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In recent years, high-throughput next-generation sequencing technology has allowed 
a rapid increase in diagnostic capacity and precision through different bioinformatics 
processing algorithms, tools, and pipelines. The identification, annotation, and classification 
of sequence variants within different target regions are now considered a gold standard 
in clinical genetic diagnosis. However, this procedure lacks the ability to link regulatory 
events such as differential splicing to diseases. RNA-seq is necessary in clinical routine 
in order to interpret and detect among others splicing events and splicing variants, as 
it would increase the diagnostic rate by up to 10–35%. The transcriptome has a very 
dynamic nature, varying according to tissue type, cellular conditions, and environmental 
factors that may affect regulatory events such as splicing and the expression of genes or 
their isoforms. RNA-seq offers a robust technical analysis of this complexity, but it requires 
a profound knowledge of computational/statistical tools that may need to be adjusted 
depending on the disease under study. In this article we will cover RNA-seq analyses best 
practices applied to clinical routine, bioinformatics procedures, and present challenges of 
this approach.

Keywords: RNA-Seq - RNA sequencing, transcriptomics, bioinformatics, clinical routine, tissue-specific 
expression, variants of uncertain significance (VUS), alternative splicing (AS), DEG (differentially expressed genes) 

INTRODUCTION
In recent years, the use of next-generation sequencing (NGS) for the diagnosis of Mendelian or 
rare genetic disorders has entered routine clinical practice. The increasing ability to sequence entire 
genomes in a cost-effective manner has allowed the identification of approximately 260 novel 
rare genetic diseases per year (Boycott et al., 2017). Focusing on the ~1.5% of the human genome 
represented by coding sequences, diagnostic rates of whole-exome sequencing (WES) vary widely 
by inherited condition, and they range from 28 to 55% (Retterer et al., 2016). By extending the focus 
to deep intronic and regulatory variants in non-coding regions, including structural and non-exonic 
variants not detectable by WES, whole-genome sequencing (WGS) increased the diagnostic rate 
by more than 17% (Lionel et al., 2018). The high rate of undiagnosed cases is related to at least two 
important limitations: (i) the catalog of Mendelian phenotypes is as yet far from complete (~300 new 
Mendelian phenotypes are added to the OMIM database each year (Chong et al., 2015)); and (ii) 
although the interpretation of protein-coding regions of the genome is reliable, our understanding 
of non-coding variation and its functional interpretation is still limited.

Recently, different studies reported on how the application of RNA sequencing (RNA-seq) can help 
to shed light on the possible pathogenicity of variants of unknown significance (VUS) identified through 
DNA sequencing studies such as WES and WGS, as it provides direct insight into the transcriptional 
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alterations caused by VUS and thus improves diagnostic rates 
(Cummings et al., 2017; Kremer et al., 2017). Alternative splicing 
(AS) is considered to be a key cellular process in ensuring functional 
complexity in higher eukaryotes (Chen et al., 2012). Remarkably, 
this process is estimated to affect more than 88% of human protein-
coding genes (Kampa et al., 2004). The major effector of the RNA 
splicing reaction is the spliceosome, a complex of hundreds of 
interacting proteins, and small nuclear RNAs (snRNAs) including 
the small nuclear ribonucleoproteins (snRNPs) U1, U2, U4, U5, and 
U6 (Tazi et al., 2009). Each intron of the pre-mRNA is flanked by 
a 5'-exon and a 3'-exon and contains different conserved splicing 
signals recognized by the spliceosome: the 5'-splice site, the branch 
point sequence, the 3'-splice site, and the polypyrimidine tract 
located 5-40 bp upstream of the 3' end of the intron (Cartegni 
et al., 2002) (Supplementary Figure 1). Since these splicing signals 
are not sufficient for splicing regulation, the fidelity of pre-mRNA 
splicing depends on interactions between trans-acting factors 
(proteins and ribonucleoproteins) and cis-acting elements (pre-
mRNA sequences), including exonic splicing enhancer (ESE), 
exonic splicing silencer (ESS), intronic splicing enhancer (ISE), and 
intronic splicing silencer (ISS) elements (Blencowe, 2006), that exert 
their effects by facilitating the binding of splicing factors, which in 
turn positively or negatively regulate inclusion of a particular exon.

