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A B S T R A C T

Chronic stimulation (24 h) with vasopressin leads to hypertrophy in H9c2 cardiomyoblasts and this is accom-
panied by continuous activation of phospholipase C. Consequently, vasopressin stimulation leads to a depletion
of phosphatidylinositol levels. The substrate for phospholipase C is phosphatidylinositol (4, 5) bisphosphate
(PIP2) and resynthesis of phosphatidylinositol and its subsequent phosphorylation maintains the supply of PIP2.
The resynthesis of PI requires the conversion of phosphatidic acid to CDP-diacylglycerol catalysed by CDP-
diacylglycerol synthase (CDS) enzymes. To examine whether the resynthesis of PI is regulated by vasopressin
stimulation, we focussed on the CDS enzymes. Three CDS enzymes are present in mammalian cells: CDS1 and
CDS2 are integral membrane proteins localised at the endoplasmic reticulum and TAMM41 is a peripheral
protein localised in the mitochondria. Vasopressin selectively stimulates an increase CDS1 mRNA that is de-
pendent on protein kinase C, and can be inhibited by the AP-1 inhibitor, T-5224. Vasopressin also stimulates an
increase in cFos protein which is inhibited by a protein kinase C inhibitor. We conclude that vasopressin sti-
mulates CDS1 mRNA through phospholipase C, protein kinase C and cFos and provides a potential mechanism
for maintenance of phosphatidylinositol levels during long-term phospholipase C signalling.

1. Introduction

Several agonists including norepinephrine, angiotensin II and va-
sopressin (VP) acting on Gq-protein coupled receptors induce hyper-
trophy of cardiac myocytes [1–5]. Gq-protein coupled receptors acti-
vate phospholipase C (PLC) resulting in the generation of the soluble
second messenger, inositol (1,4,5) trisphosphate (IP3) and the mem-
brane-bound diacylglycerol (DG). IP3 mobilises Ca2+ from intracellular
stores of the endoplasmic reticulum (ER) whilst DG in the presence of
Ca2+ activates protein kinase C (PKC). In addition to the generation of
the second messengers, PLC activation can also result in the decrease in
phosphatidylinositol (4,5) bisphosphate (PIP2) levels. PIP2 can regulate
many cellular functions including the actin, cytoskeleton, ion channels

and endocytosis. Besides Gq-protein-dependent PLC signalling, some
receptors including the VP V1A receptor can also signal via G-protein
independent, G-protein-coupled receptor kinase (GRK)-dependent me-
chanisms [6]. Ligand binding results in GRK-mediated phosphorylation
of the C-terminal of the GPCR. β-Arrestins can bind to the phosphory-
lated C-terminal to act as a scaffold for additional signalling pathways.

Most studies focussing on the impact of VP signalling have been
performed in neonatal cardiomyocytes and H9c2 rat myoblasts, where
each express high levels of V1R [1,3,5]. The hypertrophic response to
VP requires its continual presence for a period of 16–24 h. VP stimulates
protein synthesis without an increase in cell number [1]. Cardiomyo-
cyte cell lines such as H9c2 cells are established models for studying
hypertrophy and show similar hypertrophic responses to primary
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neonatal cardiomyocytes in vitro [2]. The H9c2 cells are derived from
embryonic rat ventricular myocytes and can be differentiated towards a
more mature form by incubating the cells with all-trans retinoic acid in
the absence of serum [7–9]. Differentiation promotes an increase in
mitochondrial mass but the hypertrophic response is observed in both
the undifferentiated and differentiated H9c2 cells [1,10].

Phospholipase C (PLC) activation is accompanied by the resynthesis
of PI via a series of enzymatic reactions at the ER, known at the ‘PIP2
cycle’ (see Fig. 1) [11,12]. Diacylglycerol (DG) is converted to phos-
phatidic acid (PA) at the plasma membrane by DG kinases and trans-
ported to the ER where it is converted into PI by two enzymes, CDP-
diacylglycerol synthase (CDS) and PI synthase (PIS). The newly-syn-
thesised PI is transported back to the plasma membrane via lipid
transporters of the PITP family where it can be sequentially phos-
phorylated by the resident PI-4-kinase and PIP-5-kinase to PIP2 [11,13].
Reciprocal coupled transport of PA and PI is carried out by PITPNM1/
RdgBα/Nir2 proteins [14–17]. The rate-limiting step in the synthesis of
PI is the CDS enzymes which catalyse the conversion of PA and CTP to
CDP-DG. CDP-DG is essential for both PI and cardiolipin synthesis.
There are three CDS enzymes in mammalian cells, which belong to two
evolutionary distinct families (see Fig. 6A). TAMM41 is a peripheral
membrane protein found exclusively on the inner mitochondrial
membrane where it provides the substrate CDP-DG for cardiolipin
synthesis [9,18]. In comparison, CDS1 and CDS2 are integral membrane
enzymes localised to the ER; they show 73% identity and 92% simi-
larity in their amino acid sequence but may exhibit very different ex-
pression patterns [19]. CDS2 is ubiquitously expressed whilst CDS1 is
mainly expressed in brain, kidney and testis [19]. More recent analysis
of mRNA levels indicates that CDS1 and CDS2 are expressed in most
tissues (www.genecards.org). CDS1 and CDS2 enzymes show apparent
selectivity for the different acyl chains of PA when examined in vitro
using over-expressed enzymes [20]. In this study, CDS2 was found to
prefer sn-1-stearoyl-sn-2-arachidonyl-PA as substrate whilst CDS1
showed no particular substrate specificity. In contrast, CDS1 was found
to prefer sn-1-stearoyl-sn-2-arachidonoyl-PA as substrate although both
PA from egg yolk lecithin and di-oleoyl-PA were also used [21]. PI

