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Over the last 20 years, the designs of tissue engineered heart valves have evolved

considerably. An initial focus on replicating the mechanical and structural features of

semilunar valves has expanded to endeavors to mimic the biological behavior of heart

valve cells as well. Studies on the biology of heart valves have shown that the function

and durability of native valves is underpinned by complex interactions between the valve

cells, the extracellular matrix, and the mechanical environment in which heart valves

function. The ability of valve interstitial cells to synthesize extracellular matrix proteins

and remodeling enzymes and the protective mediators released by endothelial cells

are key factors in the homeostasis of valve function. The extracellular matrix provides

the mechanical strength and flexibility required for the valve to function, as well as

communicating with the cells that are bound within. There are a number of regulatory

mechanisms that influence valve function, which include neuronal mechanisms and the

tight regulation of growth and angiogenic factors. Together, studies into valve biology

have provided a blueprint for what a tissue engineered valve would need to be capable of,

in order to truly match the function of the native valve. This review addresses the biological

functions of heart valve cells, in addition to the influence of the cells’ environment on

this behavior and examines how well these functions are addressed within the current

strategies for tissue engineering heart valves in vitro, in vivo, and in situ.

Keywords: engineered tissue heart valves, scaffolds, valve interstitial cells, valve endothelial cells, extracellular

matrix, calcification, mechanobiology

INTRODUCTION

The quest to tissue engineer heart valves is stimulated by the limitations of currently available valve
substitutes, which due to a lack of viable cells, either fail to replicate the sophisticated function of the
native valve or undergo degeneration and eventual failure. The aim of heart valve tissue engineering
projects is to produce a valve that can mimic more accurately the complex biological function
of the native valves (1, 2). The ultimate aim is to produce a valve that has sustained durability,
is haemocompatible, non-immunogenic, has the ability to grow, and is resistant to calcification.
To date, only nature has produced such a valve, through a tightly controlled developmental
process, that is able to function in the majority of individuals throughout their life without any
significant problems. Unsurprisingly, the advent of heart valve tissue engineering has coincided
with investigations into the biological properties of heart valves in a quest to understand how nature
has achieved the development of what tissue engineers may regard as the “Holy Grail.”
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The early studies on the biology of heart valve cells set
out to establish how the cellular and structural components of
valves influence the durability of the valve and its structure-
function relationship. They were also motivated by a need
to understand the properties of valve interstitial cells and
the extracellular matrix with a view to finding appropriate
cells and scaffold materials that would be able to recapitulate
the function of native structure in tissue engineered valves.
The initial focus for tissue engineering heart valves sought
to mimic the structure and mechanical function of the valve
cusps, i.e., functional tissue engineering. A growing number
of studies focusing on biology and mechanobiology, however,
have characterized heart valves at the molecular, protein, cellular,
and tissue level (3, 4). As a result, we are now beginning to
understand in greater depth the biological mechanisms that
are essential to the successful function and durability of heart
valves. These studies have highlighted the key roles played
by the cells and the importance of having a living valve, a
concept supported by the clinical experience with the Ross
procedure (5–7).

This article will review the current understanding of
the mechanisms that influence valve function, with respect
to the structural and cellular components of the valve
and the interaction between the cells and the extracellular
matrix, in an attempt to identify which of these factors
are most relevant to the development of tissue engineered
heart valves. Since the focus of most tissue engineering
projects is to produce a valve capable of implantation
into either the aortic or pulmonary position, this article
will focus on the biological mechanisms relevant to semi-
lunar valves.

HEART VALVE STRUCTURE-FUNCTION
RELATIONSHIP

The aortic valve consists of a number of distinct structural
components. The whole valve machinery is termed the “aortic
root” and is located between the left ventricle and the ascending
aorta. The valve cusps are attached to a crown-shaped annulus,
with the highest point of the attachment (known as commissures)
marking the boundary of the valve and the ascending aorta.
This is identified as a small ridge termed the sinutubular
junction. In the wall of the root, above the point of attachment
of each cusp, are three bulges called the sinuses of Valsalva.
Two of the sinuses give rise to left and right coronary
arteries (Figure 1).

