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Donkey genome and insight into 
the imprinting of fast karyotype 
evolution
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The donkey, like the horse, is a promising model for exploring karyotypic instability. We report the 
de novo whole-genome assemblies of the donkey and the Asiatic wild ass. Our results reflect the 
distinct characteristics of donkeys, including more effective energy metabolism and better immunity 
than horses. The donkey shows a steady demographic trajectory. We detected abundant satellite 
sequences in some inactive centromere regions but not in neocentromere regions, while ribosomal 
RNAs frequently emerged in neocentromere regions but not in the obsolete centromere regions. 
Expanded miRNA families and five newly discovered miRNA target genes involved in meiosis may 
be associated with fast karyotype evolution. APC/C, controlling sister chromatid segregation, 
cytokinesis, and the establishment of the G1 cell cycle phase were identified by analysis of miRNA 
targets and rapidly evolving genes.

Donkeys and horses are globally important livestock, representing the Equus genus1,2. Compared with 
horses, donkeys have superior physiological characteristics, such as a better immune capacity and more 
effective energy metabolism3,4. The relationship between these species is complicated and confusing. 
For example, these animals can mate and produce mules or hinnies despite being different species. 
Karyotypic diversification is more prominent in Equus species than in other mammals5,6, suggesting that 
the Equus genus is a promising model for exploring the dynamics of chromosomal evolution7. A puzzling 
phenomenon is the relatively high frequency of centromere repositioning events8 in Equus, as at least 
seven cases have occurred between donkeys and horses, with at least six further in the donkey9. In our 
previous study, we investigated the mechanism of chromosomal rearrangement, including Robertsonian 
translocations and local rearrangements, using de novo assembled genome sequences from Przewalski’s 
wild horse (Equus przewalskii) and the Mongolian horse (Equus caballus)7. These results suggest that 
analysis based on whole genome sequences is a delicate and powerful method for studying chromosomal 
evolution. Here, we report the whole-genome sequence and de novo genome assembly of the donkey and 
Asiatic wild ass. Using these quality genome sequences, we addressed two questions: (1) what are the 
demographic and phylogenomic histories accompanying the speciation and genomic adaptive evolution 
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in these representative Equus species, and (2) what are the underlying genetic and epigenetic mechanisms 
of fast karyotype evolution and frequent centromere repositioning.

Results
Genome sequencing, assembly and annotation.  The genome of one male donkey was sequenced 
and de novo assembled using a whole-genome shotgun strategy (Table 1). Eight paired-end libraries (a 
standard genomic library that was sequenced using paired-end reads with insert sizes of 400–1000 bp), 
one single-end library (insert size: 1.5–1.9 kbp), and eight mate-paired libraries (insert sizes: 3–15 kbp) 
were constructed for genome sequencing (Supplementary Table 1). Paired-end libraries were sequenced 
using the Illumina Miseq platform, the single-end library was sequenced using the Roche 454 FLX+  
platform, and mate-paired libraries were sequenced using the Illumina Hiseq2000 platform. The total 
sequence coverage was approximately 42.4-fold (genome size: ∼ 2.36 Gb) (Supplementary Table 2). For 
the Asiatic wild ass, one paired-end library (insert size: 500 bp) was constructed and sequenced using 
the Illumina Hiseq2000 platform (12.1-fold; Supplementary Tables 3 and 4). High contiguity genome 
sequences from the donkey were generated after their de novo assembly, and they consisted of 2,166 
scaffolds (> 1k bp) with a total size of 2.36 Gb (Supplementary Table 5). The N50 lengths of the contigs 
and scaffolds were 66.7 kb and 3.8 Mb, respectively. Compared with other previously published genome 
sequences10–13 (Supplementary Figs 1 and 2), the contiguity of the contigs in the donkey assemblies was 
better. We also validated 248 core eukaryotic genes14 in the donkey genome assemblies and found con-
siderable completeness (Supplementary Table 6). These improvements may be the result of longer lengths 
for the sequence reads, because the reads used in this study were mainly generated by the Illumina Miseq 
platform (2 ×  251 bp) and longer than those generated by Hiseq2000 (2 ×  100 bp)10–13.