species are unusual amongst the major class of lipids in that they are
often found to have a highly restricted range of acyl chains with a C18:0
(stearoyl) chain at the sn-1 position and C20:4 (arachidonoyl) chain at
the sn-2 position predominantly [22,23]. This is particularly the case
for mammalian tissue as opposed to cultured cell-lines [22]. However,
PI, once synthesised, undergoes acyl chain remodelling to acquire its
final acyl chain specificity [23–26].

In this study, we have examined how H9c2 cells maintain their PI
levels during continuous stimulation of PLC when exposed to VP for
extensive periods of time. We confirm that H9c2 cells show a hyper-
trophic response when exposed to VP for 24 h and demonstrate that this
is accompanied by continuous stimulation of PLC activity.
Phosphatidylinositol levels decreased and the cells compensate by in-
creasing CDS1 mRNA. We identify protein kinase C and cFos to be re-
sponsible for the increase in CDS1 mRNA.

2. Material and methods

2.1. Materials

[Arg8]-VP (Cat. No. V9879) was purchased from Sigma-Aldrich. The
AP-1 inhibitor, T-5224, was purchased from Cambridge Biosciences.
GRP75 (mortalin) cloneN52a/42mouse monoclonal was from
BioLegend. cFos antibody (Cat. No. #4384), p-AKT (s473; Cat. No.
#9271), p-p42/44 MAPK (T202/Y204; Cat. No. #4370) and AKT (Cat.
No. #9272) were obtained from Cell Signalling Technology. CHOP
antibody (MA1250) was purchased from Life Technologies. GAPDH
(MA5-15738) was from Thermofisher. Antibodies to PITPα PAb 674
were made in-house and have been described previously [27]. ZFPL1
[28] was a gift from Martin Lowe from the University of Manchester.
Folch extract (brain extract Type 1 enriched in phosphoinositides was
obtained from Sigma (Cat. No. B1502). Myo-[2-3H(N)]-inositol (Cat.
No. NET114A005MC) was purchased from Perkin Elmer. Bisindo-
lylmaleimide I (Cat. No. 203290) was purchased from Calbiochem.
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Fig. 1. The PIP2 cycle.
Stimulation of phospholipase C by VP acting on its G-protein-coupled receptor V1A results in the hydrolysis of PIP2 and formation of the second messengers, IP3 and
DG. DG is phosphorylated to PA at the plasma membrane by DG kinase (DGK) and transferred to the ER. At the ER, PA and CTP are enzymatically converted to CDP-
DG by CDS enzymes (CDS1 and CDS2). CDP-DG is synthesised into PI and this is catalysed by the enzyme PI synthase (PIS). PI is transferred to the plasma membrane
for phosphorylation to PI(4,5)P2 by the resident enzymes, PI4KIIIα and PIP5K. Transfer of PI and PA transfer is carried out by members of the PITP family. Li+ blocks
the activity of inositol monophosphatase thus allowing the accumulation of IPs. PI, phosphatidylinositol; PITPs, phosphatidylinositol transfer proteins; PI4P, PI 4-
phosphate; PLC, phospholipase C; DG, diacylglycerol; PA, phosphatidic acid; IP, inositol phosphate, CDS, CDP-DG synthase; PIS, PI synthase; VP, vasopressin.
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2.2. Cell culture

H9c2 cells were cultured in Dulbecco's Modified Eagle Medium
(DMEM; Invitrogen, 31966-021) supplemented with 10% heat-in-
activated foetal calf serum (FCS) (Gibco, 10500-064), 0.5 iu.ml−1 pe-
nicillin and 50 μg.ml−1 streptomycin (Invitrogen, 15070-063), and
grown in the incubator with 10% CO2 at 37 °C. For all experiments,
except where indicated, the cells were transferred into M199 medium
supplemented with 0.5 iu.ml−1 penicillin, 50 μg.ml−1 streptomycin
and dialysed 1% FCS for 24 h. Incubation with VP was also carried out
in the same medium. For experiments which required labelling with
[3H]-inositol, the cells were also labelled in the same media.
Medium199 was selected for labelling purposes as it contains 0.05mg/l
(0.28 μM) of myo-inositol compared to DMEM that contains 7.2 mg.l−1

(40 μM). Knock-down of CDS1 and CDS2 was carried out as described
previously [9].