The dynamic function of the aortic valve relies on the co-
ordinated movement of these different components. From the
subvalvular regions (left ventricular outflow tract, subaortic
curtain & fibrous trigones) up to the supravalvular regions
(sinus of Valsalva and the sinutubular junction), the geometry
of each part of the valve determines how it moves in response
to the flow of blood during the cardiac cycle (8, 9). For
example, the shape of the sinuses determines the formation
of the vortices that are important for valve closure and
maintaining coronary flow. In addition, certain structures in

FIGURE 1 | Histological, schematic and photographic representations of the

aortic root. AML, anterior mitral leaflet; LC, left coronary cusp; LFT, left fibrous

trigone; MS, membranous septum; Musc Sep, muscular septum; NC,

non-coronary cusp; RC, right coronary cusp; RFT, right fibrous trigone.

each section of the valve (cusp, annulus, sinus, sinutubular
junction) change their size, shape, and stiffness during specific
portions of the cardiac cycle to guarantee optimal valve opening,
ejection of blood from the left ventricle, rapid valve closure,
coaptation of the leaflets, and adequate coronary perfusion.
Before the aortic valve opens, the aortic root prepares by
accommodating a large volume of blood exiting from the
left ventricle thereby improving transvalvular hemodynamics
and reducing turbulent damage to the aortic cusps. This is
achieved by asymmetric changes in the shape of the root.
For instance, during the early isovolumic contraction phase,
circumferential expansion of the base is greatest in the left
annular region, and least in the non-coronary annular region
(Figure 2). These changes are accompanied by an increase in
circumferential diameter at the level of the commissures. This
conformational change in diameter is proportional to the end-
diastolic volume (9, 10).

Superimposed on the movements of the valve apparatus
are the regulatory influences that comprise active dynamism.
Central to the phenomena of active dynamism is the fact
that the valve is a “living” structure that contains a number
of key “players” that orchestrate the response of the valve
to its mechanical environment, allowing it to respond
immediately (such as by release of nitric oxide), or to adapt
to chronic changes to the environment in which it resides, as
described below.
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FIGURE 2 | Aortic annular deformation of left (L), right (R), and non-coronary

(NC) sectors of aortic annulus through different stages of the cardiac cycle

indicating expansion of the annular region of the root during diastole to

accommodate blood prior to ejection from the left ventricle (9). IVC, isovolumic

contraction; IVR, isovolumic relaxation.

FUNCTIONAL ROLES OF VALVE CELLS

Little more than 20 years ago, valve cusps were generally
considered to be collagenous flaps of tissue that passively
responded to the flow of blood through the heart. With
the expansion of interest in heart valve biology, it is now
accepted that the interstitial cells that reside within valve cusps
and the endothelial cells that cover the surface of the cusps
play a key role in maintaining the integrity and durability
of valve cusps (11). Valve cells can be categorized into a
number of distinct phenotypes (Table 1), whose characteristics
and function have been reviewed elsewhere (3, 4). From a
functional point of view, there are two distinct populations of
interstitial cells within the cusps: a fibroblast-like cell, which is
the predominant cell phenotype in mature healthy valves, and
a myofibroblast phenotype that is associated with developing
valves and those developing pathological changes (Figure 3) (4,
12). Valve interstitial cells normally express the same contractile
proteins and transcription factors found in skeletal muscle (13).
Collectively, the population of interstitial cells within valve cusps
confers the valve with two key functional properties: the ability
to contract and the capacity to synthesize extracellular matrix
components (14–17). It has been shown that the contractile
function of valve cusps is capable of regulating the mechanical
properties of cusp tissue, in that increased contractile function
causes the stiffness of the tissue to increase (18). This finding had
led to the hypothesis that cusp stiffness is dynamically regulated
by bioactive molecules that serve to optimize valve function. The
ability of valve interstitial cells to secrete extracellular matrix
proteins as well as matrix crosslinking and remodeling enzymes
indicates the role of these cells in maintaining the integrity
of the extracellular matrix and the durability of cusp tissue.

