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Simple Summary: Polerovirus P0 proteins are multifunctional proteins. Besides their viral sup-
pressor of RNA silencing (VSR) functions, several P0 proteins can induce a cell death phenotype
within the infiltrated region of Nicotiana benthamiana or Nicotiana glutinosa. Recently, the Brassica
yellows virus (BrYV) genotype A P0 protein (P0BrA) was identified as a strong viral suppressor of
RNAi. In this study, we compared the features of the P0 proteins encoded by different genotypes of
BrYV and revealed their difference in inducing cell death in N. benthamiana. Key residues in P0BrA

for inducing cell death were also identified. We also showed that all three BrYV genotypes had
synergistic interaction with PEMV 2 in N. benthamiana. This study provides theoretical guidance for
controlling the viral disease caused by poleroviruses in the future.

Abstract: Brassica yellows virus (BrYV) is a tentative species of the genus Polerovirus, which has at
least three genotypes (A, B, and C) in China. The P0 protein of BrYV-A (P0BrA) has been identified as
a viral suppressor of RNA silencing (VSR), which can also induce cell death in infiltrated Nicotiana
benthamiana leaves. In this study, we demonstrated that the cell death induced by P0BrA was
accompanied by the accumulation of reactive oxygen species (ROS) and increased Pathogenesis-related
protein genes-1 (PR1) expression. Meanwhile, this cell death phenotype was delayed by salicylic acid
(SA) pretreatment. Biological function comparison of the three P0 proteins showed that transiently
expressed P0BrB or P0BrC induced a significantly delayed and milder cell death response compared
with P0BrA. However, like P0BrA, they also suppressed local and systemic RNA silencing. Six residues
of P0BrA essential for inducing cell death were identified by comparative analysis and amino acid
substitution assay. We also show that all three BrYV genotypes have synergistic interactions with
pea enation mosaic virus 2 (PEMV 2) in N. benthamiana. This study provides theoretical guidance for
controlling the viral disease caused by poleroviruses in the future.

Keywords: Brassica yellows virus; P0; RNA silencing suppressor; cell death

1. Introduction

RNA silencing is an important immune strategy used by plants against plant viruses [1].
To suppress the host anti-viral RNA silencing, many plant viruses have evolved viral sup-
pressor of RNA silencing (VSR) proteins [2–5]. The P0 proteins have been identified as
VSR in many poleroviruses, including Turnip yellows virus (TuYV), Cucurbit aphid-borne
yellows virus (CABYV), Potato leafroll virus (PLRV), Beet mild yellowing virus (BMYV), Cot-
ton leafroll dwarf virus (CLRDV), Sugarcane yellow leaf virus (ScYLV), Melon aphid-borne
yellows virus (MABYV), Maize yellow mosaic virus (MaYMV), Cereal yellow dwarf virus
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(CYDV), Wheat yellow dwarf virus-GPV isolate (WYDV-GPV), Maize yellow dwarf virus-
RMV 2 (MYDV-RMV2), and Pea mild chlorosis virus (PMCV) [6–21]. The amino acid
sequence of P0 proteins throughout the genus shows low identity and the RNA silencing
suppressor (RSS) activity of the P0 proteins varies between different viruses. Among
the P0 proteins mentioned above, those encoded by PLRV, ScYLV, CYDV, MaYMV, and
MYDV-RMV2 display systemic silencing suppression activity, while P0 proteins of TuYV,
CABYV, and CLRDV do not have systemic silencing suppression activity [7,8,14,17]. Dif-
ferent isolates of the same virus (BMYV and PLRV) can exhibit various efficiencies in RSS
activity [11,14,22]. P0 proteins of several polerovirus members can trigger ARGONAUTE1
degradation via the autophagy pathway to suppress RNA silencing [6,16,23,24]. Stud-
ies have shown that P0 proteins of TuYV, CABYV, CYDV-RPV, CYDV-RPS, and PMCV
have a consensus F-box-like domain, through which P0 proteins interact with S-phase
kinase-associated protein 1 (SKP1), a component of the SKP1–Cullin F box (SCF) family of
the E3 ubiquitin ligases complex [10,18]. Although PLRV and PMCV P0 proteins contain
a conserved F-box-like domain and suppress RNA silencing, they fail to interact with
SKP1 [6,11].