To improve our gene prediction accuracy, eight types of tissue samples (heart, liver, spleen, lung, kid-
ney, brain, spinal cord, and muscle) from another female donkey were used to construct a normalized 
cDNA library. RNA-seq was performed using the Roche 454 FLX+  platform, and 1,390,416 reads were 
generated with an average length of 522 bp (Supplementary Fig. 3 and Supplementary Table 7). Donkey 
genome annotation was performed using a dexterous genome annotation pipeline, including both ab 
initio predictions (Augustus and SNAP)15,16 and homology-based methods (RNA-seq of the female don-
key, and homologous proteins sequences of the Thoroughbred horse17). A total of 23,214 protein-coding 
genes were predicted in the donkey genome (Table 1, Supplementary Figs 4 and 5) averaging 1,281 bp 
coding sequences (CDSs) per gene. Among these genes, 15,648 could be confirmed with the RNA-seq 
sequences (Supplementary Fig. 6).

Demographic history and phylogenetic analysis.  We identified 2,187,070 and 3,321,087 hete-
rozygous SNPs (within each individual) in the donkey and the Asiatic wild ass genomes, respectively 
(Supplementary Table 8). The rate of heterozygosity was considerably higher in the Asiatic wild ass than 
in donkey. We also reconstructed the donkey, Asiatic wild ass, and horse population demographics over 
the last one million years (Fig. 1a). Because Thoroughbred horse (Twilight) pedigrees show substantial 
levels of inbreeding17, we used heterozygous SNPs from the Mongolian horse7. Our demographic anal-
ysis revealed three horse population bottlenecks, which is consistent with the quaternary glaciations. 
Similar to those of the horse, Asiatic wild ass lineages show extremely dynamic demographic trajectories. 
Interestingly, the size of the donkey population was steady. We believe that this stability is because the 
donkey ancestors (African wild asses) living in northeast Africa2 may have been influenced by different 
climates during the quaternary glaciations, as climate changes could result in grassland contraction or 
expansion18.

The rich Equus fossil records have made this genus a model for evolutionary processes19. Previous 
research has shown that the donkey and the horse shares common ancestors approximately 6.4–12.7 
million years ago20–22. In this paper, we constructed a phylogenetic tree using 5,665 single-copy orthologs 
from nine species17,23–28 (Fig. 1b). As shown in this tree, the Asiatic wild ass is most closely related to the 
donkey, and together they form a sister group with the horse. Our results show that the donkey separated 

Total sequence length 2,357,920,133 bp

Total contig length 2,324,805,719 bp

Number of contigs > 200 bp 71,732

N50 contig length 66,737 bp

Number of scaffolds > 1 kb 2,166

N50 scaffolds length 3,803,025 bp

Average sequence depth 42.4× 

GC content 41.28%

Protein-coding genes 23,214

Table 1.   Donkey genome assembly and structural annotation.
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from the horse lineage approximately 7.7–15.4 million years ago, whereas the donkey and the Asiatic 
wild ass diverged approximately 1.5–3.3 million years ago. These estimates are comparable to the earliest 
divergence times reported20–22.

Genetic evolution.  To obtain greater insight into the evolutionary dynamics of these genes, we cal-
culated the expansion and contraction of orthologous gene clusters between the donkey and the horse. 
A total of 283 gene families in the donkey showed significant expansion (P <  0.05) compared with 206 
in the horse (Fig.  1b). The functional categories that were enriched in significant donkey gene family 
expansions included olfactory transduction (KEGG:map04740, p =  5.355e–08) and protein digestion and 
absorption (KEGG:map04974, p =  0.01327) (Supplementary Table 9). The horse gene family expansions 
were primarily associated with defense responses (GO:0006952, p =  0.011693853) and responses to stress 
(GO:0006950, p =  0.028023107) (Supplementary Table 10).