The secretory properties of valve interstitial cells are regulated
by growth factors such as TGFβs and mechano-transduction
pathways activated by the cyclical stretching of the cusps during
the cardiac cycle (Figure 4). For example, mechanical stretch
can stimulate the production of collagen, secretion of the matrix
remodeling enzymes MMPs and TIMPs, and the production of
growth factors (15, 16, 19).

In an identical manner to the vascular endothelial cells,
those that cover the surfaces of the valve cusps serve
to act as barrier between the blood components and the
underlying microstructural elements and cells of the valve
cusps (21). Valve endothelial cells share the same phenotypic
markers as other endothelial cells but reside in a vastly
different hemodynamic environment. Several studies have shown
that valvular endothelium possesses unique properties that
distinguish the cells on one side of the valve from the other,
and from other endothelial beds, particularly the endothelium
lining the aorta with which it lies in direct continuity, which
may reflect organ-specific endothelial cell differentiation and
function (21–23). These differences may be due to the patterns
of flow experienced by each side of the valve, but also to
differences in the mechanical properties of the cells on the aortic
and ventricular surfaces of the valve. The cells that reside on
the ventricular surface are significantly stiffer than those on
the opposing side. The stiffness of the cells was related to the
expression of cytoskeletal proteins, that could not be modulated
by changing the pattern of flow to that experienced by the
opposing side in a bioreactor, inferring that the difference in cell
stiffness is a property of the cells, rather than an adaptation to
the flow environment of the cells (24). Given the heterogeneous
composition of the valve layered structure, the stiffnesses of
the extracellular matrix will vary on different sides of the
leaflet, which could also affect the behavior of the endothelial
cells. Like their vascular counterparts, valve endothelial cells
synthesize thrombotic and anti-thrombotic proteins to maintain
hemostasis. This aspect of valve endothelial cell function was
shown to be sensitive to the stiffness of the adhesive substrate
on which the cells were grown; the cells cultured on softer
hydrogel platforms had significantly higher gene expression
for a wide range of anti-thrombotic and thrombotic proteins
than the cells cultured on stiffer hydrogels and tissue culture
polystyrene controls (25). Valve endothelial cells also release
bioactive molecules in response to the flow of blood over their
surfaces and to stimulation by circulating bioactive molecules.
Differences in flow patterns between both sides of the valve
are sensed by the luminal surface of endothelial cells, which
activates signaling pathways to stimulate the synthesis of nitric
oxide via the action of the enzyme nitric oxide synthase (26–
29). A co-culture model of aortic valve interstitial and endothelial
cells was used to demonstrate that the release of nitric oxide by
endothelial cells will suppress the interstitial cells from expressing
the myofibroblast phenotype (30). In addition to nitric oxide,
other bioactive molecules such as prostacyclin and endothelin-
1 are expressed and released by flow-independent mechanisms
(31–33). These substances are able to interact with both the blood
and the underlying valve interstitial cells and have a range of
differing effects on the valve.
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TABLE 1 | Phenotypes and characteristics of valve cells.

Cell type Location Function

Embryonic progenitor

endothelial/ mesenchymal cells

Embryonic cardiac cushions Give rise to VICs through an activated stage or EMT

Progenitor-VIC Bone marrow, blood, valve leaflet Provide fibroblast-VICs for valve repair. May be CD34−, CD133−, and/or S100+

Fibroblast-VIC Valve leaflet Maintain valve structure and function and prevent angiogenesis

Myofibroblast-VIC Valve leaflet SMA-containing VICs with activated cellular repair processes. Respond to valve

injury and abnormal hemodynamic or mechanical forces

Osteoblast-VIC Valve leaflet Calcification, chondrogenesis and osteogenesis in the leaflet. Secrete ALP,

osteocalcin, osteopontin and bone sialoprotein

Valve endothelial Cells Surfaces of valve leaflet Blood/valve interface, source of biological factors. Prevents cell adhesion,

platelet activation, protects against calcification

VIC, valvular interstitial cells; qVIC, quiescent valvular interstitial cells; VEC, valvular endothelial cells; EMT, endothelial to mesenchymal transformation; ALP, alkaline phosphatase; SMA,

smooth muscle α-actin.