Several polerovirus P0s are multifunctional proteins. Besides their VSR functions, the
P0 proteins of TuYV (P0Tu), CABYV (P0CA), PLRV (P0PL), ScYLV (P0Sc), and CYDV (P0CY)
are reported to induce the cell death phenotype within the infiltration region in Nicotiana
species [14,16,17,25]. The cell death phenotype induced by P0 proteins varies among
different viruses. Under the same experimental conditions, the P0CY protein triggered an
obvious cell death phenotype of about 7 dpi; however, P0PL triggered necrosis that began
developing around 14 dpi [14]. A previous study by Mangwende et al. demonstrated
that P0Sc triggered the cell death phenotype as early as 1 dpi. P0Sc and P0Tu induced a
dosage-dependent cell death phenotype in infiltrated N. benthamiana plants while this
phenotype was not observed in P0PL or P0CA [16,17]. Meanwhile, P0Tu, P0PL, and P0CA

were reported to elicit hypersensitive responses (HR) in Nicotiana glutinosa, and genetic
analysis revealed the recognition of P0Tu by the RPO1 resistance gene [25].

Brassica yellows virus (BrYV) is a tentative species of the genus Polerovirus, which is
widespread throughout China, South Korea, and Japan [26–29]. Its positive-sense single-
stranded RNA (+ssRNA) genome is approximately 5.7 kb in size and includes seven open
reading frames (ORFs) encoding seven proteins [30]. The BrYV has at least three different
genotypes (A, B, and C) and the infectious cDNA clones of the three BrYVs have been
successfully developed [31,32]. A large-scale survey of the incidence and prevalence of
BrYV in China showed that the three BrYV genotypes displayed differences in incidence
rates and host species [26]. Recently, the BrYV genotype A P0 protein (P0BrA) was identified
as a strong viral suppressor, exhibiting both local and systemic RSS activity. The P0BrA

can interact with SKP1, which is beneficial for P0BrA stabilization. This ensures efficient
RSS activity that is required for the BrYV effective systemic infection of N. benthamiana
plants [30]. Moreover, P0BrA can induce cell death within the region of infiltration [30].
According to previous sequence comparisons, the 5′-proximal ORF0 of the three genotypes
shares 90.4–92.5% nucleotide sequence identity and 86.7–90.8% amino acid sequence iden-
tity [32]. Therefore, there may be some differences in their biological functions, but whether
these biological functions are related to differences in incidence levels of the three BrYV
genotypes is not known. This study aimed to investigate whether P0 of the three BrYV
genotypes displayed similar biological functions. We assessed and compared the local and
systemic RNA silencing suppression activities of different BrYV genotypes. In addition,
several residues in P0BrA essential for inducing cell death were also identified through P0
protein comparative analysis.

2. Materials and Methods
2.1. Plant Material and Growth Conditions

Wild-type N. benthamiana and green fluorescent protein (GFP) transgenic N. benthami-
ana line 16c were grown in a climate chamber with a 16-h photoperiod at 24 ◦C.
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2.2. Plasmid Constructs

The primers used in this study are shown in Supplementary Table S1. The pGD, pGDG,
and pGD-P0BrA-3Flag vectors were used for transient expression [30,33]. P0BrB, P0BrC, and
P0BrA mutants were amplified by PCR and cloned into to pGD-3Flag vector, which fused
with a C-terminal 3 × Flag tag to produce the pGD-P0BrB-3Flag, pGD-P0BrC-3Flag, and
desired P0BrA mutants [34], respectively. For the PVX constructs, heterologously expressing
P0BrA was amplified with primers BrAP0ClaF/BrAP0SalhisR and then cloned between
the SalI and ClaI sites of the pND108 vector [35]. Full-length cDNA infectious clones of
BrYV (pCaBrA, pCaBr5B3A, and pCaBrC) and PEMV 2 (pCaPE2) were constructed as
described [31,36].

2.3. Transient Co-Expression Assay and GFP Fluorescence Observation

The constructs were transformed into the C58CI strain of Agrobacterium tumefaciens
using the freeze–thaw method [33]. Co-infiltration assays were performed as described
previously [37,38]. A. tumefaciens cultures containing pGDG expressing GFP and A. tumefa-
ciens cultures containing pGD-P0BrB-3Flag, pGD-P0BrC-3Flag, or pGD-P0BrA-3Flag were
mixed and co-infiltrated into N. benthamiana leaves. For the mutagenesis experiments, A.
tumefaciens cultures harboring the relevant binary plasmids were mixed prior to infiltration.
The concentration for mixed infiltrations at OD600 was 0.5 for each. GFP fluorescence was
measured under a long-wavelength UV lamp and images were recorded with a digital
camera under a yellow filter at 2 and 14 dpi, respectively.

2.4. Agrobacterium-Mediated Inoculation of Virus

The pCaBrA, pCaBr5B3A, pCaBrC, or pCaPEMV 2 plasmids were transformed into
A. tumefaciens strain GV3101 and infiltrated into 4-week-old N. benthamiana plants. For
single virus infiltration, the concentration of cell suspension was 0.5 at OD600. For mixed
infiltrations, the OD600 was 0.5 for each.