Rapidly evolving genes are one of the primary contributors to such functional changes. We identified 
1,292 genes evolving significantly (p <  0.05) faster in the donkey than in the horse, and 706 genes evolv-
ing significantly (p <  0.05) faster in the horse than in the donkey. Rapidly evolving genes in domestic 
donkeys are significantly associated with aerobic respiration (GO:0009060, p =  0.027964968), forebrain 
development (GO:0030900, p =  0.006710136), regulation of lymphocyte differentiation (GO:0045619, 
p =  0.024669795), the tricarboxylic acid cycle (GO:0006099, p =  0.016761429), and the acetyl-CoA 
catabolic process (GO:0046356, p =  0.016761429) (Fig.  1c, Supplementary Table 11). These changes 
may be correlated with more effective energy metabolism4 and improved immune capacity in donkeys 
compared with horses. More specifically, twenty genes that are associated with forebrain development 
were found to be rapidly evolving in the donkey. Also, cell cycle arrest (GO:0007050, p =  0.020903) and 
telomere maintenance (GO:0000723, p =  0.002098) are rapidly evolving in the donkey genome, which 
may be associated with rapid karyotypic evolution. In contrast, rapidly evolving genes in the horse are 
significantly enriched in second-messenger-mediated signaling (GO:0019932, p =  0.001296105), heart 
looping (GO:0001947, p =  0.046821101), neural tube patterning (GO:0021532, p =  0.041550593), pho-
toreceptor cell maintenance (GO:0045494, p =  0.041550593), and ribosome biogenesis (GO:0042254, 
p =  0.035248368) (Fig. 1c, Supplementary Table 12). These results may be associated with the animated 
disposition and greater athletic ability of the horse.

Synteny analysis and repetitive sequences.  Dramatic chromosomal rearrangement in Equus indi-
viduals is a notable characteristic compared with other mammals5,6. However, genome-wide rearrange-
ments between the donkey and horse have not been characterized given that donkeys have a different 
number of chromosomes (2n =  62) than horses (2n =  64)5. We performed whole-genome synteny analy-
sis between the donkey and Thoroughbred horse genomes. A collinearity region between the donkey and 
Thoroughbred horse was approximately 1.89 Gb (Fig. 2a). Four types of rearrangements, BRK (insertion 
of unknown origin), DUP (inserted duplication), INV (inversion), and JMP (relocation) were identi-
fied. Rearrangement of the donkey genome was particularly evident when donkey-Thoroughbred horse 
genome alignments were compared with those of Thoroughbred horse-wild horse and Thoroughbred 
horse-Mongolian horse, as more large-scale chromosomal rearrangements can be found in the donkey 
genome.

Previous research has indicated that repetitive sequences are associated with syntenic breakpoints 
and chromosomal fragility. Seven types of common repetitive sequences in the donkey genome were 
identified: short interspersed repeated sequences (SINEs), long interspersed repeated sequences (LINEs), 
long terminal repeats (LTRs), DNA elements, satellites, simple repeats, and low complexity. Overall, 

Figure 1.  Analysis of evolution genomics. (a) Reconstructed population demographics of donkey, Asiatic 
wild ass and horse for the last 1 million years. (b) Phylogenetic tree of nine mammals. The numbers 
represent the time of divergence. The proportion of expanded and contracted gene families are shown as pie 
charts at branch termini. (c) Rapidly evolving functions of donkey and horse.
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analyses of these sequences indicated that 42% of the donkey genome sequences are repetitive sequences 
(Supplementary Table 13), which is comparable to the horse (41.4%). Satellite sequences comprise 0.05% 
of the donkey genome, which is considerably lower than in the horse (1.59%). Satellite sequences are often 
associated with centromeres26, including some that are new in the donkey. The proportions of LINE_L1 
and LTR_ERV1 increased, but those of LINE_L2 and several other repetitive sequences decreased in 
breakpoint regions (Fig. 2b). This phenomenon is more evident in the donkey genome, which is consist-
ent with our previous findings7.