2.3. Immunofluorescence

H9c2 cells were grown on glass coverslips (19mm, thickness 0). The
cells were serum starved overnight and finally stimulated with 1 μM VP
for 24 h in DMEM containing antibiotics, but no FCS. Cells were washed
in phosphate-buffered saline (PBS) and subsequently fixed with 4%
paraformaldehyde in PBS for 30min at room temperature. Following a
further two washes in PBS supplemented with 100mM glycine, cells
were permeabilised with PBS containing 0.2% Triton X-100 and
100mM glycine for 10min at room temperature. Cells were then wa-
shed again three times, before blocking with blocking buffer (0.1% BSA
in PBS with 100mM glycine), for 30min at room temperature.

Cells were incubated with primary antibodies (GRP75 1:200
(mouse), ZFPL1 1:200 (sheep)) for 60min at room temperature. The
cells were washed 3 times for 3min with the blocking solution. The
specific secondary antibodies were then added, alongside the chemical
stains; 49,6-diamidino-2-phenylindole (DAPI) (400 μg/ml) for nuclei
and Rhodamine-phalloidin (7 nM) for actin, for 30min at room tem-
perature in the dark, diluted in the blocking buffer. Following incuba-
tion with the chemical stains and secondary antibodies, cells were
washed three times with blocking buffer, three times with PBS, and
finally rinsed with distilled water before mounting on a microscope
slide with Fluoroshield (Sigma, F6182) and sealing the slide with nail
varnish.

Quantification of cell length was monitored using CellSens
Dimension Imaging software by Olympus.

2.4. Measurement of phospholipase C activity

Phospholipase C activity was monitored by measuring the release of
labelled inositol phosphates (IPs) from H9c2 cells prelabelled with
[3H]-inositol for 72 h. H9c2 cells were seeded confluently (~3.5×105)
and labelled for 3 days with [3H]-inositol (1 μCi/ml) in M199 supple-
mented with 1% dialysed FCS and antibiotics in 6 well plates. At the
end of the third day, the cells underwent one of a variety of treatments:
24 h ± 1 μM VP in the presence of 10mM LiCl, 24 h ± 1 μM VP with
10mM LiCl only present for the final 20min, and 24 h ± 1 μM VP with
no LiCl added. In some experiments, the cells were stimulated for
20min with± 1 μM VP and 10mM LiCl.

Cells were stimulated at 37 °C in 10% CO2 for the indicated times. At
the end of the incubation, the cells were placed on ice, the medium was
removed and the cells quenched with 500 μl of ice-cold methanol. The
cells were scraped and transferred to a chloroform-resistant tube. The
wells were rinsed with a further 500 μl of methanol and combined with
the first extract. Finally, the wells were washed with 900 μl water,
which was added to the methanol extracts. Chloroform (1ml) was then
added directly to the tubes and the combined extracts were vortexed for
1min. Following centrifugation to separate the phases, the IPs were
recovered in the aqueous phase and were analysed on Dowex columns

[29]. The [3H]-IPs were separated from inositol and glyceropho-
sphoinositol by passage through Dowex 1×8 anion exchange resin.
1 ml of the aqueous extract was loaded on to columns. The columns
were washed with 6ml of water to remove inositol and glyceropho-
sphoinositol was removed with 6ml of 60mM sodium tetraborate/
5mM sodium formate. [3H]-IPs were then eluted with 3ml 1M am-
monium formate in 0.1 M formic acid directly into scintillation vials.
The radioactivity was counted after addition of 5ml Ultima-flo AF
(Packard; Cat. No. 6013589).

The organic phase (containing the inositol-labelled phospholipids)
had 1ml of acidified synthetic top phase added to it, including 125 μg
Folch extract (as a carrier). The samples were vortexed again thor-
oughly, and the organic layer was dried down overnight in a speedvac.
The lipids were separated by TLC with the solvent composition
chloroform (40): methanol (13): acetic acid (12): acetone (15): water
(7). The TLC plates were phosphorimaged and analysed using AIDA
software.

2.5. Measurement of phosphatidylinositol resynthesis

For the measurement of PI resynthesis, H9c2 cells were starved
overnight and incubated in a HEPES buffer (20mM HEPES, 137mM
NaCl, 3.7mM KCl, 2 mM MgCl2, 1 mM CaCl2, 1 mg/ml BSA and 5.6M
glucose) containing 5 μCi of [3H]-inositol at 37 °C for 30min. VP (1 μM)
was added to the cells and incubated for a further 60min. At the end of
the incubation, medium was discarded and the lipids extracted as above
and analysed by TLC using the solvent composition chloroform (75),
methanol (45) acetic acid (3) and water (1) [30]. The TLC plate was
exposed to iodine vapour to locate the lipids. The spot containing PI
was scraped into scintillation vials and counted.

