(k) noise vector of the fused observations consists of the ew(k) serially uncorrelated

white-noise vectors of observational errors at the workstations, e(k) =
[(

e1(k)
)T , . . . ,

(
eNw(k)

)T
]T

.
When the observation errors of the workstations are assumed to be independent, the covariance

of the e(k) noise vector is a block diagonal matrix defined as R = diag
(
R1, . . . , RNw

)
.

The central estimation enhances the confidence of the nominal model which improves the
performance of fault detection based on the reconciliation of the local measurements [29].

Based on k = 1, . . . , N synchronized z(k) and H(k) observations the objective function of the
central estimation problem can be formalized as:

x̂(N) = arg min
x

VN(x) VN(x) =
1
N

N

∑
k=1

[z(k)−H(k)x]T Q [z(k)−H(k)x] (5)

When the positive-definite weighting matrix Q is defined as Q = (R)−1, the estimation is
equivalent to the maximum-likelihood cost function [30].
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The covariance matrix of the estimation error x̃(k) = x̂(k)− x(k) is:

E
(

x̃(N)x̃T(N)
)
= P∗(N) =

[
N

∑
k=1

HT(k)R−1H(k)

]−1

(6)

The recursive estimation of the primary activity times x(k) is similar to the state estimation
algorithm which assumes the following Gauss-Markov (GM) process:

x(k) = A∗(k)x(k− 1) + η(k− 1), η(k) = N (0, Qx) (7)

z(k) = H(k)x(k) + e(k), e(k) = N (0, R) (8)

where η(k) noise vector and its Qx covariance matrix represents the uncertainty of the unknown and
time-varying parameters and A∗(k) stands for the state transition matrix of this random process.

The recursive estimation consists of prediction and correction steps as follows.
At the prediction step the state vector and its covariance matrix is calculated based on information

available at the k− 1 time instant:

x̂(kk− 1) = x̂(k− 1) (9)

P∗(kk− 1) = P∗(k− 1) + Qx (10)

The correction step utilizes the measured z(k) measurements at the correction the estimated state
variables by the e(k) = [z(k)−H(k)x̂(kk− 1)] prediction error, with the K(k) time-varying Kalman
gain updated based on the refreshed P∗(k) covariance matrix:

x̂(k) = x̂(kk− 1) + K(k) [z(k)−H(k)x̂(kk− 1)] (11)

K(k) = P∗(kk− 1)HT(k)
[
R + H(k)P∗(kk− 1)H∗T(k)

]−1
(12)

P∗(k) = P∗(kk− 1)−K(k)H(k)P∗(kk− 1) (13)

2.4. Local Estimation and Monitoring of the Primary Activity Times

To constrain the model parameters to lie within a reliable region and incorporate important a
priori knowledge of the activity times, the estimated parameters were optimally projected on to the set
of linear constraints by quadratic programming [13].

The local (operator-related) projection of the unconstrained estimate x̂(k) can be considered as a
quadratic programming problem:

x̂w(k) = arg min
x(k)

[x(k)− x̂(k)]TQp[x(k)− x̂(k)] (14)

subject to:

Aw
e (k)x(k) = bw

e (k) (15)

Lwx(k) ≤ cw (16)

x̂(k)c = x̂(k)− P∗(k)HT
j µj − P∗(k)LT

j λj (17)

where x̂(k) denotes the unconstrained solution, x̂(k)c denote the constrained solution, Aw
e (k) and

bw
e (k) define the linear equality constraints, while Lw(k) and cw(k) represent the linear inequalities.

µj and λj are vectors of Lagrange multipliers associated with equality and inequality constraints.
This formulation ensures the optimal (least squares correction) when Qp = (P∗(k))−1. When Qp

denotes the identity matrix an orthogonal projection is obtained. Assuming the constraints are true,
parameter bias can never be increased [13].



Sensors 2018, 18, 2346 10 of 18

The following section demonstrates how the estimated and expected primary activity times are
used for production monitoring.

3. Wire Harness Case Study

3.1. Online Monitoring of Operator Performance

To validate the reliability of the proposed model, the distribution of the activity times collected
from real production lines was studied. As is illustrated in Figure 7 the distribution of the assembly
times can be broken down into several Gaussian-type distributions.