For PVX and PVX.P0BrA inoculation, the plasmids were transformed into the A.
tumefaciens strain GV3101 and infiltrated into 4-week-old N. benthamiana plants. The
infiltration was at a concentration of 0.1 at OD600. Upper leaves were harvested at 6 dpi and
analyzed. PVX.P0BrA was a recombinant PVX-based vector expressing the P0BrA protein.
The empty PVX vector was used as the control.

2.5. Western Blot Analysis

Total protein extraction and Western blotting were performed as described [11]. Pro-
tein samples were separated by electrophoresis in 12.5% SDS-PAGE and transferred onto
a Nitrocellulose Membrane (GE Healthcare, Chicago, IL, USA). The antiserum against
GFP was used to detect GFP expression, and the Flag antibody (Sigma-Aldrich) was used
to detect expression of the P0BrA, P0BrB, P0BrC, or P0BrA mutants. After incubation with
primary antibody and washing, the membrane was incubated with goat anti-rabbit alka-
line phosphatase-conjugated secondary antibody (Sigma-Aldrich, St. Louis, MO, USA)
followed by NBT (0.33 mg/mL)/BCIP (0.165 mg/mL) staining.

2.6. Diaminobenzidine (DAB) Staining

Agroinfiltrated leaves of N. benthamiana were harvested and incubated in 1 mg/mL
DAB in the dark for 8 h and destained with 96% ethanol.

2.7. Reverse Transcription PCR and Northern Blotting

Plant total RNA was prepared by an SDS-phenol/chloroform extraction and a reverse
transcription (RT) reaction was conducted as previously described [26,30]. BrYVs and
PEMV 2 were detected using the primers BrYA484F/BrYB88F/BrYC257F/BrY761R and
PEM2797F/PEM3202R, respectively. After PCR amplification, the products were separated
in 1.5% agarose gels and stained with ethidium bromide.
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Northern blot was performed as described [36]. RNAs used for BrYV (3 µg) and
PEMV 2 (5 µg) were separated in a 1.2% formaldehyde-agarose gel and then transferred
onto a Hybond-N+ nylon membrane. Prehybridization was performed for 5 h at 65 ◦C. The
[α-32P] dCTP-labeled DNA probe specific for BrYV or PEMV 2 was generated using the
Prime-a-Gene labeling system (Promega, Madison, WI, USA). Hybridization was carried
out at 65 ◦C for 16 h. After washing, the nylon membrane was exposed to a storage
phosphor screen (GE healthcare).

2.8. Real-Time Quantitative PCR

Total RNA was extracted using Trizol Reagent (Invitrogen, Waltham, MA, USA)
according to the manufacturer’s protocol. cDNA was synthesized from 3 µg total RNA
using an oligo(dT) primer and M-MLV reverse transcriptase (Promega). The gene fragments
were amplified using 2 × SsoFastTM EvaGreen Supermix (Bio-Rad, Hercules, CA, USA).
Primers 212F22/341R23 shown in Table S1 were used for amplification of the NbPR1
gene [39]. 18S ribosomal RNA gene served as an internal control by using the primers
18S-1/18S-2 [39]. NbPR1 gene expression was normalized to the 18S ribosomal RNA gene
and the data were analyzed using CFX MANGE software (Bio-Rad).

2.9. Salicylic Acid (SA) Pre-Treatment Assay

Five-week-old N. benthamiana plants were sprayed and soil drenched with a solution of
1.1 mM SA in 0.11% ethanol 4 days prior to infiltration. On Day 5, Agrobacterium harboring
the construct PVX.P0BrA or an empty vector was infiltrated into the treated leaves and
sprayed with SA again 4 h later. Samples were collected 2 days after SA treatment. Control
plants were sprayed with 0.11% ethanol.