2.6. RNA isolation and real time PCR

H9c2 cells were seeded in 10 cm dishes. When cells were settled the
media was changed to M199+1% dialysed FCS and the cells allowed
becoming quiescent overnight. In the morning, cells had the agonist or
inhibitor in the desired mix added to them: 1 μM VP, 5 μM BIM-I,
100 nM PMA, 0.5 μM Tg or 10 μM T-5224. Cells were left to incubate for
24 h unless stated otherwise. After stimulation, the cells were trypsi-
nised, washed and transferred to Eppendorf tubes for total RNA ex-
traction using the RNeasy Plus Mini Kit (Qiagen, Cat. No. 74134). RNA
(1–5 μg) was reverse transcribed into cDNA using SuperScript™ II
Reverse Transcriptase and random hexamer primers (Invitrogen). cDNA
was diluted, and 313 ng of cDNA was loaded into each well of the PCR
plate. Real-time quantitative PCR analysis was performed using KAPA
SYBR® FAST qPCR kit Master Mix (KAPABIOSYSTEMS) and primers.
(Specific Rattus norvegicus primers were designed using the website
Primer 3 based on the NCBI sequences - available on request.)
Quantitative PCR was performed using the CFX96 instrument (BioRad)
and transcript levels were determined using the 2−ΔΔCt method and
normalized to PGK1 transcript levels [31].

2.7. CDS activity in control and vasopressin-stimulated membranes

H9c2 cells were seeded at 1.1× 106 cells per T175 flask, with 2
flasks per condition. Once the cells were confluent (~72 h), the media
was replaced with DMEM supplemented with antibiotics, but without
any FCS for 24 h. The cells were stimulated with 1 μM VP for 24 h. The
cells were harvested, and the cell pellet resuspended in 0.2M sodium
bicarbonate (pH 11) to remove the peripheral protein, TAMM41, the
CDS activity present in mitochondria. The bicarbonate buffer contained
1:100 dilution v/v protease inhibitor cocktail (Sigma, P8340). The cells
were sonicated, and incubated at 4 °C on a rotating wheel for 60min.
After incubation, the membranes were recovered by centrifugation at
112,000g for 1 h at 4 °C. The pellet was resuspended in CDS buffer
(50mM Tris-HCL (pH 8.0), 50 mM KCl, 0.2mM EGTA (ethylene glycol
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tetraacetic acid)) supplemented with 1/100 v/v protease inhibitor
cocktail and sonicated once more. CDP diacylglycerol synthase (CDS)
activity was determined exactly as described previously [9].

2.8. Western blotting

H9c2 cell were stimulated with VP and at the end of the incubation,
the media was removed and the cells harvested in RIPA buffer with 1/
100 v/v protease inhibitors. The protein content of the lysates was
determined using the BCA (bicinchoninic acid) assay and the proteins
(50 μg) were separated by SDS PAGE on Invitrogen NuPAGE 4–12% Bis-
Tris gels. For Western blot, antibodies were used at the following di-
lutions: CHOP 1:1000; PITPα 1:1000; p-AKT (s473) 1:1000; AKT
1:1000; GAPDH 1:2500; p-p42/44 MAPK (T202/Y204) 1:1000; cFos
1:500.

2.9. Statistical analysis

Statistical analysis was performed using Prism 6 (GraphPad soft-
ware for Science, San Diego, CA USA).

3. Results

3.1. Hypertrophic response of H9c2 cells with vasopressin treatment

We initially confirmed that stimulation of H9c2 cells with VP causes
hypertrophy. After transferring the cells in media containing 1% FCS
overnight to render them quiescent, VP was added for 24 h. A char-
acteristic hypertrophic response was observed in the morphology of the
VP-stimulated cells (Fig. 2A); this includes an increase in cell size and
increased protein synthesis. Enlargement of the cells was quantified by
measuring the length of the cells (Fig. 2B). Additionally the number of
cells in the culture dish were the same although the recovery of protein
mass was ~23% higher (average of 13 experiments) indicating an in-
crease in cell size.

3.2. Acute addition of vasopressin stimulates the phosphoinositide cycle

We first examined the signalling pathways activated by acute ad-
dition of VP. Addition of VP for 20min results in the robust activation
of PLC monitored by measuring the accumulation of [3H]-IPs in lithium
chloride-treated cells. (Li+ inhibits the enzyme, inositol monopho-
sphatase) (see Figs. 1, 3A). (Confluent H9c2 cells were prelabelled by
maintaining the cells in the presence of [3H]-inositol for 72 h). Al-
though the substrate for PLC is mainly PI(4,5)P2, it is rapidly re-
generated by sequential phosphorylation of PI (Fig. 1). PI is the main
phosphoinositide of the total pool of phosphoinositides and thus the
amount of labelled IPs formed during stimulation normally exceeds the
amount of labelled PIP2 present at the start [29]. Stimulation with VP
for 20min led to a reduction in all three phosphoinositides, PI, PIP and
PIP2 (Fig. 3B). The PI levels decreased by ~20% (Fig. 3B and C). Im-
portantly, compensatory resynthesis of PI (see pathway in Fig. 1) was
also observed (Fig. 3D). This was monitored by incubating the H9c2
cells with VP in the presence of [3H]-inositol for 1 h. A robust increase
in PI labelling reflecting enhanced synthesis was observed (Fig. 3D).