Due to its underlying complexity, AS can lead to disease 
in different ways. The most common alterations of the splicing 
process are in cis-acting regulatory elements that are located 
either in core consensus sequences (5' splice site, 3' splice site, 
and branch point) or in regulatory elements that modulate 
spliceosome recruitment (Singh and Cooper, 2012). Some authors 
estimate that up to 62% of all disease-causing single nucleotide 
variants (SNVs) may affect RNA splicing (Lopez-Bigas et al., 
2005). In terms of evolutionary conservation, about 50% of the 
synonymous positions in codons of conserved alternatively spliced 
mRNAs are under selection pressure, suggesting that conserved 
alternative exons and their flanking introns are strongly enriched 
in splicing regulatory elements (Blencowe, 2006). In this regard, 
it has been estimated that up to 25% of synonymous substitutions 
can disrupt normal splicing in the same way as non-synonymous 
variants or premature termination codons (Pagani et al., 2005), 
suggesting that those regions should also be routinely examined. 
Different examples of Mendelian disorders have already been 
associated with transcriptional perturbations introduced by both 
synonymous and non-synonymous variants (Slaugenhaupt et al., 
2001; Cassini et al., 2019) (Supplementary Table 1). Since RNA-
seq is not a part of current diagnostic genetic testing routine, these 
estimates seem to reflect a significant proportion of potentially 
diagnosable cases that remain unresolved at present. Some 
authors demonstrate the utility of RNA-seq to diagnose 10% of 
patients with mitochondrial diseases and identify candidate genes 
for the remaining 90% (Kremer et al., 2017).

SECTION 1: TOwARDS CLINICAL 
APPLICATION OF RNA SEQUENCING
During the past years, the importance of RNA-seq as a clinical 
diagnostic tool has increased. The possibility to analyze new types 

of potential pathological variants in clinical routine has led to an 
increase in the diagnostic rate without an excessive increment in 
cost or time. However, some issues of RNA-seq analysis must be 
resolved to ensure the diagnostic quality of the study.

RNA-seq can complement the limitations of purely genetic 
information by probing variations in RNA with different additional 
studies (Kremer et al., 2017). First, the expression level of a gene 
or transcript outside of its physiological range can be measured. 
Second, cases with allele-specific expression (ASE), and therefore 
their association with disease predisposition, can be identified 
(Byron et al., 2016). Third, aberrant splicing can be recognized, 
which is known to be a major cause of Mendelian disorders (Tazi 
et al., 2009; Singh and Cooper, 2012; Scotti and Swanson, 2016).

Different studies suggest that 9 to 30% (Stenson et al., 2017) of 
disease-causing variants have an impact on RNA expression. The 
measurement of gene expression is thus expected to represent an 
improvement of the clinical routine; for example, some authors 
correlate the under-expression of certain genes with loss of function 
(LOF). This strategy has already been used in the identification of 
under-expression of RARS2 in blood, which is associated with 
global developmental delay, seizures, microcephaly, hypotonia, 
and progressive scoliosis (Fresard et al., 2018).

Variable expressivity and incomplete penetrance are 
recurrent genetic issues in variant interpretation and may result 
from a combination of allelic variation, modifier genes, and/
or environmental factors. A genetic condition with a reduced 
penetrance or high variability of symptoms may be a challenge 
for diagnosis. Allele-specific expression refers to the differential 
abundance of the allele copies and is thought to be relevant for 
as much as 50% of all human genes (Cooper et al., 2013). This 
differential allele expression can favor either the mutant or the 
wild-type allele and hence may influence clinical penetrance in 
different directions (Cartegni et al., 2002). Assuming a recessive 
condition, ASE-based analysis can help to reveal mono-allelic 
expression (MAE). For example, variants located in conserved 
splice sites of exon 12 of the SPAST gene lead to exon skipping 
and cause hereditary spastic paraplegia (HSP). Degradation of 
aberrant transcripts by a nonsense-mediated decay (NMD) 
mechanism results in ASE of the SPAST wild-type allele (Lopez-
Bigas et al., 2005). In contrast, asymptomatic carriers of autosomal 
dominant retinitis pigmentosa (adRP) are protected from the 
disease by ASE of the wild-type PRPF31 allele (Byron et al., 2016). 
In this context, ASE-based analyses may complement DNA 
resequencing studies such as WES or WGS for the identification 
of causative and low-frequency regulatory variants (Lappalainen 
et al., 2013) or disease-associated predisposition variants (Valle 
et al., 2008; De La Chapelle, 2009).