FIGURE 3 | Schematic diagram of the relationship between different valve cell phenotypes and their functional characteristics.

DIVERSE FUNCTIONALITY OF THE
EXTRACELLULAR MATRIX

The extracellular matrix is responsible for the mechanical
strength of the valve cusp. There is a precise arrangement
and composition of the extracellular matrix proteins, which
gives the cusps three distinct superposed layers: the fibrosa,

spongiosa, and ventricularis (5). The fibrosa is on the aortic
side of the cusp while the ventricularis is on the ventricular-
facing side. The spongiosa layer lies between these two layers. The
fibrosa is comprised principally of circumferentially-oriented
collagen fibers. These collagen fibers are crimped, meaning
that deformation will cause them to straighten out before they
actually bear load. Once the collagen fibers are uncrimped, they
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FIGURE 4 | Schematic diagram illustrating the different approaches of tissue engineering. Modified from Jana et al. (20).

provide much of structural strength to the cusps. The fibrosa
also has a corrugated structure in which the folds are able
to flatten out when the valve cusp undergoes radial stretch.
In contrast, the ventricularis is mainly composed of radially-
aligned elastic fibers, conferring elasticity to the leaflets. Taken
together, the folded nature of the fibrosa, the collagen fiber
crimp, and the elastic fiber composition of the ventricularis
bestow a substantial degree of extensibility to the cusps, especially
in the radial direction. The middle spongiosa layer is rich
in proteoglycans and glycosaminoglycans, which have a high
hydrous content that allows smooth sliding of the fibrosa and
ventricularis during the various phases of the cardiac cycle,
thereby minimizing repeated microtrauma related to valve
deformation (34).

In addition to the physical strength that the extracellular
matrix gives to the valve cusps, it also provides the framework
to which the cellular components of the valve attach. This is
achieved through the binding of cell-surface proteins, such as
integrins, to specific peptide sequences on extracellular matrix
proteins. It has been shown that valve interstitial cells express α1,
α2, α3, α4, and α5 integrins to varying degrees and predominantly
β1 integrins but not β3 or β4 integrins (35). These integrin-
matrix connections not only provide anchoring points for
cell to connect to the extracellular matrix, they also serve to
stimulate the valve cells. It has been shown that integrins regulate
proliferation, differentiation, and action of growth factors in
other non-valve cell types (36–38). This observation has led
to the concept that the extracellular matrix is able to instruct
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the cells that populate the valve via communication through
integrins to intracellular signaling pathways (35, 39). These cell-
matrix connections also perform a key role in the transduction
of mechanical signals to the cells. The valve experiences a
number of different forces during each cardiac cycle, which
exposes the interstitial cells to combinations of stretch and
compression (during valve closure) and exposes the endothelial
cells to either shear stress (the effect of either laminar or
oscillatory blood flow over the ventricular and aortic surfaces
of the valve leaflets, respectively) (40, 41). These mechanical
signals are transferred from the external environment to the
cells through extracellular matrix connections to the integrins,
which connect to the intracellular cytoskeleton via a complex
of proteins within focal adhesions. As mentioned above, in
response to mechanical stimulation, valve interstitial cells secrete
collagen and increase their expression of matrix remodeling
enzymes in response to the signals experienced by the valve and
transduced to the cells (14, 15). Due to the shielding effect of
the extracellular matrix on the cells, only a portion of tissue
strain experienced by the valve during diastole is experienced
by the cells within the matrix (42). Valve endothelial cells also
adhere to extracellular matrix through binding of integrins as
well as syndecans and potentially additional cell-matrix adhesion
proteins (25).