3. Results

3.1. Cell Death Induced by P0BrA Was Accompanied by Increased Production of ROS and
Induction of PR1 Expression

To investigate whether the cell death caused by P0BrA is a plant immune response,
we analyzed the markers of plant immunity. DAB staining detected the accumulation of
ROS, a physiological response associated with the onset of HR, in the infiltration regions
of N. benthamiana leaves expressing the P0BrA protein (Figure 1A). Similar to the Bc1-2-
associated X protein (Bax, positive control), the expression of which triggered cell death
phenotype and ROS accumulation [40], transient expression of P0BrA protein was also
followed by ROS accumulation. The phytohormone salicylic acid (SA) plays an important
role in regulating plant immunity and its accumulation induced the expression of a series
of downstream genes, including Pathogenesis-related protein genes-1 (PR1). In the systemic
leaves of N. benthamiana plants infected with PVX.P0BrA (a recombinant PVX-based vector
expressing the P0BrA protein), the PR1 gene transcription level was significantly increased
compared with the control plants (Figure 1B). Interestingly, we observed a significantly
delayed cell death response in the N. benthamiana plants with exogenous SA pretreatment
compared with the control plant pretreated with ethanol (Figure 1C). These results suggest
that the cell death induced by P0BrA in N. benthamiana may be the plant immune response
to the virus.
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Figure 1. Transient overexpression of P0BrA-triggered HR-like cell death in N. benthamiana leaves. (A) DAB staining in N. 
benthamiana leaves transiently expressing P0BrA at 48 h post infiltration. Empty vector (EV), negative control; Bc1-2-associ-
ated X protein (Bax), positive control. (B) Analysis of PR1 transcript accumulation in N. benthamiana plants infected with 
PVX or PVX.P0BrA by qRT-PCR. Values are presented as the mean ± standard error (n = 3). ** p < 0.01; asterisks show 
significant differences as determined using the Student’s t-test. Error bars represent standard errors of the means. (C) 
Effect of SA treatment on cell death phenotypes triggered by P0BrA. EV, negative control. Bax, positive control. A 0.11% 
ethanol treatment (Mock) was used as the solvent control. 

3.2. Both P0BrB and P0BrC Suppressed Local and Systemic RNA Silencing 
BrYV was identified to have at least three genotypes in China [26,31]. We previously 

identified BrYV-A P0 as a strong viral suppressor of RNA silencing, with both local and 
systemic RNA silencing suppression activity [30]. To confirm whether P0 encoded by the 
BrYV genotypes B and C (P0BrB and P0BrC) are also RNA silencing suppressors, P0BrA, P0BrB, 
or P0BrC were transiently coexpressed together with a green fluorescent protein (GFP) in 
N. benthamiana leaves [38]. Under the long-wavelength UV light at 2 days post-infiltration 
(dpi), the leaf patches co-infiltrated with GFP and the empty vector (EV) showed faint 
GFP fluorescence, suggesting that GFP RNA silencing was effectively induced (Figure 
2A). In contrast, the GFP/P0BrB or GFP/P0BrC co-infiltrated leaf patches showed strong GFP 
fluorescence, similar to GFP/P0BrA (Figure 2A). The accumulation of the GFP protein was 
detected using Western blot. In GFP/EV-infiltrated leaf patches, the GFP proteins were 
rarely detected. Furthermore, a high accumulation of GFP was detected in GFP/P0BrB- and 
GFP/P0BrC-infiltrated leaf patches, similar to the GFP/P0BrA (Figure 2B). These results sug-
gest that P0BrB and P0BrC suppressed local RNA silencing in N. benthamiana. 

Figure 1. Transient overexpression of P0BrA-triggered HR-like cell death in N. benthamiana leaves. (A) DAB staining in
N. benthamiana leaves transiently expressing P0BrA at 48 h post infiltration. Empty vector (EV), negative control; Bc1-2-
associated X protein (Bax), positive control. (B) Analysis of PR1 transcript accumulation in N. benthamiana plants infected
with PVX or PVX.P0BrA by qRT-PCR. Values are presented as the mean ± standard error (n = 3). ** p < 0.01; asterisks show
significant differences as determined using the Student’s t-test. Error bars represent standard errors of the means. (C) Effect
of SA treatment on cell death phenotypes triggered by P0BrA. EV, negative control. Bax, positive control. A 0.11% ethanol
treatment (Mock) was used as the solvent control.

3.2. Both P0BrB and P0BrC Suppressed Local and Systemic RNA Silencing

BrYV was identified to have at least three genotypes in China [26,31]. We previously
identified BrYV-A P0 as a strong viral suppressor of RNA silencing, with both local and
systemic RNA silencing suppression activity [30]. To confirm whether P0 encoded by the
BrYV genotypes B and C (P0BrB and P0BrC) are also RNA silencing suppressors, P0BrA,
P0BrB, or P0BrC were transiently coexpressed together with a green fluorescent protein
(GFP) in N. benthamiana leaves [38]. Under the long-wavelength UV light at 2 days post-
infiltration (dpi), the leaf patches co-infiltrated with GFP and the empty vector (EV) showed
faint GFP fluorescence, suggesting that GFP RNA silencing was effectively induced (Figure
2A). In contrast, the GFP/P0BrB or GFP/P0BrC co-infiltrated leaf patches showed strong
GFP fluorescence, similar to GFP/P0BrA (Figure 2A). The accumulation of the GFP protein
was detected using Western blot. In GFP/EV-infiltrated leaf patches, the GFP proteins were
rarely detected. Furthermore, a high accumulation of GFP was detected in GFP/P0BrB-
and GFP/P0BrC-infiltrated leaf patches, similar to the GFP/P0BrA (Figure 2B). These results
suggest that P0BrB and P0BrC suppressed local RNA silencing in N. benthamiana.
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infiltrated with EV were included as the negative control. (B) Western blot analysis of GFP and three Flag-tagged P0Br 
protein levels in infiltrated N. benthamiana leaf patches using an antibody specific for GFP and Flag, respectively. Coo-
massie-stained (Coom.) gels are the loading control. M, molecular weights of protein marker. (C) Systemic RNA silencing 
suppression activity of P0BrB and P0BrC. Transiently coexpressed GFP and P0 were in leaves of N. benthamiana line 16c. 
P19TBSV and EV were used as positive and negative controls, respectively. The efficiency of systemic silencing is presented 
below the images. The ratio shows the number of systemic silencing plants to the number of infiltrated plants, scored in 
three independent experiments. 