SECTION 2: RNA-SEQ, BIOINFORMATICS 
APPROACH AND NEw PERSPECTIVES FOR 
KNOwLEDGE OF GENETIC VARIATION
RNA-seq data processing after NGS sequencing is mandatory 
for an appropriate analysis. As noted in Conesa et al. (2016) 
there is no optimal pipeline for all the different applications and 
scenarios in RNA-seq. However, data processing steps must be 
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included in clinical routine in order to guarantee the quality and 
reproducibility of the study.

Usually RNA-seq data analysis must start with raw-
data quality control. This allows obtaining a general idea 
of the quality of the sequencing and deciding if the quality 
requirements for the clinical routine are met. For this purpose 
different bioinformatics tools such as FastQC (Andrews, 2010) 
allow to control the most important and general parameters 
for global evaluation, such as Phred quality score, read length 
distribution, GC content, k-mer over-representation, adapter 
content, and duplicated reads. In case of adapter removal, 
specific bioinformatics tools may be necessary; some of the most 
referenced tools are CutAdapt (Compeau et al., 2013), FASTX-
Toolkit (Gordon, 2010), and Trimmomatic (Bolger et al., 2014). 
For example, adapter presence or reduced read quality could 
lead to read misalignment or altered gene expression estimation 
and splicing event detection.

In the next step, raw-data reads are mapped against a 
human reference genome using a splice-aware alignment 
algorithm, such as STAR (Dobin et al., 2013), TopHat2 (Kim, 
2013) or HiSAT2 (Kim et al., 2015). Splice-aware aligners allow 
reads to partially align into splice junctions between exons 
(Figure 1). In this step, there are important variables that must 
be evaluated and adjusted according to the type of study and 
phenotype. For example, the reference version of the genome 
(Guo et al., 2017) has an impact on the sensitivity and the 
specificity of variants identified. On the other hand, reference 
genome annotation files (such as bed or gtf) have a positive 
impact on mapping performance, quantification, and detection 

of differential expression and alternative splicing (Wu et al., 
2013). To enrich reference genome annotation, some helpful 
databases that can be incorporated are SpliceDisease (Finotello 
et al., 2014) and ASpedia (Wang et al., 2016). SpliceDisease 
links experimentally supported and manually curated splicing-
mutation disease entries with genes and diseases. ASpedia 
provides genomic annotations extracted from DNA, RNA and 
proteins, transcription, and regulatory elements obtained from 
NGS datasets, and isoform-specific functions collected from 
published datasets.

After mapping the reads to the genome, there are some 
technical and biological biases that can affect the sensitivity 
threshold. The 3' end bias of the mapped transcripts could 
either indicate a technical issue of reduced performance of the 
number of priming positions from which reverse transcriptase 
can start cDNA synthesis (Finotello et al., 2014) or a biological 
issue of RNA degradation by 5' exonuclease (Wang et al., 2016). 
Assessment of this type of bias is mandatory for the acceptance 
or rejection of clinical routine samples, and this can be done with 
quality control tools such as RSeQC (Li et al., 2015).

Prior to assessing differential expression of genes and their 
isoforms, mapped reads must be quantified. Tools like HTSeq 
(Anders et al., 2015), FeatureCounts (Liao et al., 2014), and 
GenomicAlignments (Lawrence et al., 2013) allow quantification 
of the number of mapped reads within a specific gene feature. 
Several biases like gene length (Gao et al., 2011) or GC content 
(Risso et al., 2011) may affect the quantification process and 
have a negative impact on the differential expression analysis 
(DEA). To reduce these biases, several methods have been 

FIGURE 1 | RNA-seq alternative splicing events and mapped reads. Different alternative splicing events can be detected using RNA-seq. Spliced mapped reads 
anchor differently if alternative splicing event occurs. Constitutive spliced RNA-seq mapped reads are represented in gray and alternatively spliced RNA-seq 
mapped reads are represented in red.

