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Abstract

Background: We previously demonstrated that 6-benzylthioinosine (6-BT) could induce the differentiation of a subset
of acute myeloid leukemia (AML) cell lines and primary AML cells regardless of their cytogenetics. In this study we
investigated whether Wnt signaling pathways played roles in 6-BT-induced differentiation of AML cells.

Methods: We induced differentiation of HL-60 leukemic cells and primary AML cells in vitro using 6-BT. Real-time
PCR (gPCR), western blot, and luciferase assays were used to examine the molecules’ expression and biological
activity in canonical and noncanonical Wnt signaling pathways. AML cell differentiation was measured by the
Nitroblue tetrozolium (NBT) reduction assay.

Results: 6-BT regulated the expression of both canonical and non-canonical Wnt signaling molecules in HL-60
cells. Both 6-BT and all-trans-retinoic-acid (ATRA) reduced canonical Wnt signaling and activated noncanonical
Wnt/Ca" signaling in HL-60 cells. Pre-treatment of HL-60 cells with an inhibitor of glycogen synthase kinase-3(3
(GSK-3p), which activated canonical Wnt signaling, partly abolished the differentiation of HL-60 cells induced by
6-BT. Pre-treatment of HL-60 cells with an inhibitor of protein kinase C (PKC), resulting in inactivation of non-canonical
Wnt/Ca*" signaling, abolished 6-BT-induced differentiation of HL-60 cells. Several molecules in the non-canonical
Wnt/Ca®" pathway were detected in bone marrow samples from AML patients, and the expression of FZD4, FZD5,
Whnt5a and RHOU were significantly reduced in newly diagnosed AML samples compared with normal controls.

Conclusions: Both canonical and non-canonical Wnt signaling were involved in 6-BT-induced differentiation of HL-60
cells, and played opposite roles in this process. Wnt signaling could be involved in the pathogenesis of AML not only
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by regulating self-renewal of hematopoietic stem cells, but also by playing a role in the differentiation of AML cells.

Background

Wnt signaling pathways are highly conserved and regu-
late cell fate decision at all stages of development in
multiple tissue types, including hematopoietic stem cells
[1,2]. Deregulation of canonical or noncanonical Wnt
signaling pathway plays critical roles in the pathogenesis
of various cancers including AML [3]. However, the
mechanisms of co-ordination between these two branches
of Wnt signaling pathway in AML cell differentiation are
largely unexplored.
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In the canonical Wnt/B-catenin signaling pathway, en-
gagement of a Wnt protein by a Frizzled (FZD) receptor
leads to stabilization of P-catenin, which then translo-
cates into the nucleus to initiate target gene expression
through interaction with the TCEF/LEF transcriptional
complex [4]. Deregulation of the canonical branch of
Wnt signaling pathway by aberrant stabilization and
constitutive activation of -catenin is linked to the initi-
ation and progression of AML and other cancers [5-7].
Most of human AML has up-regulated and nuclear lo-
calized p-catenin compared with normal bone marrow
CD34" cells [8]. In both AML cell lines and primary
samples, silencing genes associated with the canonical
Wnt/B-catenin pathway through methylation have been
observed [9,10]. In addition, inhibition of the Wnt/p-
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catenin pathway by small-molecules results in apoptosis
of AML cells [11]. The non-canonical Wnt signaling path-
way, independent of B-catenin, is a Ca®*-releasing pathway
that is activated by the Wnt-stimulated G proteins. Cal-
cium/protein kinase C(PKC) and calmodulin-dependent
kinase II (CaMKII) were considered to be primary media-
tors of this signaling pathway [12,13]. Non-canonical Wnt
binds to an FZD receptor, leading to release of intracel-
lular calcium and activate enzymes, such as PKC and
CaMKII. Human Wnt4, Wnt5a, and Wntl1 are ligands
for receptors or co-receptors FZD2, FZD5, FZD6 and
FZD7. A recent study showed that non-canonical Wnt
signaling was also closely related to tumorigenesis [14].
Wntb5a was silenced in an animal model of AML, which
suggested that it might act as a tumor suppressor [15].