Figure 7. The histogram of measured processing times in two different conveyors (production lines).
The histograms indicate that the distribution of the sensor-delivered processing times can be
decomposed into normal distribution functions according to different products.

The identifiability of the model is determined by the rank of the covariance matrix P∗(N).
When the rank is smaller than the number of measurements (which occurs when the individual
performance of operators is estimated at a specific workstation) only a subset of the parameters
is identifiable.

The information content of the available data can be evaluated based on the eigenvalues or
determinant of the covariance matrix P∗(N). The tools of D-optimal experimental design that tries
to maximize the determinant of F∗(N) which is identical to the minimization of the determinant of
P∗(N) where utilized.

F∗(N) = (P∗(N))−1 =
N

∑
k=1

HT(k)R−1H(k) (18)

When only one product is produced, H(k) does not change in terms of time. In this case, the set
of the identifiable parameters for a given product can be determined by the QR decomposition of H(k)
(or Hw(k) when a local estimation is needed). When different products are produced, the variation in
H(k) significantly increases the available information, so the optimization of the production sequence
can highly influence the identifiability of the model and confidence in the parameters (P∗(N), π(k)).

The production of 1000 products was studied. The production sequence contained all 64 types of
products with an average batch size of 10 products/batch. The rank of the covariance matrix F∗(N)

was identical to the size of x̂(k), so all activities could be monitored (see Figure 8).
When the raw material, design or the processing of a component in a cost-cutting or

quality-improvement project is changed by the supplier, this change may influence the activity times
of the operators. Such operator-independent loss in performance can occur when a shorter length
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of wire increases the time required to lay and arrange the cables. In this case study, such effects are
monitored. In the studied case, the new wires between the c87 and c8 components are a bit shorter
than specified. The component c87 (seal on the terminal) has an impact on the t10 type of activity in
the module m4 which increases the related primary activity time (x10(k)) by 15% at the 200th product,
while the component c8 (the shorter wire) has an impact on the activity type t5 in the module m2,
which increases the related x5(k) state variable by 20% after the 300th product. In this illustrative
scenario the quality inspection time decreases after the 500th product.

Figure 8. Estimated primary activity times with their p = 0.01 confidence intervals (represented by
dashed lines). The figure illustrates that the algorithm is able to track the changes in the x10(k), x5(k)
and x16(k) activity times after the 200th, 300th and 500th product, respectively. The bold lines represent
the constrained parameter estimates.

As Figure 8 illustrates, the proposed system is able to track the slowed and fastened activities.
The benefit of the proposed constrained algorithm is clearly visible, the estimated variables converge
faster and are always reliable.

The means of detecting individual losses in operator performance losses and sensor faults (due to
delayed registration and IIoT communication) were also studied.
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In terms of fault detection, the prediction error used in Equation (5) can be used as generates
an interpretable and easily traceable univariate time series that reflects the global performance of
the model.

The global performance of the model is reflected by

eq(k) = [z(k)−H(k)x]T Q [z(k)−H(k)x] , (19)

while the local, workstation related fault detection should be based on the local observations:

ew
q (k) = [zw(k)−Hw(k)x]T Qw [zw(k)−Hw(k)xw] , (20)

where Qw represents the wth block matrix of Q.
Based on the analysis with regard to the rank of the Hw(k) matrices, the observable sets

of activities were determined. As is illustrated in Figure 9, at the w = 2 workstation the time
consumption of six primary activities are observable. The proposed algorithm was able not only to
detect operator-dependent problems (of the 250th product) related to these activities, but by monitoring
the eq(k) it was possible to determine when sensor faults occurred (see the bottom of the figure).
The parameters of the gross error detection algorithm can be fine-tuned by Monte Carlo simulation and
detailed analysis of the distribution of the modeling error [31,32] (the demonstration of the applicability
of these techniques in this problem is out of the scope side this paper).