We also monitored the effects of VP stimulation on AKT and MAP
kinase phosphorylation. Addition of VP for 20min caused a substantial
reduction in AKT phosphorylation and no changes in MAP kinase
phosphorylation (Fig. 3E).

3.3. Sustained phospholipase C activation of H9c2 cells with vasopressin

Phospholipase C plays an important role in the signal transduction
mechanisms of cardiac hypertrophy. For hypertrophic responses, car-
diomyocytes or H9c2 cells need to be exposed to VP for a sustained
period e.g. 16–24 h (Fig. 2). Although VP stimulates PLC activity when
acutely added (Fig. 3), it is not known whether the PLC activity is
sustained for long periods. We first examined PLC activation after a 24 h
period with VP by monitoring the accumulation of [3H]-IPs in the
presence of Li+. An increase in IPs was observed that was entirely
dependent on the presence of Li+ (Fig. 4A; compare the light grey bars
with the grey bars). In order to examine whether PLC activity remains
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Fig. 2. Vasopressin causes a hypertrophic phenotype in H9C2 cells.
[A] H9c2 cells were cultured in DMEM without FCS overnight prior to addition of VP (1 μM) to the same medium for 24 h. The cells were fixed and stained with
Rhodamine-phalloidin (F-actin), DAPI (nucleus) and GRP75 (mitochondrial marker). (a) The cell length of a control cell, 85.3 μm; (b) VP-stimulated cell, 211 μm. (a)
and (b) at 40× magnification; (c) and (d) at 10× magnification. Scale bar in (a) and (b), 20 μm; and in (c) and (d), 100 μm.
[B] The average cell length was measured and was found to increase from 91 to 135 μm. Unpaired two-tailed test P < 0.0001. Control, n= 140 cells; VP, n= 172
cells.
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continuously active over a 24 h period, we stimulated the cells with VP
for 23 h 40min in the absence of Li+ (under these conditions no IPs
would accumulate). Li+ was added for the final 20min only (Fig. 4A,
dark grey bars). A robust increase in [3H]-IPs is observed (Fig. 4A; dark
grey bars). This result confirms that PLC remains continuously active
even after 24 h of VP treatment.

The impact of PLC activity on the levels of PI was simultaneously
monitored. Sustained stimulation over 24 h led to a large drop in PI
levels (Fig. 4B). A drop in PIP and PIP2 was also evident. In principle,
the presence of Li+ might affect the availability of inositol for the re-
synthesis pathway and therefore influence the resynthesis of PI. To
examine this, we also monitored the decrease in PI levels after VP sti-
mulation in the absence of Li+. The reduction in PI upon VP stimulation
after 24 h was slightly less compared to that observed in the presence of
Li+ (Fig. 4C).

Previous studies have suggested that CDS2 is the enzyme required
for the resynthesis of PI after PLC activation because of its preference
for PA enriched in stearic and arachidonic acid (see Fig. 1) [20]. We
used siRNA to silence CDS1 and CDS2 as described previously [9].
Knockdown of CDS1 or CDS2 caused a reduction in PI levels (Fig. 5A) as

well as in PIP and PI(4,5)P2. Upon examination of the cells by micro-
scopy, it was observed that the cells had significant morphological
changes. In particular, the actin filaments were disrupted, and the Golgi
and the mitochondrial network was fragmented (Fig. 5B). Recovery of
the CDS knockdown cells after stimulation with VP was compromised
making it difficult to test the requirement of CDS1 versus CDS2 during
resynthesis of PI.

3.4. Vasopressin stimulates an increase in CDS1 mRNA

The rate-limiting enzyme for PI resynthesis is CDS (Fig. 1). To ex-
amine whether sustained stimulation affects the expression of the CDS
enzymes, we monitored mRNA levels of the three CDS enzymes. CDS1
and CDS2 are related enzymes expressed at the ER whilst the unrelated
enzyme TAMM41 is present in the mitochondria [9] (Fig. 6A). VP
present for 24 h stimulates an increase in the mRNA of CDS1 with no
changes in CDS2 or TAMM41 (Fig. 6B). The increase in CDS1 mRNA
ranged from 6 to 20 fold. The increase in CDS1 mRNA plateaued at
about 16–24 h (Fig. 6C).