We have demonstrated that 6-BT induced differenti-
ation of various AML cell lines and primary AML cells
[16]. Since the Wnt signaling pathways play a critical
role in the differentiation of several types of cells, includ-
ing osteoblasts, cardiomyocytes and neurons [17], we
hypothesized that it might also be involved in the 6-BT-
induced differentiation of AML cells. In this study we
demonstrated that both canonical and non-canonical
Wnt signaling played a critical role in the 6-BT induced
differentiation of AML cells.

Methods

Cell lines and chemicals

HL-60 cells were cultured in Iscove’s modified Dulbecco’s
medium (Invitrogen, Carlsbad, CA) supplemented with
10% fetal bovine serum (FBS, Gibco, Grand Island, NY)
and 1% penicillin-streptomycin. ATRA, PMA and NBT
were purchased from Sigma(Sigma-Aldrich, St. Louis,
USA). 6-BT was kindly provided by the National Cancer
Institute Developmental Therapeutics Program. Bisindoyl-
maleimide (BIM) and BIO were purchased from CalBio-
chem. Primary antibodies for -catenin, p-PKC (Thr638),
PKC, p-CaMKII (Thr286), CaMKII and [-actin were
purchased from Abcam. Primary antibodies for p-Rac
(Ser71) and Rac were purchased from Cell Signaling
Technology.

Patient samples

Bone marrow mononuclear cells of patients treated at
Qilu Hospital (Shandong University, Shandong, P.R.
China) were obtained between May 2008 and July 2009.
Thirty patients had newly diagnosed AML, twelve had
AML in complete remission, and ten were normal con-
trols. Informed consent was obtained from each donor.
Procedures for collecting samples were approved by
the Drug and Clinical Investigations Ethics Committee
of the Faculty of Medicine, Qilu Hospital, Shandong
University.
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PCR array

Human Wnt signal RT? Profiler™ PCR array (PASH-043)
was generously provided by SuperArray Bioscience
Corporation (Frederick, MD). The PCR array was per-
formed according to the manufacturer’s instructions.
Briefly, total RNA was isolated from HL-60 cells after
treatment with 6-BT (10 uM) or vehicle (0.01% DMSO)
for 3 days. Reverse transcription was performed with
M-MulLV reverse transcriptase (Fermentas) using an oligo
(dT)18 primer. Genomic DNA contamination was elimi-
nated by Dnase treatment using an RNeasy Micro Kit
(Qiagen). Expression of Wnt molecules was tested by PCR
on ABI Prism 7700 (Applied Biosystems). For data ana-
lysis, the “*Ct method was used. For each gene, fold
changes were calculated as the difference in gene expres-
sion between 6-BT- or vehicle-treated cells; a positive
value indicates gene up-regulation and a negative value
indicates gene down-regulation.

Real-time RT-PCR

Total RNA was isolated from HL-60 cells treated with
6-BT or vehicle for 1 day or 3 days, using TRIzol reagent
(Invitrogen). RNA was transcribed into cDNA using the
Enhanced Avian RT First Strand Synthesis kit (Sigma).
RT-PCR was performed in triplicate using FastStart
SYBR Green Master (Roche Diagnostics) on an Applied
Biosystems 7500 Fast Real-Time PCR System. Primers
used are available upon request.

For patient samples, qRT-PCR was performed using
SYBR Green PCR Master Mix (Toyobo) on an ABI Prism
7500 sequence detection system. All reactions were carried
out in 20-pl reaction volume in triplicate. Fold changes in
gene expression were determined using the 2**CT method
with B-actin as an endogenous control.

NBT reduction assay

We used NBT reduction to evaluate differentiation of
AML cells. To perform the NBT assay, 100 uL of HL-60
cells (5 x 10° cells/mL) were cultured in 96-well plates.
Cells were first treated with 10 pM of 6-BT or DMSO
(0.01%) for 5 d, then with 20 uL of a solution of NBT
(5 mg/mL) and PMA (100 ng/mL). Cells were incubated
at 37°C for 30 min and at least 200 cells were counted
for the positive percent.