Frontiers in Genetics | www.frontiersin.org November 2019 | Volume 10 | Article 1152

https://www.frontiersin.org/journals/genetics
http://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


RNA-Seq Perspectives to Improve Clinical DiagnosisMarco-Puche et al.

4

described. Some methods normalize the read counts based on 
gene length and library size (total number of reads per replicate). 
As described in Conesa et al. (2016) the most employed methods 
involve the use of RPKM units (reads per kilobase of transcript 
and per million mapped reads) for single-end reads (Mortazavi 
et al., 2008), FPKM units for paired-end reads (fragments per 
kilobase of transcript per million mapped reads), and TPM units 
(transcripts per million). Other more complex normalization 
strategies are based on a theoretical initial distribution or on 
housekeeping genes (Evans et al., 2018).

At the isoform level, other quantification methods such as 
Cufflinks (Evans et al., 2018) and RSEM (Li and Dewey, 2011) 
are employed. Before testing differential expression between 
patients, it is mandatory to control technical batch effects and 
possible biological bias related to biopsy site, gender, or age. 
Principal component analysis (PCA) or Multi-Dimensional 
Scaling (MDS) are useful tools for monitoring these effects. 
After obtaining counts for the gene or transcript level, the count 
data is processed with different statistical methods such as R/
Bioconductor package DESeq2 (Love et al., 2014), (Anders and 
Huber, 2010), edgeR (Robinson et al., 2009), or SVA (Leek et al., 
2012). These tools use batch effect adjustment or modeling to 
reduce this technical bias. A whole functional RNA-seq pipeline 
provided by ENCODE can be found in: https://github.com/
ENCODE-DCC/rna-seq-pipeline

Allele-specific expression can be identified by correlating 
allele counts obtained from RNA-seq and DNA resequencing. 
This comparison can be processed using pileLettersAt from 
the R/Bioconductor package GenomicAlignments (Lawrence 
et al., 2013). Some authors indicate that the sensitivity of ASE 
estimation depends on different technical variables such as 
variant coverage, allele frequency, or the number of alternative 
alleles (Kremer et al., 2017).

As stated in the American College of Medical Genetics 
guidelines (Richards et al., 2015), splice site prediction tools 
such as GeneSplicer (Pertea et al., 2001), Human Splicing Finder 
(Desmet et al., 2009), and MaxEntScan (Yeo and Burge, 2004) 
have a higher sensitivity (~90–100%) relative to the specificity 
(~60–80%) in predicting site abnormalities. It is recommended 
to use different algorithms to build a single piece of evidence 
regarding splice site variations. Other algorithms like LeafCutter 
(Li et al., 2018) rely on RNA-seq data and are able to identify 
variable splicing events such as: exon skipping, exon truncation, 
exon elongation, new exon, and complex splicing (or any other 
splicing event or combinations of the ones mentioned) using 
short-read RNA-seq data and focusing on excised introns (not 
relying on predefined models like other tools such as Cufflinks 
(Roberts et al., 2011)).

SECTION 3: ISSUES TO BE ADDRESSED 
IN THE TRANSCRIPTOMIC APPROACH
Due to the dynamic nature of the transcriptome, RNA-seq studies 
present an important technical complexity. Even if RNA-seq 
studies can be introduced into clinical routine, some conceptual 
problems should be solved in the coming years.

Different authors point out that one of the major difficulties 
in transcriptomic analysis and its application to clinical routine 
is tissue-specific expression (Cummings et al., 2017), where 
genes and especially their isoforms can present a wide spectrum 
of splicing events and expression patterns depending on the 
tissue or cell type. This point is essential for a correct clinical 
interpretation of the variants (Melé et al., 2015), (Wang et al., 
2008), but presents a problem in the initial selection of material 
for clinical routine. It is mandatory to assess invasiveness when 
obtaining the material related to the studied disease. Regarding 
this issue, it is documented that "noninvasible" material such 
as fibroblasts and blood present 68 and 70.6% of detectable 
expression of OMIM genes (Cummings et al., 2017; Fresard et al., 
2018). This data indicates that using these tissues could help solve 
a broad spectrum of clinical studies using RNA-seq technology. 
For example, in neurological diseases, blood tissue presents a 
detectable expression of 76% of the genes associated with their 
phenotypes (Fresard et al., 2018).