To test whether P0BrB and P0BrC could prevent the spread of the systemic silencing 
signal, a GFP co-infiltration assay was conducted in transgenic N. benthamiana line 16c. In 
this experiment, GFP transient expression in the lower leaves resulted in GFP silencing in 
the newly emerging leaves, which could be monitored by UV illumination [41]. At 14 dpi, 
the fluorescence signals of GFP in the upper leaves were observed under the long-wave-
length UV light (Figure 2C). By calculating the percentage of systemic silencing suppres-
sion, the result showed that all the plants co-infiltrated with GFP/EV (negative control) 
exhibited systemic RNA silencing. Conversely, no plants co-infiltrated with GFP and 
P19TBSV, which served as the positive control, exhibited systemic RNA silencing at 14 dpi 
[42]. Only 11, 17, and 17% of the plants infiltrated with GFP/P0BrA, GFP/P0BrB, and 
GFP/P0BrC exhibited systemic RNA silencing, respectively (Figure 2C). These data showed 
that P0BrB and P0BrC display a systemic RNA silencing suppressor activity similar to P0BrA. 

  

Figure 2. Suppression of local and systemic RNA silencing by P0BrB and P0BrC. (A) Suppression of local GFP silencing in
N. benthamiana-infiltrated leaves. Agroinfiltration with GFP and an empty vector pGD (EV), P0BrA, P0BrB, or P0BrC. The
leaves infiltrated with EV were included as the negative control. (B) Western blot analysis of GFP and three Flag-tagged
P0Br protein levels in infiltrated N. benthamiana leaf patches using an antibody specific for GFP and Flag, respectively.
Coomassie-stained (Coom.) gels are the loading control. M, molecular weights of protein marker. (C) Systemic RNA
silencing suppression activity of P0BrB and P0BrC. Transiently coexpressed GFP and P0 were in leaves of N. benthamiana
line 16c. P19TBSV and EV were used as positive and negative controls, respectively. The efficiency of systemic silencing is
presented below the images. The ratio shows the number of systemic silencing plants to the number of infiltrated plants,
scored in three independent experiments.

To test whether P0BrB and P0BrC could prevent the spread of the systemic silencing
signal, a GFP co-infiltration assay was conducted in transgenic N. benthamiana line 16c. In
this experiment, GFP transient expression in the lower leaves resulted in GFP silencing
in the newly emerging leaves, which could be monitored by UV illumination [41]. At
14 dpi, the fluorescence signals of GFP in the upper leaves were observed under the long-
wavelength UV light (Figure 2C). By calculating the percentage of systemic silencing
suppression, the result showed that all the plants co-infiltrated with GFP/EV (negative
control) exhibited systemic RNA silencing. Conversely, no plants co-infiltrated with GFP
and P19TBSV, which served as the positive control, exhibited systemic RNA silencing at
14 dpi [42]. Only 11, 17, and 17% of the plants infiltrated with GFP/P0BrA, GFP/P0BrB, and
GFP/P0BrC exhibited systemic RNA silencing, respectively (Figure 2C). These data showed
that P0BrB and P0BrC display a systemic RNA silencing suppressor activity similar to P0BrA.
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3.3. P0BrB and P0BrC Induce Significantly Delayed and Milder Cell Death in N. benthamiana
Compared to P0BrA

It was previously shown that P0BrA induces cell death in infiltrated N. benthamiana
leaves [30]. To confirm whether P0BrB or P0BrC also induce cell death, we transiently ex-
pressed them in N. benthamiana plants. At 5 dpi, the P0BrA protein triggered an obvious cell
death phenotype and rapidly developed severe necrosis by 7 dpi (Figure 2A). However,
under the same conditions, the cell death phenotype was not evident in leaves expressing
P0BrB or P0BrC at 5 dpi. Even at 7 dpi, both P0BrB and P0BrC only triggered a mild cell death
response, which was significantly weaker than the P0BrA-induced cell death (Figure 2A).
Immunoblotting results showed that the accumulation level of P0BrB or P0BrC was equiva-
lent to P0BrA, indicating that dosage was not the reason for the compromised cell death
(Figure 2B).