Western blot

After treatment with 6-BT or ATRA, HL-60 or primary
AML cells were harvested by centrifugation and washed
twice with phosphate-buffered saline (PBS), then solubi-
lized in radio immunoprecipitation assay (RIPA) lysis
buffer containing 1% Triton X-100, 1% sodium deoxy-
cholate, 0.1% sodium dodecyl sulphate (SDS), 0.15 mol/l
NaCl and 0.05 mol/l Tris—HCI, pH 7.2. Protein concen-
trations were determined with the bicinchoninic acid
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(BCA) assay protein reagent kit (Sangon) according to
a standardized curve. Total proteins (30 ug/lane) were
separated by 10% SDS—polyacrylamide gel electrophoresis
and transferred onto nitrocellulose membranes using
standard procedures. Non-specific sites were blocked with
5% nonfat milk in PBS with 0.1% Tween-20. Primary anti-
bodies were used according to the manufacturer’s instruc-
tions. The near-infrared fluorescence-labeled secondary
antibodies detecting primary antibodies were IRDye 680
Goat Anti-Rabbit IgG and IRDye 800CW Goat Anti-
Mouse IgG (Li-Cor Biosciences, Lincoln, NE). Detection
and quantification were performed with the Li-Cor Odyssey
imaging system and its software.

Transient transfection and luciferase assays

The TOPFIASH is a luciferase reporter of [B-catenin-
mediated transcriptional activation. The backbone of
TOPFIASH is the pTA-Luc vector of Clontech, which
provides a minimal TA viral promoter driving expression
of the firefly luciferase gene. 7 TCF/LEF binding sites were
cloned into the Mlul site of this vector. The negative
control FOPFLASH construct contains mutated TCF/LEF
binding sites [18]. NFAT-luciferase construct, which con-
tains NFAT binding sites, is used to determine the activity
of the noncanonical Wnt signaling pathway [19]. The
TOPFLAH and FOPFLASH and NFAT-luciferase con-
structs were from Addgene. Renilla luciferase pRL-TK was
cotransfected as an internal control for transfection effi-
ciency. Transfections were performed using a Nucleofec-
tor (Amaxa) according to the manufacturer’s instructions
with minor modifications. Briefly, 1 x 10° HL-60 cells were
transfected with 2.5 pg of either TOPFLASH, FOPFLASH
or NFAT luciferase along with 0.25 pg pRL-TK. Vehicle
(0.01% DMSO), positive control (10 mM LiCL) or 6-BT
(10 or 20 uM) were added 24 hours after transfection.
After another 24 hours, cell lysates were prepared and re-
porter activity was measured using the Dual-Luciferase
Reporter Assay System (Promega).

Intracellular Ca®* concentration assays

Cells were washed twice with PBS, then loaded with
Fluo-3/AM (Molecular Probes) for 30 min, and warmed
to 37°C before flow cytometry analysis using a FACScan
(Becton Dickinson).

Immunofluorescence

Immunofluorescence was performed to identify subcel-
lular localization of B-catenin. Three days after treat-
ment with 6-BT (10 pM) or ATRA (1 puM), HL-60 cells
were harvested by centrifugation. Drops of cells were
plated on polylysine-coated slides and incubated at room
temperature for 25 min, then fixed with 4% polyoxy-
methylene. Cells were permeabilized with 0.5% Triton
X-100 in PBS for 15 min, and then blocking was carried
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out with goat serum for 30 min to minimize nonspecific
binding of the primary antibody. The B-catenin antibody
(ab2982, Abcam, Cambridge, MA) was applied at a
1:100 dilution overnight followed by three 5-min washes
in PBS. FITC anti-rabit IgG (Jackson Lab) were used to
detect [B-catenin. Images were captured using a Zeiss
Microscopy LSM 780 fluorescent microscope and ana-
lyzed with Image ] software.

Statistical analysis

Values are mean + standard deviation (SD) from 3 inde-
pendent experiments. Groups were compared using a
Student’s two-tailed unpaired t test. For patient samples,
the copy number of each gene is presented quantitatively
as mean + SD. The difference in copy number of each
gene in the AML-ND, AML-CR, and CON groups was
performed using a one-way ANOVA test. SPSS software
(version 15.0) was used for all statistical analysis. Tests for
statistical significance were two-sided. P values less than
0.05 were considered to indicate statistical significance.