Chromosome rearrangements and sequence signatures in centromere regions.  A striking 
phenomenon in Equus is the relatively high frequency of centromere repositioning events9. Although 
such events provide a potentially powerful evolutionary force for reproductive isolation and speciation, 
the underlying mechanisms remain unclear29. Comparative FISH studies have found that at least seven 
different centromere repositioning events occurred between the donkey and horse, and at least six fur-
ther occurred in the donkey alone9. Based on the quality of whole-genome donkey sequences, we were 
able to perform microscopic analyses across the normal centromere regions of the horse (Thoroughbred) 
as well as neocentromere regions and inactive centromere regions in donkeys. Using the same probes9 
and two major Equus satellite sequences30 as in previous studies, we identified the centromere regions of 
donkey and horse chromosomes. Six types of regions were categorized into seven pairs of chromosomes 
in donkeys and horses (Fig. 3a, Supplementary Table 14) including the following: (1) centromere regions 
in horse chromosomes (“region #1” hereafter), (2) centromere regions in donkey chromosomes (at least 
six centromeres are neocentromeres, region #2), (3) homologous regions in horse chromosomes related 
to region #2 (region #3), (4) homologous regions in donkey chromosomes related to region #1 (region 
#4), (5) other regions in horse chromosomes (region #5), (6) other regions in donkey chromosomes 
(region #6).

Any shift in centromeric function without chromosomal rearrangement can be considered cen-
tromere repositioning30. However, some researchers have noted that centromere regions are hot spots 
for chromosomal changes in evolution and disease31. We explored chromosomal rearrangements using 
synteny analysis based on genomic sequences between homologous regions (Fig. 3a) (region #1 vs. region 
#4, region #3 vs. region #2, region #5 vs. region #6). Increased rearrangements were detected in several 
chromosomes (Fig. 3b,c) when region #1 and region #4 (representing inactive centromere regions) were 
compared, and these were potentially caused by an accumulation or loss of satellite sequences. In con-
trast, no obvious increased rearrangements were detected (Fig. 3b,c) when region #3 and region #2 (rep-
resenting neocentromere regions) were compared. Thus, we confirmed previous study results indicating 
that a DNA fragment can acquire centromere function without sequence alteration30,32.

To date, no prominent sequence characteristics have been confirmed to promote centromere reposi-
tioning, although it is widely accepted that neocentromeres can gradually accumulate satellite sequences 
accompanied by centromerization29. We noticed that the content of the satellite sequences in region #1 
and region #4 in several chromosomes was increased (Fig. 3d,e, Supplementary Fig. 7). Twenty types of 
satellite sequences were examined in this study (Supplementary Fig. 8). Because region #1 of ECA14, 
ECA20, ECA22, ECA26 and region #4 of EAS8, EAS15 contained abundant SAT2p30 (Supplementary 
Fig. 8), we believe that the SAT2p were accumulated in the process of centromerization. Region #1 of 
ECA6, ECA11, and ECA17 does not contain abundant SAT2p, indicating these three centromeres may be 
novel. Unexpectedly, ribosomal RNAs were discovered in neocentromere regions and their homologous 
regions. In contrast, no ribosomal RNA could be detected in region #4 (inactive centromere regions) 
(Fig. 3d,f). A neighbor-joining tree constructed using conservative 5SrRNAs revealed that these 5SrRNAs 
are closely related (Supplementary Fig. 9). It is particularly worth mentioning that the ribosomal RNAs 
are located in the fibrillar centers of the nucleolus and play an important role in the organization of the 

Figure 2.  Whole genome synteny analysis. Comparisons of the donkey, wild horse and Mongolian horse 
genomes to the Thoroughbred horse genome. (a) The number of rearrangement blocks in donkey, wild 
horse, Mongolian horse genomes with respect to the Thoroughbred genome. (b) The content of some 
repetitive sequences significantly increased in rearrangement regions compared with the collinearity region.
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nucleolus33. More research is needed to explain the genetic association between ribosomal RNA, nucleoli, 
and centromere repositioning.