3.4. Identification of Key Amino Acid Residues in P0BrA That Affect the Induction of Cell Death in
N. benthamiana

Sequence comparison of P0BrA, P0BrB, and P0BrC showed that the shared amino acid
sequence identity ranged from 86.7 to 90.8%. The amino acid sequence of P0BrB and P0BrC

had nine residues, different from P0BrA (Figure 3). In order to identify the P0BrA key
amino acids that function in inducing cell death, a single amino acid substitution in P0BrA,
mutagenesis experiments were conducted for the following nine residues: Leu substitution
of Ile56 (I56L), Ile substitution of Val70 (V70I), Ile substitution of Thr152 (T152I), Glu substi-
tution of Arg159 (R159E), Ser substitution of Pro163 (P163S), Glu substitution of Gln193
(Q193E), Pro substitution of Ser197 (S197P), Tyr substitution of His227 (H227Y), and Leu
substitution of Phe 228 (F228L) (Figure 3). The P0BrA mutants were transiently coexpressed
together with GFP in wild-type N. benthamiana leaves. Under the long-wavelength UV
light, we found that the GFP fluorescence in the leaf patches co-infiltrated with pGDG and
all nine mutants were as strong as the co-infiltration with pGDG and the wild-type P0BrA

at 2 dpi (Figure 4A). The GFP protein accumulation (Figure 4B) detected by Western blot
corresponded to the GFP fluorescence levels (Figure 4A), indicating the nine substitutions
in P0BrA did not affect the local RNA silencing suppressor activity.
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Figure 3. Multiple alignments of amino acid sequences from P0BrA, P0BrB, and P0BrC. All the
conserved residues are indicated in gray background. The mutated amino acids of the nine mutants
are presented by red underlines. Landmark residues of the F-box-like motif are highlight in the boxes.
The P0 sequences used are as follows: BrYV-A (Accession No. HQ388348), BrYV-B (Accession No.
HQ388351), and BrYV-C (Accession No. KF015269). The numbers correspond to the positions of
amino acids within the P0Br sequence.
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Figure 4. Suppression of local RNA silencing by P0BrA mutants. (A) Agroinfiltration with GFP plus empty vector pGD
(EV), P0BrA, P0BrA mutants, or P0BrB in N. benthamiana leaves. (B) Western blot analysis of GFP and P0BrA mutants in N.
benthamiana-infiltrated patches from (A). (B) GFP and P0BrA mutants were detected using an antibody specific for GFP
and Flag, respectively. Coomassie-stained (Coom.) gels are the loading control. Molecular weights of protein marker (M)
are shown on the left. (C) Cell death phenotypes in N. benthamiana leaves with transiently-expressed P0BrA or its mutants.
Photographs were taken under white light to show cell death at 5 or 7 dpi. Empty vector (EV) was used as the negative
control.

We then compared the cell death induction capacity of the nine mutants with P0BrA. At
5 dpi, the leaves co-infiltrated with P0BrA showed a more prominent cell death phenotype
than leaves infiltrated with mutants (Figure 4C). At 7 dpi, cell death was observed in parts
of leaves expressing mutants I56L, R159E, and S197P (Figure 4C), indicating that the three
mutations delayed the onset of rapid and strong cell death induced by P0BrA. The cell
death phenotypes were not evident in infiltrations with the remaining six mutations V70I,
T152I, P163S, Q193E, H227Y, and F228L (Figure 4C), suggesting that the Val70, Thr152,
Pro163, Gln193, His227, and Phe 228 of P0BrA were key residues essential for inducing cell
death in N. benthamiana but not for suppressing local RNA silencing.

3.5. All Three BrYV Genotypes Have Synergistic Interaction with PEMV 2 Resulting in Increased
Accumulation of BrYV and Causing Severe Symptoms in N. benthamiana