Results

The canonical and noncanonical Wnt signaling pathways
are differentially regulated upon 6-BT treatment

To examine the molecular alterations associated with the
6-BT-induced differentiation of AML cells, we compared
transcription of Wnt molecules in HL-60 cells before and
after treatment with 6-BT (10 puM) or vehicle (0.01%
DMSO) for 3 days. A total of 96 genes, including 5 house-
keeping genes, were examined in the RT? Profiler™ qPCR
array. Twelve genes, Wnt5a, Wntl1, FZD2, FZD4, FZDS5,
FZD7, JUN, KREMENI, RHOU, CCNDI, PPC and B2M,
were up-regulated more than 4-fold upon 6-BT treatment
(Figure 1a). Four other genes, Wnt6, MYC, DIXDC and
HPRT1, were down-regulated more than 4-fold upon 6-
BT treatment. Most up-regulated genes (Wnt5a, FZD2,
FZD4, FZDS, FZD7, RHOU) are Wnt molecules or posi-
tive regulators, whereas most down-regulated genes
(Wnt6, MYC, DIXDC) are in the canonical Wnt signal-
ing pathway (Figure 1b).

6-BT increases the expression of noncanonical Wnt
signaling molecules while decreases canonical Wnt
signaling molecules

We used qPCR to independently verify transcript levels
of Wnt genes identified by the PCR array. Transcription
of Wnt5a, FZD4, FZD7, KREMENI1, RHOU, Wnt6, and
DIXDC was compared in HL-60 cells treated with 6-BT
or vehicle for 1 day or 3 days. We demonstrated that ex-
pression levels of Wnt5a, FZD4, FZD7, KREMENI, and
RHOU were significantly up-regulated after 6-BT treat-
ment, whereas expression levels of Wnt6 and DIXDC were
significantly down-regulated (Figure 2, P <0.05). These
results were consistent with the PCR array’s findings.
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Figure 1 Wnt signal molecules are regulated upon 6-BT treatment. a. Scatter plot from Wnt signal RT? Profiler™ PCR array. Red circles represent
genes that are up-regulated more than 4-fold upon 6-BT treatment; green circles represent genes that are down-regulated more than 4-fold. b. Genes
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Both 6-BT and ATRA can attenuate the canonical Wnt
signaling pathway and induce differentiation of HL-60
and primary AML blasts

Because the 6-BT induced HL-60 differentiation resulted
in down-regulation of the molecules in the canonical
Wnt signaling pathway, we then explored the underlying
mechanisms of canonical Wnt signaling pathway related

to the 6-BT induced HL-60 differentiation. -catenin is
the central molecule in the canonical Wnt signaling path-
way, and its expression level and nuclear translocation can
be used to assess the activity of this pathway [20]. We
used ATRA, a well known differentiation-inducing agent,
as a positive control in our experiment. After HL-60 was
treated with 6-BT (10 uM) or ATRA (1 pM) for 3 days,
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Figure 2 Transcriptional change of certain Wnt molecules upon 6-BT treatment. Real-time RT-PCR confirmed that transcription of Wnt5a,
FZD4, FZD7, KREMENT and RHOU was significantly up-regulated upon 6-BT treatment, while transcription of Wnt6 and DIXDC was significantly
down-regulated. Data are from three independent experiments.
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tal B-catenin protein level was signifi-

cantly decreased. Westernblot analysis of subcellular frac-

tions confirmed that B-catenin was both decreased in the
nucleus and cyto

plasm of HL-60 cells (Figure 3a). To
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make the localization of P-catenin clear, we investigated
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protein loading control. b. HL-60 cells were treated with DMSO (0.01%), 6-BT (10 uM) or ATRA (1 puM) for 3 days and then were fixed in 4% formaldehyde/
PBS and permeabilized with 0.5% Triton X-100. 3-catenin was visualized by immunofluorescence (green, left panel). The DNA-intercalating dye DAPI was
used to identify cell nuclei (blue, center panel). The right panel presents a merged image to highlight the nuclear pool of 3-catenin. ¢. Histogram
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treated HL-60 cells indicating that the canonical Wnt sig-
naling was constitutively activated in HL-60 cells. After
treated with 6-BT and ATRA for 3 days, the amount of
[-catenin was markedly decreased in HL-60 cells in both
nucleus and cytoplasm (Figure 3b). Therefore, both 6-BT
and ATRA repressed canonical Wnt signaling in HL-60
cells.

When [-catenin migrates to the nucleus, it acts as a co-
stimulatory protein for the TCF/LEF family of transcription
factors [21]. A promoter-reporter assay was performed
using the [-catenin-responsive promoter TOPFLASH and
the mutant control FOPFLASH [4]. TOPFLASH or FOP-
FLASH reporter plasmids were transfected into HL-60
cells, then incubated with DMSO, 6-BT or LiCl (positive
control). TCF/LEF reporter activity was measured by lucif-
erase assay. Luciferase activity of TOPFLASH significantly
decreased after 6-BT treatment (Figure 3c).