This relationship between the extracellular matrix and the
valve cells is fundamental to the longevity of the valve and
its normal myriad of functional roles. The valve interstitial
cells provide a source of matrix proteins and remodeling
enzymes that help to sustain the integrity of the entire matrix
during the lifetime of the valve. Similarly, adhesion of the
valve endothelial cells to the basement membrane laminins
promotes the formation of a continuous endothelium that
mediates hemostasis and inflammation. These biological cues are
important during valve development and continue throughout
the life of the tissue, maintaining specialized cellular function,
and tissue regeneration. To date there have been a limited
number of studies on the expression and functional role
of integrins and other cell-matrix adhesive proteins in valve
cells (30, 35, 43–45).

THE IMPACT OF INNERVATION AND
VASCULARIZATION ON HEART VALVE
FUNCTION

Heart valves also contain nerves and blood vessels.
Immunohistochemical studies have shown a rich innervation of
cusp tissue with distinct, age-dependent patterns of innervation
by both primary sensory, and autonomic components in the
aortic valve (46). Isolated porcine aortic valve cusps have been
shown to have sympathetic and parasympathetic contractile
responses mediated by neuronal stimulation. In addition,
nitric oxide-containing nerves are also present, which mediate
relaxation of valve cusps (47). In the mitral valve, stimulation of
the vagus nerve was reported to alter leaflet stiffness in vivo in
sheep (48). The intrinsic and heterogeneous networks of afferent
and efferent nerves are likely responsible in part for the control

of valve stiffness and adaptation to changing hemodynamic
conditions (49).

In addition, the presence of cells throughout the mm-thick
leaflet suggests that valve cells have metabolic activity and
therefore require a supply of O2 above a level that can be
supplied by simple diffusion, i.e., it must be delivered through
cyclic loading-driven convection and a vascular network. Indeed,
convection due to interstitial fluid flow was calculated to enhance
the oxygen transport within the leaflets by up to 68% (50).
Additional studies have shown that the thickest regions of
the valve would be hypoxic without an additional supply of
O2 delivered via a vascular network (51–53). The relationship
between vessel density and thickness of the leaflet has found
that vessels are present when the cusp leaflet exceeded 0.5mm
(54). The requirement for O2 may be important for cell function
to maintain the normal structure and function of the valve.
Pathological valves conditions such as calcific and rheumatic
valve disease are both associated with angiogenesis (20, 55), due
possibly to hypoxic conditions within thickened valve cusps and
the expression of hypoxia induced factor 1α (HIF-1α) (56), or the
loss of anti-angiogenic factors such as chrondromodulin-1 (57).

RELEVANCE TO HEART VALVE TISSUE
ENGINEERING

The structure-function relationship, valve cells, and the
extracellular matrix are all fundamental aspects of normal heart
valve function. The relative influence of these factors in projects
focused on the tissue engineering of heart valves, however,
depends in part upon the approach being taken and the type
of valve that is going to be produced. Broadly speaking, three
approaches currently exist: in vitro, in vivo, and in situ tissue
engineering (Figure 4). With respect to the valves that are
being made, these can be then be divided into stented and free-
standing valves. However, irrespective of the approach taken,
the goal remains the same: to produce a valve that replicates the
mechanical and biological function of the native valve and that
will be durable and will be able to grow with the patient.

IN VITRO TISSUE ENGINEERING

The in vitro approach relies on finding a suitable cell source and
a scaffold onto which to seed the cells, prior to conditioning in
a bioreactor and subsequent implantation into the patient (58).
The choice of the cells and scaffold needs careful selection. From
our knowledge of heart valve biology, we have some information
regarding the expectations of the cells to be used in this approach.
Alongside considerations relating to availability of cells, their
immunogenicity, and their ability to proliferate in culture, the
functional properties of cells must also be assessed. Previous
studies have advocated for a range of candidate cell populations
to replicate the role of valve interstitial cells, such as bone
marrow-derived mesenchymal stem cells, adipose-derived stem
cells, umbilical vein progenitor cells, and saphenous vein smooth
muscle myofibroblasts (59–64). For cells that need ultimately
to function as valve interstitial cells, it is particularly relevant
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to have the ability to populate the scaffold material, secrete
extracellular matrix proteins in response to either growth factors
or mechanical stimulation, and express matrix remodeling
enzymes in the samemagnitudes as valvular interstitial cells. This
property will allow these cells to act in a similar way to valve
interstitial cells in remodeling and maintaining the extracellular
matrix of the new valve.