As no validated antibodies to CDS1 are available (see [9]), we
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Fig. 3. Acute addition of Vasopressin stimulates the PIP2
cycle in H9c2 cells.
[A] H9c2 cells were labelled with [3H]-inositol for 48 h in
M199 supplemented with 1% dialysed serum. VP (1 μM)
was added for 20min and the labelled IPs were monitored
as an index of PLC activity. The IPs formed are expressed as
a percentage of the total labelled inositol lipids. The results
are from three independent experiments carried out in
triplicate.
[B] [3H]-inositol-labelled cells (as above) were stimulated
with VP and the lipids extracted and separated by TLC. VP
causes a reduction in phosphoinositide levels including
phosphatidylinositol after 20min of activation. The posi-
tion of the different inositol lipids is indicated.
[C] The decrease in PI was quantitated from three in-
dependent experiments carried out in triplicate.
[D] VP stimulates the resynthesis of PI. H9c2 cells were
pre-incubated with [3H]-inositol for 30min after which
buffer (control) or VP (1 μM) was added. After 60min, the
cell lipids were extracted for analysis of the incorporation
of [3H]-inositol into PI. The results are from seven in-
dependent experiments carried out in triplicate.
[E] Effect of VP on p-AKT (Ser473) and p-MAPK in H9c2
cells. VP causes a decrease in p-AKT and no effect on p-
MAPK. Total AKT and PITPα were used as loading con-
trols.
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monitored the CDS activity in membranes after stripping the peripheral
proteins with sodium bicarbonate buffer to remove TAMM41 (Fig. 6D).
An increase in CDS activity was observed in membranes prepared from
VP-stimulated cells indicating that the increase in mRNA is likely ac-
companied by an increase in protein levels.

We also examined whether VP treatment affected any other com-
ponents of the PIP2 resynthesis pathway, specifically, PIS and Nir2/
PITPNM1. VP had no effect on either PIS or Nir2 mRNA.

3.5. The increase in CDS1 mRNA is dependent on protein kinase C

VP stimulation causes an increase in cytosol Ca2+ and in PKC ac-
tivity. To examine whether the increase in CDS1 mRNA was dependent
on PKC activity, we used PMA to directly activate PKC. PMA stimulates
an increase in CDS1 mRNA similarly to VP (Fig. 7A). To confirm that
PKC was responsible when VP was used as a stimulus, the PKC in-
hibitor, bisindolylmaleimide I (BIM-1) was applied. As shown in
Fig. 7A, the increase in CDS1 mRNA by VP was inhibited by the PKC
inhibitor, BIM-1. In contrast, thapsigargin treatment which can increase
cytosol Ca2+ was without effect on CDS1 mRNA levels.

3.6. Vasopressin causes an increase in cFos

The protein cFos is a member of the AP-1 family of inducible
transcription factors whose expression is tightly regulated. It has been
previously shown that PKC is involved in PLC-mediated increases in
cFos gene expression in adult cardiomyocytes [32,33]. We therefore
examined whether VP stimulates an increase in cFos in H9c2 cells and
whether this might be responsible for the increase in CDS1 mRNA. VP
stimulates a robust increase in cFos (Fig. 7B). The increase in cFos is

dependent on PKC as it is inhibited by the PKC inhibitor, BIM-1
(Fig. 7B).

To examine whether cFos is responsible for the increase in VP-sti-
mulated CDS1 mRNA we took advantage of an AP-1 inhibitor, T-5224
[34,35]. AP-1 contains members of the Fos and Jun families, which
form either Jun-Jun homodimers or Fos-Jun heterodimers and bind to
the consensus DNA sequence 5′-TGAGTCA-3′, which is known as the
AP-1 binding site. T-5224 inhibits the activity of the cFos/cJun AP-1
heterodimer [36,37]. The stimulated increase in CDS1 mRNA by VP
was inhibited by T-5224 confirming that CDS1 mRNA is regulated by
PKC-cFos pathway (Fig. 7C).

3.7. A decrease in PI levels in vasopressin-stimulated H9C2 cells does not
cause ER stress

In zebrafish larvae, lack of de novo PI synthesis due to a mutation on
PIS led to ER stress specifically in intestinal epithelial cells [38,39].
These cells showed disruption of cellular architecture, mitochondrial
defects and increased autophagy and cell death. Such disruption was
also noted in the H9c2 cells knocked down for CDS1 and CDS2
(Fig. 5B). These observations imply that loss of PI can cause ER stress.
To examine whether the decrease in PI levels that occur with vaso-
pressin stimulation causes ER stress, we monitored CHOP, a transcrip-
tion factor expressed during ER stress [40]. Vasopressin failed to induce
ER stress unlike thapsigargin which was found to increase CHOP pro-
tein. However, it was noted that the increase in CHOP by thapsigargin
was enhanced when the cells had also been treated with VP (Fig. 7D).
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4. Discussion

4.1. Vasopressin increases CDS1 mRNA via protein kinase C and cFos

The mammalian heart is a dynamic organ that enlarges in response
to physiological and pathological stimuli due to the increase in size of
individual cardiac myocytes. Multiple lines of evidence support the
importance of the Gαq-phosphoinositide signalling system in the de-
velopment of pathological hypertrophy [41,42]. Gαq-protein coupled
receptor (GPCR) agonists such as angiotensin II, VP, endothelin-1, and
phenylephrine activate PLC-mediated hydrolysis of PI(4,5)P2, which
leads to the activation of PKC by DG and by a rise in cytosol Ca2+ by I

(1,4,5)P3. Previous studies have demonstrated that PKC activation plays
an important role in the development and progression of cardiac hy-
pertrophy [43,44].