GSK-3p phosphorylates and degrades p-catenin that
results in the inhibition of the canonical Wnt signaling
[22]. We tested whether BIO, a GSK-3f specific inhibi-
tor, could activate canonical Wnt signaling and thereby
inhibit 6-BT- and ATRA-induced differentiation of HL-
60 cells. We first treated HL-60 cells with 6-BT or
ATRA for 1 day, and then various concentration of
BIO was added to the cells for another 2 days. NBT re-
duction assay was performed to determine the differ-
entiation status of HL-60 cells. As seen in Figure 3d,
BIO at a concentration of 2 pM significantly inhibited
6-BT- or ATRA-induced HL-60 differentiation by al-
most 80%.

We did more experiments to examine whether HL-60
cells differentiation can be induced by the addition of
Wnt signaling inhibitor IWR-1 [23]. By NBT reduction
assay, we observed that IWR-1 induced differentiation of
the HL-60 cells (Figure 3e). IWR-1 also enhanced ex-
pression of CD11b, a widely known marker of granulo-
cytic differentiation (Figure 3f). More important, we
found that IWR-1 enhanced differentiation induced by
ATRA (Figure 3g). Gandillet et al. noted that silencing
of B-catenin, using a short hairpin RNA (shRNA) lenti-
viral approach, was the strikingly enhanced myeloid dif-
ferentiation of the HL-60 cell line after ATRA induction
[8], which was consistent with our results.

In order to confirm these results in HL-60 cells, we
used primary leukemic blasts from AML patient mar-
rows (AML-M3 and AML-M2 samples) that were
treated with 6-BT (10 pM) for 24, 48 or 72 hours.
Levels of B-catenin protein were measured by Western
blot. B-catenin protein was significantly decreased upon
treatment with 6-BT in all primary AML FAB M2 and M3
samples (Figure 3h). Taking these results together, we
demonstrated that 6-BT- or ATRA-induced differenti-
ation of HL-60 cells was through attenuation of the
canonical Wnt signaling pathway.
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6-BT and ATRA -induced HL-60 differentiation is through
activation of the Non-canonical Wnt/Ca>* signaling pathway
Since after 3 days of 6-BT treatment in HL-60 cells, we
found significant fold increases in the transcriptional
levels of the noncanonical Wnt ligands and receptors-
Wnt5a (~12.12 fold increase), Wntl1 (~4.03 fold increase),
FZD2 (~4.0 fold increase), FZD4 (~8.0 fold increase),
FZD5 (~4.59 fold increase) and FZD7 (~7.46 fold in-
crease) (Figure 1), we further investigated the role of
non-canonical Wnt/Ca®* pathway in HL-60 differenti-
ation process induced by these agents. Firstly we de-
tected intracellular Ca®* concentration by Flou-3/AM
after treatment by 6-BT and ATRA in HL-60 cells. Our
results showed both 6-BT and ATRA could significantly
elevate intracellular Ca®* concentration in HL-60 cells
(Figure 4a). To determine if the expression of down-
stream genes of noncanonical Wnt signaling pathway
could be altered by 6-BT administration, we used wes-
ternblot analysis of p-CaMKII, p-PKC, and p-Racl after
HL-60 cells were treated with 0, 5,10 and 20 uM 6-BT
for 3 days. The phosphorylation levels of CaMKII and
PKC were upregulated , while p-Racl and Racl did not
changed (Figure 4b). Next we used the NFAT-luciferase
construct, which contains NFAT binding sites, to deter-
mine the activity of the noncanonical Wnt signaling path-
way. We detected a significant increase (66.3% increase)
in NFAT-luciferase activity after 6-BT addition in HL-60
cells (Figure 4c). We pretreated HL-60 cells with the PKC
inhibitor bisindoylmaleimide (BIM) for 4 hours and then
tried to induce HL-60 differentiation by 6-BT (10 pM)
or ATRA (1 uM) for 3 days, 6-BT and ATRA almost
completely lost their capacity to induce differentiation
of HL-60 cells (Figure 4d). These results strongly sug-
gested that activation of the noncanonical Wnt/Ca**
signaling was critical in 6-BT- and ATRA-induced dif-
ferentiation of HL-60 cells (Additional file 1: Figure S1).
We later examined the expression pattern of 4 genes,
FZD4, FZDS, Wnt5a and RHOU, in the noncanonical
Wnt/Ca®* signaling pathway in primary AML cells from
newly diagnosed AML patients (AML-ND), AML patients
in complete remission (AML-CR) and normal controls
(CON). The mean expression level of FZD4, FZDS5, WntS5a
and RHOU were significantly down-regulated in AML-ND
samples compared with normal controls (Figure 5). This
result further suggested that deregulation of the Wnt sig-
naling pathway was critical in the pathogenesis of AML.