The in vitro approach also requires an endothelial cell source
to cover the surfaces of the tissue engineered valve. Endothelial
progenitor cells have been investigated for this purpose (65, 66),
but there has been no comprehensive assessment as to how these
cells respond to the patterns of flow that are experienced by
each side of the valve. Since side-specific valve endothelial cells
demonstrate specific mechanical and functional characteristics
(24), it will be important to assess the behavior of endothelial cell
sources under these distinct conditions. The relevant functional
responses of valve endothelium relate to their ability to suppress
calcification responses in interstitial cells and their ability to
regulate extracellular matrix secretion (11).

Equally important in this approach to tissue engineering is
the choice of the scaffold material onto which the cells are
seeded. Although scaffolds need to have the necessarymechanical
strength and distensibility, there are a number of considerations
with the choice and design of scaffold material that will
impact the compatibility with cells (Figure 5). Recapitulation
of the known anisotropic profile of cusp tissue is also essential
and will allow tissue engineered valves to expand more in
the radial direction than circumferentially, which will assist
with the coaptation of the valve cusps during valve closure.
Several methods, including newer approaches such as melt
electrowriting, have been used to produce anisotropic scaffolds
that either mimic, or structurally replicate collagen-like fibrous
microarchitecture and associated material behavior (67–72).
Some projects have developed biological scaffolds from different
preparations of collagen (73–75). These scaffolds have a potential
advantage in that the cells will recognize the integrin-binding
sequences on the collagen and bind to them accordingly.
However, some collagen scaffolds have not been found to have the

FIGURE 5 | Diagram illustrating the factors in scaffold production that can influence cell adhesion, migration, and activation in tissue engineering.
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sufficient intrinsic strength tomake their use a viable proposition.
This weakness can be potentially overcome by cross-linking the
collagen or incorporating additional extracellular components
and thereby producing a biological scaffold of sufficient strength
(76). The alternative, and more common approach, is to use
synthetic polymer materials. Although these synthetic materials
are typically stronger than biological scaffolds, especially when
they are prepared as fibrous meshes, they lack the binding
sites needed by the cell to accept biological cues as they would
through binding to extracellular matrix proteins. Attempts to
overcome this absence of biological cues have been made by
“decorating” the scaffold with peptide recognition sequences or
with extracellular matrix proteins (77).

The bioreactor is an additional integral partner in the in
vitro approach to developing a tissue engineered heart valve. The
general dogma is the use of a bioreactor to apply mechanical
loading to the engineered valve (either physiological or sub-
physiological), since that mechanical stimulation has been
shown to increase cell ingrowth in to the scaffold material
and to increase the deposition of cell-synthetized extracellular
matrix within the scaffold, resulting in mechanical properties
that more closely approximate those of native heart valves
(78). Up until several years ago, bioreactor-conditioned tissue
engineered heart valves were then implanted into animal
models as part of the preclinical development stage of these
devices (79, 80). Multiple research groups, however, reported
that the cells within the valves became strongly activated,
resulting in leaflet retraction after the engineered tissues were
implanted in animals, and that the extracellular matrix was
typically lacking in elastin (Figure 6) (78, 79, 81–84). Based
on that experience, some of these groups have refined their
approach and decellularize their bioreactor-grown engineered
materials prior to implantation in the preclinical animal
model, with the goal of in situ recellularization by the host
cells (85).

For the reasons above, the processes involved with in vitro
tissue engineering are recognized to be time consuming, making
it unlikely that an off-the-shelf, commercially viable product will
be produced. This acknowledgment has ultimately led to the
development of in vivo and in situ tissue engineering strategies
that do not require an external cell source.