As the BrYV is restricted to the host phloem tissue, the Pea enation mosaic virus 2 (PEMV
2), which belongs to Umbravirus, can help BrYV move out of the phloem into nonvascular
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tissues and be transmitted mechanically [36]. Meanwhile, the synergistic infection of BrYV
and PEMV 2 on N. benthamiana upper leaves produced severe symptoms and significantly
increased the BrYV titer [36]. To further investigate whether the three BrYV genotypes
display differences in synergism with PEMV 2, the wild-type plants were infiltrated with
BrA, BrA + PEMV 2, BrB, BrB + PEMV 2, BrC, BrC + PEMV 2, empty vector (Mock), or
PEMV 2. At 21 dpi, N. benthamiana upper leaves infected with BrA + PEMV 2, BrB + PEMV
2, and BrC + PEMV 2 all displayed necrosis and leaf-curling symptoms. In contrast, no
obvious symptoms were observed in the plants infected with BrA, BrB, BrC, or PEMV 2
(Figure 5A). Northern blot analysis showed an increased accumulation of BrYVs (BrA, BrB,
or BrC) in coinfected plants in contrast to BrYV-only infected plants (Figure 5B). In this
experiment, sequence progeny for BrA, BrB, or BrC in the upper leaves was determined
by multiplex RT-PCR followed by amplicon sequencing. The PEMV 2 infection was
confirmed by RT-PCR and Northern blot detection (Figure 5B). Taken together, PEMV
2 displayed a synergistic interaction with all of the three BrYV genotypes, resulting in
increased accumulation of BrYV and causing severe symptoms in N. benthamiana.
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Figure 5. Systemic infection of the three BrYV genotypes and PEMV 2. (A) The symptoms of N. benthamiana upper leaves
were induced by coinfection with BrYVs and PEMV 2. The upper leaves were photographed at 21 dpi. (B) Accumulation of
BrYV and PEMV 2 in N. benthamiana upper leaves was analyzed using Northern blotting. The viral genomic RNAs (gRNA)
and subgenomic RNAs (sgRNA) are shown on the left of the panel. Methylene blue-stained ribosomal RNA (rRNA) was
used as the loading control.

4. Discussion

P0 proteins have been previously identified as viral suppressors of RNA silencing in
many poleroviruses. Recently, we showed that BrYV-A P0 is a strong VSR that can suppress
both local and systemic RNA silencing [30]. Besides the VSR functions, the P0 proteins of
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TuYV, ScYLV, CABYV, and PLRV were reported to cause cell death phenotypes in some
Nicotiana species. P0Tu, in particular, elicited the HR in N. glutinosa, which is recognized
by the RPO1 resistance gene, a likely immune receptor of P0 [16,17,25]. HR is a form of
programmed cell death that accompanies defense reactions such as the generation of ROS,
including H2O2, the expression of pathogenesis-related (PR) genes, and the accumulation
of phytohormones, including salicylic acid (SA), jasmonic acid, and ethylene [43,44]. In
this study, we discovered that transiently expressed P0BrA in N. benthamiana leaves induced
a cell death response. This rapid and restricted cell death phenotype is accompanied by
the accumulation of ROS and the induction of the marker gene PR1 expression, which
is similar to the HR-like cell death in plants. The phytohormone SA plays an important
role in the regulation of plant immunity [45]. Our study showed the P0BrA-induced cell
death phenotype could be delayed by SA pretreatment, indicating that the SA pathway
may be involved in cell death initiation, but we cannot rule out the involvement of other
defense pathways. Generally, the development of HR resistance is associated with the
recognition of the viral protein by the corresponding resistance (R) proteins of plants in
a host-specific manner [46]. The rapid cell death induced by P0BrA in the agroinfiltrated
region of N. benthamiana leaves may be the result of P0BrA recognition by an R protein from
Nicotiana species, but further experiments are required to confirm this.

BrYV has a widespread distribution and prevalence in crucifer crops throughout
China. According to the multiplex RT-PCR amplification, the three BrYV genotypes had
differences in incidence rates and host species [26]. Among all the BrYV infection types,
genotype C was detected at the greatest proportion, followed by genotype B and A. BrYV-C
had the greatest incidence rates in five Brassica species: B. rapa var. pekinensis, B. oleracea var.
capitata, B. oleracea var. botrytis, B. oleracea var. alboglbra, and B. napus [26]. Raphanus sativus
and B. juncea plants have been previously infected with BrYV-A and BrYV-B genotypes [26].
As the three genotype sequences of BrYV ORF0 have a high diversity, a comparative
analysis of the biological activities of their respective P0 proteins was done. We found that
the P0 proteins of the two other BrYV genotypes (P0BrB and P0BrC) also suppressed both
local and systemic RNA silencing, such as P0BrA. However, transiently-expressed P0BrB or
P0BrC induced a significantly delayed and milder cell death response compared with P0BrA.
As the VSR of BrYV, P0 can suppress the host anti-viral RNA silencing and benefit the
accumulation of virus. However, this pro-viral factor may possibly be recognized by plant
hosts as an effector and elicit HR-like cell death response to restrict the spread of virus.
Although P0BrA, P0BrB, and P0BrC have similar VSR activities, P0BrB or P0BrC induced a
significantly delayed and milder cell death response compared with P0BrA. This may imply
the escape of BrYV genotypes C and B from the perception by host innate immune receptors,
which may further facilitate their infection in plants. Consistent with this presumption,
our previous study had shown that the BrYV genotype C and B have a higher incidence in
nature compared with genotype A, which indicated that BrYV-C and B gradually become
the dominant genotypes of BrYV during virus evolution. Moreover, it cannot rule out the
possibility that the aphids are more likely to feed on the plants infected with BrYV-C or B
in fields, which further facilitate the virus transmission. However, whether the aphid viral
acquisition rates are related to P0’s cell death induction function needs further study.