In this study, we have examined the impact of sustained VP sig-
nalling on phosphatidylinositol turnover during PLC signalling in a
cardiac cell-line, H9c2. Under these conditions, H9c2 cells undergo
hypertrophy. Our findings indicate that VP stimulates PLC activity
continuously over the 24 h period and PI levels are substantially re-
duced. To compensate for this loss, PI resynthesis is increased. The rate
limiting step in the resynthesis of PI is the enzyme CDS and here we
show that of the two ER-localised CDS enzymes, CDS1 expression is
increased following VP stimulation. Other studies in zebrafish and
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Drosophila also suggest that CDS activity regulates both the availability
of PIP2 and the extent of PIP2-dependent signalling. In zebrafish, CDS-
dependent phosphoinositide availability limits VEGF-A signalling [45].
Like humans and mice, zebrafish have two CDS genes, cds1 and cds2.
Cds2mutants result in vascular-specific defects in vivo and this is due to
the failure of VEGF-A-stimulated PLC activity; the phenotype could be
rescued by exogenous PIP2 indicating that CDS2 controlled the supply

of PIP2. It is noteworthy that experiments done in vitro using HUVEC
endothelial cells, found that knockdown of either CDS1 or CDS2 cause
defective invasion and reduced ERK activation, an in vitro model for the
vascular defects observed in the animals. Drosophila expresses a single
cds gene, and a mutation in cds displays light-induced irreversible loss
of phototransduction and retinal degeneration [46]. Phototransduction
in flies is entirely dependent on PLC activation and it was reported that
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the amplitude of the light response in Drosophila photoreceptor cells is
modulated by Cds levels, showing that Cds-dependent PIP2 recycling
limits PLC–mediated phototransduction in the fly retina [46–48].

VP causes an increase in CDS1 but not CDS2 mRNA. CDS1 and CDS2
are integral membrane proteins and can form homodimers [9]. Like-
wise, the Cds enzyme from the bacterium Thermotoga maritima is also a
dimer [49]. We note from Biogrid database that CDS1 and CDS2 also
interact (https://thebiogrid.org/114295/table/homo-sapiens/cds2.
html) suggesting that they may form heterodimers. Previous studies
using different chain lengths of PA as substrate suggested that CDS2 has
a preference for 1-stearoyl–2-arachidonoyl PA whilst CDS1 has no
preference [20]. However, another study using CDS1 showed that CDS1
had a preference for 1-stearoyl-2-arachidonoyl PA [21]. The substrate
specificity for the heterodimer is unknown. In cardiomyocytes, the
predominant DG kinase is the zeta form and cardiac-specific over-ex-
pression in mice blocks the GPCR-agonist-induced activation of the DG-
PKC signalling thus inhibiting cardiac hypertrophy [41]. Interestingly,
DG kinase zeta appears to prefer C16:C16-DG as substrate [50]. Thus, it
would appear that the PA formed during PLC signalling in cardio-
myocytes might not possess the canonical fatty acid composition. It is
noteworthy that the analysis of the fatty acid composition of PI from a
variety of cultured cell lines and tissues indicate a variable amount of
enrichment in stearoyl-arachidonoyl PI [22,51]. Further studies will be
needed to firmly establish the fatty acid profiles of the intermediates of
the PIP2 cycle in cardiomyocytes.

In H9c2 cells, activation of PKC is required for the increase in CDS1
mRNA as inhibitors of PKC block the response. Moreover, PMA in-
creases CDS1 mRNA. In a previous study, PMA treatment for 18–24 h of
C3A human hepatoma cells resulted in increased PI synthesis which was
sensitive to inhibition by PKC inhibitors [52]. We suggest that this
might be due increased expression of CDS1 mRNA as shown for H9c2
cells here. Other studies using cardiomyocytes have reported that
norepinephrine stimulates cFos expression due to PLC activity via PKC
[33]. cFos is a transcription factor and in VP-stimulated cells, cFos
expression is also increased in a PKC-dependent manner. Whilst our
work identifies cFos as a regulator of CDS1 mRNA expression, a pre-
vious study has shown that an increase in cFos protein causes an in-
crease in phosphoinositide labelling and this was due to the direct ac-
tivation of CDS1 by cFos at the ER [53,54]. A physical interaction
between the N-terminal domain of cFos and CDS1 was found to increase
CDS1 activity in vitro.

4.2. The CDS1 and CDS2 genes are highly regulated

The CDS1 gene appears to be a highly regulated gene. Other studies
have reported regulation by different mechanisms (summarised in
Table 1). In PGC-1α/β heart-specific knockout mice, there is a decrease
in CDS1 expression but an increase in CDS2 mRNA expression. More-
over, expression of PGC-1α or -1β increased CDS1 mRNA in neonatal
rat cardiac myocytes [55]. Estrogen-related receptor (ERR) is a well-
characterised PGC-1α co-activator target [56] and two conserved ERR-
binding site sequences present at the CDS1 promoter region was found
to be responsible for PGC-1α-dependent activation. Yet another reg-
ulator is ZEB1, an E-Box transcriptional repressor [57]. The expression

of CDS1 mRNA is inversely correlated with ZEB1 in a series of 22
NSCLC (non-small cell lung cancer) cell-lines. This result was confirmed
by over-expression of ZEB1 in H358 cells where a decrease in CDS1
mRNA was noted whilst knockdown of ZEB1 resulted in increased CDS1
mRNA expression. An increase in CDS1 but not CDS2 mRNA was also
found during the differentiation of 3T3-L1 preadipocytes to adipocytes
and knockdown of CDS1 inhibited adipocyte differentiation [58].