As is illustrated in Figure 10, the calculations above can be used to estimate the expectable
operation times for all workstations, check how well the process is balanced and how the complexity
of the product influences the workloads of the workstations. With the help of this model the effect of
the changes in the activity time can be immediately calculated on the tack-time and the effectiveness of
the operators. The presented example demonstrated that in the event of good estimates with regard to
the duration of the primary activities and with the help of the IIoT-based fusion of product-relevant
information, real-time data for Overall Equipment Effectiveness (OEE) calculations can be provided.

Figure 9. Fault-detection performance at the 2nd workstation. The upper figure illustrates that the
algorithm is able to detect operator-dependent problems (after the 250th product). After this change
the related to these activities.
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(a) The number of the built-in components at a given
workstation. The figure shows how the workload differs
during the production of the base module (p1) and the most
complex product (p64).

(b) The variability of the station times during the production
of the 64 product. The figure illustrates how the production
line is balanced and how the complexity of different products
influences the station times.

Figure 10. The workloads (number of activities, built-in components and total activity times) can be
easily calculated based on the proposed model. The OEE of the production line can be monitored
on-line based on the recursively estimated activity times.

3.2. Targeting Model-Based Workload Analysis

The monitoring of the activity of operators is based on the comparison of the measured activity and
station times with the estimates of targeting models whose parameters are identified by the proposed
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estimation algorithms. Targeting models are widely used in process performance management.
Precedent-based targeting models are used when the expected performance can be deduced from
previous operations (e.g., a day or month before). One weakness of this procedure is that it assumes that
conditions were comparable over the two time intervals. A more problematic issue is what happens
when a significant change occurs in the process and product. For such applications precedent-based
targeting models can be over simplistic. Activity-based targeting is particularly appropriate when the
clear drivers of performance are known [33].

Automatic monitoring and targeting schemes attempt to compare performances very short time
intervals (e.g., minutes) which is ideal for fault detection. The most important key performance
indicators (KPIs) of the production system are the station times which reflect how well the production
line is balanced. The concept of calculating the station time is depicted in Figure 11. The balancing
of a modular production system is a challenging industrial problem due to the great diversity of
products [34]. As the station times are the functions of the manufactured products, which product
is assembled on a given workstation must be followed. The calculation of the station time is similar
to the calculation of the estimated sum of activity times between two fixture sensors (Equation (2)),
namely the difference between the appropriate timestamps recorded by the fixture sensors:

yw(k) =
[
TTqw ,

(
TTC > 0

)
CTqw

]
xw(k) (21)

where qw = diag
(

Mp′p(k)
)

W.

Figure 11. Demonstration of the distribution of the activity times yi, the station times, and the
timestamps sj of the fixture sensors; the measured time interval zw

l ; and the w-th workstation.
The height of the bars coloured illustrates the activity time of the specific activity, while the coloured tag
of the individual activities provides information on the type of the specific activity. This representation
shows how the related activity times are summed up and form the station time and highlights that the
longest station time is the cycle time of the production system, which is represented by the vertical
blue line at the top of the figure.

4. Conclusions

Human-in-the-loop cyber-physical production systems are transforming the industrial workforce.
Due to the enormous variability and complexity of products, the tracing of hundreds of activity
times on production lines is a critical problem. To handle this problem a software-sensor-based
activity-time and performance measurement system was proposed. To ensure a real-time connection
between operator performance and varying degrees of product complexity fixture sensors were
utilized and designed and an indoor positioning system used to merge this multi-sensor data with
product-relevant information.

The presented sensor fusion algorithm combines all sensory and production data such that the
estimates of the activity times have less uncertainty than would be possible when these sources
were used individually. The estimation of the activity times is based on a linear-in-parameters
model. The linear structure of the developed production-monitoring model is adequate as the time
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consumption of the activities linearly depend on how many primary activities should be performed
and what is the number of the built-in components.

The number of parameters of activity time estimation models is comparable to the number
the number of measurements, the identifiability of the parameters of the model has to be carefully
analyzed. For this purpose, we studied the Fisher information/covariance matrix of the estimation
problem. The identifiability of the model and the information content of the available data can be
evaluated based on the rank, the eigenvalues and the determinant of the covariance matrix. When the
rank is smaller than the number of measurements (which occurs when the individual performance
of operators is estimated at a specific workstation), only a subset of the parameters is identifiable.
As the placement of the sensors significantly influences the identifiability of the parameters, tools of
D-optimal experimental design can be used to optimize the proposed system.