Previous mutational analyses of P0BrA revealed that the LP63-64AA mutant abolished
local RNA silencing suppression (RSS) activity but retained the systemic RSS and cell death
induction activity. In contrast, the L184A mutant retained local RSS activity but eliminated
the systemic RSS and cell death induction activity, suggesting that the cell death induction
of P0 is independent of the local suppression activity [30]. In this study, the six mutations
V70I, T152I, P163S, Q193E, H227Y, and F228L suppressed local PTGS but failed to induce
the obvious cell death phenotype. The mutant F228L in particular also suppressed systemic
PTGS (Figure 2C), suggesting that the cell death induction activity was not directly required
for P0 to suppress systemic RNA silencing. Since the Phe228 plays an important role in cell
death induction, the screening of host proteins interacting with the F228L mutant, but not
with the wild-type protein, may provide clues for the underlying mechanism of P0BrA in
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inducing cell death. However, further research is also needed to determine whether the
F228L mutation affected the viral infection.

Earlier studies have shown that the P0 proteins in poleroviruses have a conserved
F-box-like motif [LPXX(L/I)X10–13P] and FWR motif [(K/R) IYGEDGX3FWR], indispens-
able to the silencing suppression activity [6,8–12,14,15,17,18,24,30]. Multiple alignments
of the P0 proteins from three BrYV genotypes showed that they shared an amino acid
sequence identity, ranging from 86.7 to 90.8% [31]. A highly conserved FWR motif (209-
KIYGEDGFISFWRIA-223) was present in the three P0Br proteins (Figure 2). P0BrA and P0BrB

had a similar F-box-like motif (63-LPL(L/H)LGDH(V/I)HDDVRKSILVP-82). Interestingly,
the amino acid residue 82 of P0BrC in the F-box-like motif was an alanine (A) instead of
the consensus proline (P), but residue 84 of P0BrC was a P (Figure 2). We speculate that
84P is the key site for the F-box-like motif of P0BrC, but further investigation is required.
Our previous studies have shown that P0BrA interacts with SKP1 via its F-box-like motif
to stabilize itself, ensuring efficient RSS activity of P0BrA for BrYV infection [30]. Studies
have shown that both P0PL and P0PM have conserved F-box-like motif and suppress RNA
silencing but fail to interact with SKP1. Therefore, it will be interesting to investigate the
difference in SKP1-interacting abilities among P0BrA, P0BrB, and P0BrC.

Viral synergism is common in nature [47–54]. The synergistic infection of phloem-
restricted poleroviruses and umbraviruses has destructive effects on crop plants. Previous
research has shown that in the presence of PEMV 2, BrYV can move out of the phloem
to invade the mesophyll tissues and be transmitted mechanically in N. benthamiana [36].
Our results presented that the three BrYVs have no obvious difference in synergism with
PEMV 2. All three BrYV genotypes have synergistic interactions with PEMV 2, resulting in
increased accumulation of BrYV and thus causing more severe symptoms in N. benthamiana.
As an RNA silencing suppressor, P0 is needed for BrYV systemic infection [30]. However,
whether the P0 protein is necessary for synergism between BrYV and PEMV 2 is uncertain.
Further investigation is also needed to identify if the P0 protein acts as a pathogenicity
determinant that leads to severe symptoms during the co-infection of BrYV and PEMV 2.

5. Conclusions

In this study, we demonstrated that the cell death induced by P0BrA was accompanied
by the accumulation of ROS and induction of PR1 gene expression. We also showed that
this cell death phenotype could be delayed by SA pretreatment. The comparison of the
biological functions of the P0 proteins from the three BrYV genotypes demonstrated that
transiently expressed P0BrB or P0BrC induced a significantly delayed and milder cell death
response compared with P0BrA. However, they can also suppress local and systemic RNA
silencing, such as P0BrA. Several residues in P0BrA (Val70, Thr152, Pro163, Gln193, His227,
and Phe228) essential for inducing cell death were identified by comparative analysis of
the P0 proteins. Here, we also showed that all three BrYV genotypes had a synergistic
interaction with PEMV 2 in N. benthamiana. This study provides theoretical guidance on
controlling the viral disease caused by poleroviruses in the future.
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