Palmitic acid, known to cause ER stress [59], also promotes an in-
crease in both CDS1 and CDS2 mRNA [60]. Co-occupancy of p53 and
SIRT6 on CDS1 and CDS2 promoters is responsible for increased gene
expression [60]. It is noteworthy that sustained VP stimulation does not
lead to ER stress unlike thapsigargin. Thapsigargin causes ER stress by
depleting ER Ca2+ stores. Although IP3 would also deplete ER Ca2+

stores, these stores get replenished [61]. In H9c2 cells, ER stress in-
duced by thapsigargin is not accompanied by an increase in CDS1
mRNA (Fig. 7).

4.3. Knockdown of CDS1 and CDS2 phenotypes

Knockdown of CDS1 and CDS2 has detrimental effects on the H9c2
cells not dissimilar to that observed in the intestinal epithelial cells of
the zebrafish larvae [39]. The simplest explanation for this drastic
phenotype is the loss of PI and its phosphorylated derivatives, PIP and
PIP2, which have significant effects on both the Golgi and the actin
cytoskeleton respectively. Thus, why are VP-stimulated cells protected
from this fate as they also show a decrease in the phosphoinositide
levels? Indeed, a higher drop in PI levels is recorded with VP compared
to the cells knocked down for CDS1 or CDS2. The answer must lie in the
ability of VP to stimulate PI resynthesis and the increased expression of
CDS1 would assist in increasing the rate. Moreover, de novo PI synth-
esis would be unaffected in VP-stimulated cells. Thus in VP-stimulated
cells, the on-going PI resynthesis must provide protection in contrast to
the knockdown cells, where de novo PI synthesis would also be af-
fected. The observation that knockdown of either CDS1 or CDS2 leads
to loss of PI suggest that both enzymes contribute in maintaining PI
levels. Similar observations have been reported for HeLa cells knocked
down for either CDS1 or CDS2 [58].

4.4. Vasopressin causes a reduction in AKT phosphorylation

In addition to stimulating PLC, VP caused a decrease in the phos-
phorylation of AKT (Fig. 3E). Activation of AKT requires sequential
phosphorylation by PDK1 at Ser473 and mTORC2 complex at Thr308,
which is dependent on PI(3,4,5)P3 binding to the pleckstrin homology
domain of AKT [62]. These phosphorylations are reversed by protein
phosphatase 2A. Some GPCRs are rapidly phosphorylated by members
of a family of GPCR kinases (GRKs) which in turn leads to the re-
cruitment of β-arrestins. β-arrestin-2 can act as a scaffold for the for-
mation of a signalling protein complex allowing GPCRs to signal in-
dependently of G-proteins. The formation of such a signalling complex
comprising of p-AKT, β-arrestin-2, and protein phosphatase 2A has
been described for D2 dopamine receptors, which leads depho-
sphorylation and inactivation of AKT in the presence of dopamine [63].
Another example is glutamate, which also causes a decrease in AKT

Table 1
Regulation of CDS1 and CDS2 mRNA by different mechanisms.

Treatment Up-regulated Down-regulated Comments References

ZEB1 over-expression CDS1 Cells expressing ZEB1 at high levels correlated with low CDS1 levels. [57]
PGC-1α/β heart-specific knockout mice CDS2 CDS1 Gene expression profiling revealed reduced expression of CDS1 [55]
PGC-1α or PGC-1β over-expression CDS1 Over-expression in Neonatal rat cardiac myocytes [55]
Vasopressin CDS1 H9c2 cells stimulated for 16 h. CDS1 expression inhibited by PKC and AP-1 inhibitor This paper
Palmitic acid via p53 with SIRT6 CDS1 and CDS2 p53 and SIRT6 bind the promoters of CDS1 and CDS2 [60]
PMA CDS1 H9c2 cells stimulated for 24 h. This paper
Adipocyte differentiation CDS1 3T3-L1-preadipocytes differentiated in vitro for 8 days [58]
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phosphorylation in neurons [64]. VP receptors also appear to regulate
AKT phosphorylation very likely by a similar mechanism. However, we
cannot exclude the possibility that PIP2 depletion by PLC could reduce
substrate availability for PIP3 production that could account for the
decrease in AKT phosphorylation.

5. Conclusion

In conclusion, H9c2 cells respond to chronic VP stimulation by
upregulating the CDS1 mRNA. The increase in CDS1 mRNA is depen-
dent on protein kinase C which increases cFos. We suggest that the
increase in CDS1 mRNA and consequently its activity would hasten the
replenishment of the pool of PI and thus restore PIP2 levels.
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