Discussion

The Wnt signaling pathway is involved in various pro-
cesses, such as embryonic development, cell migration,
proliferation, and differentiation [24,25]. This pathway
has also been extensively studied in tumorigenesis and
shown to be involved in the development of several
types of leukemia [26-28]. Activation of the canonical
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AML marrow samples [10,33]. Yet, few studies have fo-
cused on canonical Wnt signaling pathway and differen-
tiation of AML cells. In this study, we demonstrated that
protein levels of P-catenin were down-regulated upon
6-BT and ATRA treatment. To explore the detailed
mechanism of 6-BT induced decrement of (3-catenin, the
mRNA level of B-catenin was measured by qRT-PCR in
HL-60 cells. As shown in Additional file 1: Figure S2,
6-BT treatment had little effect on the mRNA level of
[-catenin, suggesting 6-BT elicited -catenin protein at-
tenuation could be mediated on post-translational level.
we found that 6-BT treatment could upregulate the mRNA
level of KREMENT1, which was a high-affinity DKK1 recep-
tor that functionally cooperated with DKK1 to block Wnt/
[B-catenin signaling [34]. Exogenous addition of DKK1
inhibited both nuclear and cytoplasmic p-catenin level and
decreased the nuclear/cytoplasmic ratio of [B-catenin in
a dosage-dependent manner [35,36]. In conclusion, the
downregulation of KREMEN1 might contribute to the ef-
fect of 6-BT on [-catenin. -catenin is a cell-cycle regu-
lated gene, so we detected cell cycle by FACS after HL-60
cells were treated with 0, 10, 20 uM 6-BT for 48 hrs. As
shown in Additional file 1: Figure S3, 6-BT substantially in-
creased the ratio of cells in the GO/G1 phase while con-
comitantly reduced the proportion of cells in the S phase
in HL-60 cells. However, more studies were needed to clar-
ify whether the cell-cycle effect is responsible for decre-
ment of B-catenin afrer 6-BT treatment. Cell differentiation
could also be induced by the addition of Wnt signaling
inhibitor, such as IWR-1. Using GSK-3p inhibitor to en-
hance the canonical Wnt signaling pathway, 6-BT and
ATRA lost their capacity in differentiation induction of
HL-60 and primary leukemic cells, which suggested a crit-
ical role of this pathway in leukemic cell differentiation.
On the other hand, non-canonical Wnt/Ca** signaling
is involved in activation of calcium/CaMKII [37] and
PKC [13], which has been long considered as a tumor
suppressor pathway [38]. Silencing Wnt5a, a non-canonical
Wnt ligand, by methylation has been reported in some
types of leukemia [15,39]. Ectopic expression of Wnt5a re-
sulted in inhibition of K562 cell growth and colony forma-
tion [15]. In our study, we showed that up-regulation of
Wnt5a, elevation of intracellular Ca** concentration and
up-regulation of p-PKC and p-CaMKII were observed in
undergoing differentiation of leukemic cells after 6-BT or
ATRA treatment. However, purified Wnt5a protein alone
could not induce differentiation of HL-60 cells (data not
shown). Amanda et al. detected ability of Wnt5a protein to
directly stimulate intracellular calcium flux and found
Wntb5a protein treatment at high dose did not alter the
intracellular concentration of Ca®" in 293 cells [40]. The
activation of Wnt signaling by Wnt ligand is on receptor
context. The downstream signaling events induced by
Wntb5a also remain controversial and may be cell type- and
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receptor- dependent [41]. Based on this, Wnt5a protein
alone may not sufficient to activate Wnt/Ca>* signaling
pathway. In our study, we found 6-BT up-regulated Wnt5a,
as well as other noncanonical receptor molecules, such as
FZD2, FZD4 and FZD5, indicating that receptor and/or
co-receptor recruitment in Wnt/Ca>*/PKC activation is
involved.