Small RNA-seq, and prediction of novel miRNA targets.  To understand the role of epigenetic 
regulation in karyotypic evolution29, we annotated the non-coding RNAs and analyzed differentially 
expanded miRNA families in the donkey vs. other mammalian species. A total of 1198 miRNAs, 512 
snoRNAs, 530 snRNAs, and 189 lncRNAs were identified in the donkey genome (Supplementary Table 
15). The number of miRNAs in the donkey genome was comparable to humans (1215), mice (1497), 
and was higher than horses (881), dogs (647), and cattle (494)34. However, the distribution of miRNAs 
in the different miRNA families was quite different between donkeys and other mammals (Fig. 4a). We 
found that several miRNA families were expanded in the donkey genome (Fig. 4a, c). Targeted genes in 
donkey expanded miRNA families that were significantly enriched were related to the cell cycle, cancer, 
and oocyte meiosis, which are probably associated with fast karyotype evolution (Supplementary Table 
16). From the small RNA libraries that were constructed from the above-mentioned eight types of tissue 
samples (Supplementary Table 17), we identified 118 miRNA families matching those in the existing 
miRNA database and 40 novel miRNAs specific to the donkey (Supplementary Table 18). Five of the 
newly discovered donkey miRNAs target genes are involved in meiosis (Fig. 4b,c, Supplementary Table 
19), suggesting fast karyotype evolution. In the meiosis pathway, another five genes are rapidly evolving 
(Fig. 4c). APC/C, which controls sister chromatid segregation, cytokinesis, and establishment of the G1 
phase of the cell cycle, was identified by analysis of miRNA target and rapidly evolving genes35,36.

Figure 3.  Chromosomal rearrangements and characteristic sequences in centromere regions.  
(a) Landscape of chromosomal rearrangements. Column 1: Six regions categorized in donkey and horse 
chromosomes. They are: #1(orange): Centromere regions in the horse chromosome; #2(green): Centromere 
regions in the donkey chromosome (at least 6 centromeres are neocentromeres); #3(blue): Homologous 
regions in the horse chromosome related to region #2; #4(red): Homologous regions in the donkey 
chromosome related to region #1; #5(brown): Other regions in the horse chromosome; #6(purple): Other 
regions in the donkey chromosome. (EAS: Equus asinus; ECA:Equus caballus). The arrow indicates the 
direction of two corresponding centromere repositionings. The question mark (‘?’) indicates the direction 
of two corresponding centromere repositionings that are not classified. Column 2: Synteny analysis 
between region #4 and region #1. Column 3: Synteny analysis between region #2 and region #3. Column 
4: Synteny analysis between region #6 and region #5. (b) Chromosomal rearrangements between donkey 
and Thoroughbred horse. Black vertical lines represent rearrangement regions in the Thoroughbred horse 
chromosomes. (c) Numbers of rearrangements events in seven pairs of chromosomes. (d) Distribution 
of satellite sequences and ribosomal RNA in region #1, #3 of ECA22 and region #2, #4 of EAS15. (e) 
Proportion of satellite sequences in regions #1–6. (f) Proportion of ribosomal RNA in regions #1–6.
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Discussion
The donkey and Asiatic wild ass genomes supplement the reference genome for the Equus genus. Our 
comparative analysis based on these genomic sequences provides important insight into the demographic 
history and adaptive evolution of Equus. In addition, these results enhance our understanding of the 
chromosomal rearrangements and dynamics of characteristic sequences associated with centromere 
repositioning. These data will be beneficial to future research of the genomics of the Equus genus and 
mammalian chromosomal evolution.