However, tissue-specific expression may confound RNA-seq 
analyses and manifests the necessity to select the optimal tissue, 
whose basal gene expression profile allows monitoring all genes 
associated with the studied phenotype. For the efficient inclusion 
of RNA-seq analysis into clinical routine, new biological 
knowledge is required and additional bioinformatics tools need 
to be developed. In this context, new databases based on large-
scale studies have been collecting and integrating information 
focused on the relationships between genes, isoforms, and tissues. 
The database established by the GTEX consortium is one of the 
most important and widely referenced databases (Melé et  al., 
2015). As noted in Cummings et al. (2017), the GTEX database 
is used for tissue selection depending on the clinical case. This 
information can become the mainstay of new algorithms for the 
in silico selection of optimal tissue depending on the specific 
disease or phenotype studied for clinical RNA-seq analysis. Some 
tools using such algorithms have already been described, such as 
for example PAGE (Nelakuditi).

Additionally, this type of database homogenizes the 
transcriptomic information from large-scale analyses and could 
be a valuable source of control samples for statistical contrast and 
the identification of relatively high frequency variants or splicing 
events. For this initiative to succeed, and to overcome the inter-
analysis barriers, the homogenization of sequencing protocols, 
starting materials, coverage of analysis, patient description, 
and bioinformatics pipelines is essential (Cummings et al., 
2017). In addition, it is necessary to define the laboratory and 
bioinformatics parameters and tools that allow monitoring and 
controlling this process. For example, from a laboratory point of 
view, assessment of the quality and quantity of extracted RNA, 
or the library preparation strategy and its possible relationship 
with technical bias for the NGS process are some of the most 
important parameters to consider (Wai et al., 2019). To control 
this bias, different mathematical methods, such as principal 
component analysis (PCA) or t-Distributed Stochastic Neighbor 
Embedding (tSNE) based on expression have been proposed (Dey 
et al., 2017). Another important consideration is the definition of 
RNA spike-in control mixtures (Devonshire et al., 2010). These 
elements allow the evaluation of the technical and biological 
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variability, and are essential for the identification of confounding 
effects, normalization processes, and quality control.

Regarding technical sensitivity and specificity of RNA-seq 
applied to clinical routine, the dynamic nature of transcriptomics 
and the complexity of some alterations, for example, splicing 
events or ASE deviation, multiplies the number of technical 
and biological variables to be considered during bioinformatics 
analysis (Costa et al., 2014). This complexity is reflected in the 
need to design mathematical methods capable of absorbing if not 
all, at least part of the variability present in this type of study. 
In this respect, there are different obstacles for bioinformatics 
analysis of RNA-seq data. Among them are the mapping process 
and the possible effect of different factors on the identification 
of variants, such as the presence of neighboring SNPs and small 
indels in the unbiased identification of ASE (Wood et al., 2015; 
Byron et al., 2016), junction events (Williams et al., 2014), or 
the isoform assembly process, where the length of reads, library 
preparation strategy, the initial coverage, and GC content 
of the transcripts could affect the accuracy of the transcript 
identification process (Mantere et al., 2019; Wai et al., 2019).

FINAL REMARKS
The RNA-seq approach holds the promise to become an 
interesting clinical routine tool to increase the genetic diagnostic 
rate. This methodology may increase our knowledge about 
genetic alterations and their association to genetic diseases with 
the inclusion of other types of variants, such as splicing events or 
aberrant gene expression. This type of alterations is usually not 
detected by DNA resequencing analyses and may be one of the 
main reasons of the moderate diagnostic rate of this methodology 
in some diseases.

However, due to the dynamic nature of the transcriptome, 
RNA-seq analysis presents a high complexity, with the 
concomitant need to consider different technical and biological 
variables. The control and the effect of these possible fluctuations 
are currently under investigation. In this context, a deeper and 
more specific knowledge of the technical and bioinformatics 
area that varies with the analyzed disease seems necessary to 
guarantee a meaningful clinical outcome. In this sense, great 
advances are being made in bioinformatics to define, homogenize, 
and monitor the transcriptomic information in order to break 
the inter-analysis barrier, which is mandatory for clinical 
reproducibility. However certain issues remain outstanding that 
should be further defined and resolved in the coming years.
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