Previous studies reported the activation of noncanoni-
cal Wnt signaling lead to inactivation of canonical Wnt
signaling. Topol and Ishitani et al. found activation of
noncanonical Wnt signaling induced Ca** influx and pro-
moted degradation of P-catenin independent of GSK3p
and B-TRCP [42,43]. Li et al. showed release of Ca®* from
cytosolic stores resulted in calpain-mediated degradation
of B-catenin [44]. PKC-mediated B-catenin phosphorylation
negatively regulated the Wnt/p-catenin pathway [45,46].
Cho et al. reported that in adipocyte differentiation, the
noncanonical Wnt signaling pathway inhibited the canon-
ical Wnt signaling pathway, and BIM inhibited PKC that
both can activate the Wnt/B-catenin signaling pathway
[47]. Taken together, these results indicated that the down-
reglation of B-catenin could be elicited by Wnt/Ca®* path-
way. In our study, we discovered 6-BT and ATRA increased
Wnt5a level, induced Ca** influx and upregulation of PKC,
which might be the possible mechanism of 3-catenin deg-
radation. However, our PCR array data suggested that
up-regulation of noncanonical and down-regulation of ca-
nonical Wnt signaling pathway seemed to happen simul-
taneously, raising some questions of Wnt signaling pathway
in leukemogenesis. Does activation by treatment by 6-BT
and ATRA of noncanonical Wnt signaling lead to inactiva-
tion of canonical Wnt signaling, or is this a coincidence?
The interrelationship between canonical and noncanonical
Wnt/Ca>* signaling pathways needs further exploration.
The Wnt signaling pathway is context-dependent trans-
duced to both canonical and noncanonical pathways based
on the expression profile of Wnt, sFRP, WIF, DKK, and
FZD co-receptors and the activity of intracellular Wnt
signaling regulators [40]. Besides Wntba, we observed the
expression of other Wnt molecules changed upon 6-BT
treatment. Does one particular Wnt molecule play a pri-
mary role in the differentiation process? By answering these
questions, we may be able to identify precise targets for
future development of AML differentiation therapy.

Conclusions

We demonstrated that both canonical and noncanonical
Wnt signaling pathways were collectively involved in the
6-BT and ATRA induced leukemic cell differentiation.
FZD4, EZD5, Wnt5a and RHOU are significantly down-
regulated in bone marrow samples from newly diagnosed
AML patients compared to normal controls, suggesting a
critical role of Wnt signaling pathway in the pathogenesis
of AML.
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Additional file

Additional file 1: Figure S1. A proposed model of effect of 6-BT on
both canonical and noncanonical Wnt signaling molecules in HL-60 cells.
On the one hand, 6-BT treatment up-regulated level of KREMEN1 and down-
regulated level of B-catenin, and concomitantly reduced the canonical
Wnt signaling target gene c-Myc. On the other hand, 6-BT treatment also
increased in the transcriptional levels of the noncanonical Wnt ligands and
receptors-Wnt5a, Wnt11, FZD2, FZD4, FZD5 and FZD7. The phosphorylation
levels of CaMKIl and PKC, effecors in noncanonical Wnt pathway, were
upregulated, indicating the activation of noncanonical Wnt signaling
pathway. Figure S2. 6-BT treatment had little effect on the mRNA level
of B-catenin. Real-time RT-PCR detected B-catenin mRNA levels in HL-60
cells after being treated with DMSO (0.01%) or 6-BT for 3 days. 3-actin was
used as control. The values represent the means + SE. (n = 3). Figure S3. 6-BT
substantially increased the number of cells in the GO/G1 phase while
concomitantly reduced the number of cells in the S phase in HL-60 cells.
After being treated with DMSO (0.01%) or 6-BT for 2 days, HL-60 cells
were were harvested and washed twice in PBS, then fixed in 75% alcohol
over night at 4°C. After washed in cold PBS thrice, cells were resuspended in
1 mL PBS with 40 pg Plland 100 pg RNase A (Sigma-Aldrich, St Louis, MO)
and incubated for 30 min at 37°C. Samples were then analyzed by FACS
(Beckman, CA).
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