Methods
Sampling and genome sequencing.  All animal care and research procedures were carried out in 
accordance with the guiding principles for the care and use of laboratory animals and were approved 
by the Institutional Animal Care and Use Committee at Inner Mongolia Agricultural University. For 
donkey genome sequencing, a 7-year-old male donkey was selected from the Xilingol League of Inner 
Mongolia, China on 18 February 2010. For Asiatic wild ass genome sequencing, approximately 5 ml of 
blood from a male Asiatic wild ass was provided by the Bayan Nur Forestry Administration. The blood 
sample was collected during veterinary exams for several Asiatic wild asses on 1 March 2002. No Asiatic 
wild ass was hurt or captured as a result of these studies. DNA was extracted from peripheral blood 
cells. Eight paired-end libraries (insert sizes: 400, 450, 700, and 1000 bp), one single-end library (insert 
size 1.5–1.9 kb), and eight mate-paired libraries (insert sizes: 3, 5, 8, 12, and 15 kb) were constructed for 
donkey genome sequencing. Paired-end libraries were sequenced using the Illumina Miseq platform 
(2 ×  251 bp), the single-end library was sequenced using the Roche 454 FLX+  platform (average: 510 bp), 
and Mate-paired libraries were sequenced using the Illumina Hiseq2000 platform (2 ×  100 bp). For the 
Asiatic wild ass, one paired-end library (insert size 500 bp) was constructed and sequenced using the 
Illumina Hiseq2000 platform (2 ×  100 bp). Library preparation and sequencing followed the manufac-
turer’s instructions.

Figure 4.  Novel miRNAs, expanded miRNA families and rapidly evolving genes in donkey, which are 
associated with the meiosis pathway. (a) Expanded miRNA families (red) in the donkey genome. (b) Five 
novel miRNAs targeting meiosis in the donkey genome identified by RNA-seq. (c) The donkey meiosis 
pathway. Small boxes indicate that the gene is regulated by novel miRNAs, expanded miRNA families or 
rapidly evolving genes.
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Data filtering.  Cutadapt1.2.1 (https://pypi.python.org/pypi/cutadapt/1.2.1) was used to trim adapter 
sequences from sequence reads generated by Illumina Miseq and Hiseq2000. Low-quality reads and 
reads with potential sequencing errors were also eliminated. For reads generated by Illumina Miseq, 
if the average phred quality scores for five consecutive bases were < Q20, we trimmed reads from the 
3′ -end. For reads generated by Illumina Hiseq2000, if the average phred quality scores of five consecutive 
bases were < Q20, we removed this read and its matching sequence.

Donkey genome assembly.  We first assembled the sequence reads of the pair-end and single-end 
libraries into contigs and scaffolds using Newbler v2.8. Then, we used SSPACE software37 and informa-
tion for the mate-pair libraries to construct longer scaffolds. Finally, Gapcloser (http://soap.genomics.org.
cn/soapdenovo.html) was used to close gaps inside scaffolds.

Repetitive sequence and noncoding sequences analysis.  RepeatMasker (http://www.repeat-
masker.org/) was used to identify interspersed repeats and low complexity DNA sequences from the 
donkey and Thoroughbred horse genomes. Twenty types of satellite sequences were then plotted in a 
“heat map” using R software. 5SrRNA sequences were used to build the neighbor-joining tree using 
MEGA638. Genome noncoding sequence annotation was used in the Rfam database34. A small RNA 
library was constructed from eight types of tissue samples (heart, liver, spleen, lung, kidney, brain, spinal 
cord, and muscle) from another female donkey. The library was sequenced using the Miseq platform. For 
novel miRNA identification, mireap (http://mireap.sourceforge.net/) was used. For target gene annota-
tion, Miranda39 was used.

Genome annotation and RNA-seq.  Donkey genome annotation was performed using the MAKER40 
annotation pipeline, which included ab initio predictions and homology-based methods. Ab initio pre-
dictions were performed using Augustus15 and SNAP16. cDNA data were generated from multiple RNA 
sources. cDNA libraries were constructed from eight types of tissue samples (heart, liver, spleen, lung, 
kidney, brain, spinal cord, and muscle) from another female donkey. The libraries were sequenced using 
the Roche 454 FLX+  platform. Homology-based prediction was performed by blasting against homolo-
gous protein sequences of Thoroughbred horse17 and cDNA sequences from donkey.