The determination of the optimal number of sensors and features has crucial importance as
redundant sensors can generate correlated features which decrease the efficiency of the algorithm.
The analysis of the eigenvalues of the covariance matrix can highlight these negative effects. As this
analysis is identical to Principal Component Analysis (PCA) of the multisensor data, the proposed
methodology can utilize the reduced and transformed uncorrelated features, which results in a
Principal Regression-based process monitoring algorithm. The second approach of avoiding correlated
features is the application of feature selection algorithms that should be based on the previously
discussed experimental design optimization task.

As the estimation problem can be ill-conditioned and poor raw sensor data can result in unrealistic
parameter estimates, constraints were introduced into the parameter-estimation algorithm to increase
the robustness of the software sensor.

The proposed model-based performance monitoring system tracks the recursively estimated
parameters of the activity-time estimation models, while the sensor-relevant fault detection
functionalities are based on the modeling errors which can be evaluated by classical residual-based
fault detection algorithms.

The applicability of the proposed methodology is demonstrated on a well-documented benchmark
problem of a wire harness manufacturing process. The presented example demonstrated the benefits
of multiple sensors as they provide redundancy which enables the robust recursive estimation of
the unmeasured primary activity times. The fully reproducible and realistic simulation study also
confirmed the efficiency of the proposed constrained estimation algorithm regarding fast convergence
and giving reliable estimates.

The results illustrate that indoor positioning system-based integration of product-relevant
information and sensor signals and can be efficiently utilized to design on-line performance
management systems.

The developed benchmark problem can be used to study fault detection and sensor placement
algorithms which is the objective of our further research.

Supplementary Materials: The related dataset is freely and fully available on the website of the authors:
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Notations and Abbreviations

CPPS Cyber-physical production system
IIoT Industrial Internet of Things
RFID Radio Frequency IDentification
BoM Bill of Materials
IPS Indoor positioning system
UWB Ultra-Wide Band
BLE Bluetooth Low Energy
MSDF Multi-sensor data fusion
AoA Angle of Arrival
SS Signal Strength
RSS Received Signal Strength
ToA Time of Arrival
p1, . . . , pNp products
m1, . . . , mNm modules
a1, . . . , aNa activities
c1, . . . , cNc components
w1, . . . , wNw workstations
t1, . . . , tNt activity types
A (Np × Na) activities required to produce a product
W (Na × Nw) workstation assigned for an activity
B (Np × Nc) component/part required to produce a product
P (Np × Np) module/part family required to produce a product
C (Na × Nc) component/part built in or processed in an activity
M (Na × Nm) activity required to produce a module
T (Na × Nt) category of the activity
Sw (Na × lw) activity involved over a measured time interval
k index of the production cycle (discrete time)
ŷw

i (k) estimation of the individual activity times for work station w in the kth production cycle
xw(k) ’efficiency’ of the operator, the vector of the estimated local activity times
x(k) workstation-independent version of xw(k)
s(k) sequence of the timestamps recorded by the active fixture sensors
zw(k) vector of the sum of the activity times that are situated between the two sensors
α index of the first sensor of a fixture-sensor pair
β index of the second sensor of a fixture-sensor pair
qa the set of activities required to produce a specific product
ew serially uncorrelated white-noise vector of observational errors
Rw(k) covariance matrix of observational errors
H(k) time-variable regressors representing the number of activities and built in components
e(k) the set of the serially uncorrelated white-noise vector of observational errors of the workstations
x̂(N) estimation error
Q positive-definite weighting matrix defined as Q = (R)−1

P∗ inverse of the parameter covariance matrix
A∗(k) State-transition matrix in the Kalman filter represented estimation problem

(in our case an identity matrix)
K(k) Gain of the Kalman filter/recursive estimator
Lw,cw Representation of the linear inequality constraints
Aw

e ,bw
e Representation of the linear equality constraints

µj vector of Lagrange multiplier associated with equality
λj vector of Lagrange multiplier associated with inequality constraints
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