IN VIVO TISSUE ENGINEERING

The in vivo tissue engineering approach uses the body’s ability
to encapsulate foreign material and utilize fibroblasts to produce
extracellular matrix proteins. For this strategy, a valve-shaped
mold is implanted subcutaneously, eventually resulting in
coverage of the mold with a membranous tissue that can then
be harvested and subsequently used as a replacement valve (86–
88). While this approach appears attractive from a perspective
of convenience and the population of the material with host
cells, other than mimicking the geometry of the valve with the
shape of the mold, little else relies on information gained from
knowledge of the biology of heart valves. There is no control
over the cells that are present in the tissue that is formed, nor

FIGURE 6 | Distal (A) and proximal (B) views of cusp thickening and retraction

after 8 weeks transapical implantation into the pulmonary position in a sheep

(78).

over the composition of the resulting extracellular matrix, or its
mechanical properties.

IN SITU TISSUE ENGINEERING

Unlike the method described above, the in situ approach
adopts a cell free method, with the implantation of valves
made from un-seeded scaffolds and then relying on the body’s
ability to recruit cells to populate and remodel the scaffold
and ultimately generate optimally functional tissue (85, 89,
90). Thus, the key element in this approach is the scaffold
material and its ability to attract and bind cells of the
required phenotype from the circulation after implantation.
The scaffold materials for in situ tissue engineering may either
be newly fabricated from material components (native or
synthetic polymers) or decellularized from native or bioreactor-
grown valves. Understanding the function and composition
of the extracellular matrix and how it instructs cells is of
key importance to this strategy with either type of scaffold.
For synthetic polymers, biofunctionalization—incorporating
peptides, matrix proteins, or recognition sequences—is one
method to confer biological properties to scaffold material
such that it is able to mimic natural matrix proteins (91,
92). An alternative strategy is to use the hybrid approach
described above whereby cells are seeded onto the scaffold
material and stimulated to secrete extracellular matrix proteins
using a bioreactor (89). The cells are then removed using
a decellularization protocol, leaving a polymer matrix with
a coating of matrix proteins. In this method, the choice
of cells initially employed for this purpose may be an
important consideration since having a similar extracellular
matrix production profile as valve interstitial cells may be
an advantage.

Given that in situ tissue engineering does not involve the
implantation of a cell-seeded device, this approach is suitable
for the production of an off-the-shelf product and presents
a more attractive economic proposition for the commercial
development of a tissue engineered valve. At the current time,
the in situ approach to tissue engineering heart valves has made
the most progress with a number of in vivo studies in animals,
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and with delivery of the valve using transcatheter implantation,
showing encouraging results (89, 93–95). This approach has
also been the avenue for the small number of past and present
clinicial trials of tissue engineered heart valves, most often
employing decellularized homografts for use in the pulmonary
valve position (96).

IMPORTANCE OF VALVE SHAPE AND
DESIGN

With the knowledge of how the different structures within the
aortic root contribute to the function of the valve cusp, some
tissue engineered valve designs aim to incorporate sinuses, a
sinutubular junction and attachment of the valve cusps to the wall
of the structure. The movements of these structures throughout
the cardiac cycle in the native valve are governed in part by
biological mechanisms, such as the contractile properties of valve
cells and their regulation by nerves, but also by the differences
in the structural composition and mechanical properties of the
component parts. How well a tissue engineered valve replicates
these aspects of native valves depends on which aspect is
being considered. It would be unrealistic to expect that the
in vivo or in situ approaches result in replicating the precise
biological properties of the cells, nerves or vascular supply.
However, the supply of O2 to meet the metabolic requirements
of the cells that populate tissue engineered valves could be an
important factor in maintaining viable cells in these valves,
especially in pediatric patients in whom the ability of the
valve to grow will be important. Cells that populate the valves
will either need to be able to function under low O2 levels
or respond to hypoxia by expression of HIF-1α, which can
stimulate angiogenesis via the induction of VEGF. A similar
angiogenic response occurs when valve cusps become thickened
during the calcification process or in rheumatic valve disease
(56, 97, 98).