Heterozygosity rate and demographic history.  Qualified sequence reads from pair-end libraries 
of the donkey and Asiatic wild ass were mapped to the scaffolds of the donkey. SNPs and InDels were 
called using the Genome Analysis Toolkit41 following its manual. We flagged a candidate SNP as a likely 
false-positive if it exhibited the following characteristics: (1) sequence coverage at that point is more 
than 200 or less than 4; (2) HaplotypeScore > 13.0, MQ <  40, QD <  2; (3) ReadPosRankSum <−8.0, 
MQRankSum <−12.5. The demographic histories of the donkey, Asiatic wild ass, and Mongolian horse 
were inferred using “pairwise sequentially Markovian coalescence” (PSMC)42 based on SNP distribution. 
Parameters were set as follows: − N30 − t15 − r5 − p 4+ 25*2+ 4+ 6. The Equus generation time (g) =  5 
years and the neutral mutation rate per generation (μ ) =  2.5 ×  10−8 were set. Because low sequence cov-
erage (below 20-fold) deeply impacted PSMC inference42, we performed a correction for Asiatic wild ass 
assuming a uniform False Negative Rate (uNFR =  26%) reported in previous research19.

Phylogeny analysis.  Protein-coding genes from seven mammalian species (opossum, dog, pig, cattle, 
Thoroughbred horse, mouse, and human) downloaded from Ensembl (http://www.ensembl.org) were 
used in addition to donkey genes to define gene families by OrthoMCL43. Thereafter, 5,665 single-copy 
families, which were generated from this analysis, were used to reconstruct phylogenies and estimate the 
time points of divergence. Protein-coding gene sequences from the Asiatic wild ass were generated by 
mapping reads from the Asiatic wild ass to the scaffolds of the donkey with samtools44 and genBlastG45. 
The protein sequences of orthologous gene sets were aligned by MUSCLE46 with its default settings. 
Poor alignment sites were eliminated using Gblock47. The phylogeny tree (including nine species) was 
drawn by PhyML48 using the JTT model. Based on the reconstructed phylogeny tree, we estimated the 
evolutionary time scales by PAML49. Calibration times were queried from the TimeTree database (http://
www.timetree.org).

Gene family expansion and contraction.  Gene families were defined by OrthoMCL43. Gene family 
expansion analysis was performed by CAFE50 based on a reconstructed phylogeny tree.

Rapidly evolving genes and dN/dS analysis.  This analysis utilized 6,771 1:1 orthologous genes 
from seven species (donkey, Thoroughbred horse, dog, pig, cattle, mouse, and human). The protein 
sequences from orthologous gene sets were aligned by MUSCLE46 using default settings. Gblock47 was 
used to eliminate poor alignment sites. Afterward, dN/dS ratios for each gene were estimated with the 
codeml function in the PAML package49. The maximum-likelihood method was used to estimate dN (the 
rate of non-synonymous substitution), dS (the rate of synonymous substitution) and dN/dS (the ratio 
of non-synonymous substitutions to the rate of synonymous substitutions). The likelihood ratio test was 
used to evaluate the p-value for each gene.

https://pypi.python.org/pypi/cutadapt/1.2.1
http://soap.genomics.org.cn/soapdenovo.html
http://soap.genomics.org.cn/soapdenovo.html
http://www.repeatmasker.org/
http://www.repeatmasker.org/
http://mireap.sourceforge.net/
http://www.ensembl.org
http://www.timetree.org
http://www.timetree.org
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Synteny analysis and SV calling.  We used Mauve Contig Mover51 to order donkey genome drafts 
relative to the Thoroughbred horse genome. Then, we used MUMmer52 to perform whole-genome syn-
teny analysis. Genome rearrangements were identified using the nucmer module. The parameter was 
Options “-c 800 -g 300–l,100”.
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