The production of scaffold material for valve tissues, however,
should be able to replicate the regional difference in mechanical
properties to reflect those seen in different components of the
aortic valve and aortic root. This mimicry has been achieved
for the production of anisotropic material for valve cusps via
the production of highly aligned fibers in polymer scaffolds
(67–71, 99).

An alternative design to a free-standing aortic root is to
produce a stented valve in which the tissue engineered valve
cusps are attached to an annular-shaped stent and sewing
ring. While this design potentially negates consideration of
the co-ordinated movements of the aortic root structures
or the ability of the valve to grow in younger patients,
this approach has been successfully used for a number of
bio-prosthetic valve designs with cusps derived from animal
tissue (100). If the cusp material in tissue engineered stented
valves does not experience the degenerative changes associated
with the glutaraldehyde-fixed animal tissues used in currently
available bio-prosthetic valves, then this approach may well-
prove successful in patients where the growth of the valve is not
a consideration.

PREVENTION OF VALVE CALCIFICATION

Investigation into the biology of heart valves have highlighted
the complexity of valve cell function under physiological and
pathophysiological conditions. These studies have shown, for
example, that valve endothelial cells participate in protecting
the valve against mediators that can initiate the calcification
process (100). Given that tissue engineered valves will face the
same physiological environment as native valves, including the
diverse risk factors that can lead to calcific aortic stenosis, it
will be important to design tissue engineered valves to include
mechanisms for preventing calcification and other valve diseases.
Such design strategies could include the seeding of endothelial
cells onto the surface of scaffolds, the attraction of circulating
endothelial progenitor cells onto implanted valves, incorporation
of anti-calcification agents into the scaffold material, or the
development of pharmacological agents that can be given to
the patient to prevent calcification. The method adopted will
depend of the approach taken to make the tissue engineered
valve (in vitro compared to in vivo or in situ tissue engineering)
and the identification and development of efficacious anti-
calcification agents.

DESIGNING FOR VALVE DURABILITY

At the current time a number of hurdles remain before tissue
engineered valves are able to be considered as truly biological
heart valves that are able to match the durability and function of
the native valve. These principally relate to the control of the cells
that populate the valve scaffold. Irrespective of which approach
is adopted, implanting of the valve scaffold into the circulation
will elicit a reaction and initial population of the scaffold material
by inflammatory cells. Regulating this response, so that the new
valve is populated with cells capable of mimicking the function of
valvular interstitial cells, remains a significant challenge. Without
the ability of cells to provide the same homeostatic and regulatory
role provided by the interstitial and endothelial cells in native
valves, the long-term durability and function of tissue engineered
heart valves may be compromised.

CONCLUSIONS

The quest to tissue engineer a living heart valve that possesses
the same functionality and durability of the native heart
valve has given rise to a number of alternative approaches
and valve designs, which are now beginning to attempt to
bridge the gap between laboratory projects and clinical trials—
a major step in completion of these projects (101, 102). In
doing so, each of these potentially new valves carries certain
characteristics and functional properties of the native valve.
These characteristics include the ability of cells to secrete
extracellular matrix proteins, the capability of scaffold material
to recruit and instruct circulating cells, and the replication of
the mechanical properties of cusp material and the associated
structures of the aortic root. However, incorporation of all
the biological properties of native valves is not realistically
achievable within the confines of the laboratory. In reality,
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achieving a successful outcome for tissue engineering projects
such as heart valves will require an integrated approach relying
on a combination of the different strategies that currently
exist. Sustained partnerships between clinical, translational,
and basic science faculty as well as industry partners will be
needed to infuse the clinically evaluated tissue engineered heart
valves with the newer aspects of biological functionality and
material-based control of cell behavior that have just been
reported in the last few years. In the future, an expanded
set of data from clinical trials will be tremendously insightful
into our understanding of the healing, cell metabolism, and
growth within tissue engineered valves in vivo. Only time and
clinical experience will tell which approach has incorporated
the key functions of the native valve, allowing patients to

receive a replacement valve that gives them a normal life

expectancy, free from the need for life-long anticoagulation
therapy or re-operation.
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