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Recent clinical trials have shown several multi-target tyrosine kinase inhibitors (TKIs) to

be effective in the treatment of osteosarcoma. However, these TKIs have a number of

targets, and it is yet unclear which of these targets has a key role in osteosarcoma

treatment. In this review, we first summarize the TKIs that were studied in clinical

trials registered on ClinicalTrials.gov. Further, we compare and discuss the targets of

these TKIs. We found that TKIs with promising therapeutic effect for osteosarcoma

include apatinib, cabozantinib, lenvatinib, regorafenib, and sorafenib. The key targets

for osteosarcoma treatment may include VEGFRs and RET. The receptor tyrosine

kinases (RTKs) MET, IGF-1R, AXL, PDGFRs, KIT, and FGFRs might be relevant but

unimportant targets for osteosarcoma treatment. Inhibition of one type of RTK for the

treatment of osteosarcoma is not effective. It is necessary to inhibit several relevant

RTKs simultaneously to achieve a breakthrough in osteosarcoma treatment. This review

provides comprehensive information on TKI targets relevant in osteosarcoma treatment,

and it will be useful for further research in this field.
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INTRODUCTION

Osteosarcoma is themost common primary bonemalignancy (1). For decades, the treatmentmodel
for osteosarcoma has not advanced much. The treatment includes neoadjuvant chemotherapy,
surgery, and postoperative chemotherapy, and patients have a 5-years survival rate of about 60%
(2). Patients who experience metastatic disease have limited options; they have expected 4-months
progression-free survival (PFS) rate of 12% only (3). In recent years, with the great success of
tyrosine kinase inhibitor (TKI) use in the treatment of cancers, the treatment for osteosarcoma
has entered a new phase.

TKIs are targeted drugs that can specifically inhibit protein tyrosine kinases (PTKs). PTKs are
important signaling molecules which having highly regulated activity and are critical components
of signaling pathways that control cellular differentiation and proliferation (4). There are 90
PTKs that encoded by human genome (5). These PTKs can be classified into 32 species of
non-receptor tyrosine kinases (NRTKs) and 58 species of receptor tyrosine kinases (RTKs) (6).
RTKs are involved in the process of extracellular signals into cell, whereas NRTKs regulate
intracellular communication (7). RTKs are transmembrane glycoproteins that consist of an
extracellular domain, a transmembrane domain, and an intracellular kinase domain (Figure 1)
(8). They are activated upon binding to their ligands, and the extracellular signal is transduced
to the cytoplasm by phosphorylation of the tyrosine residues on the receptors themselves and
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FIGURE 1 | The general structural characteristics and activation mechanism of an RTK. RTKs are transmembrane glycoproteins that consist of an extracellular

ligand-binding domain, a transmembrane domain, and an intracellular kinase domain. They are activated by ligand binding and then transduce the extracellular signal

to the cytoplasm by phosphorylating tyrosine residues on the receptors themselves (autophosphorylation) and on downstream signaling proteins.

on downstream signaling proteins (8). RTKs activate multiple
signaling pathways leading to cell migration, differentiation,
proliferation, andmetabolic changes (9). NRTKs are downstream
signalingmolecules of RTKs and various other receptors. They do
not have transmembrane domains, and are located in nucleus or
cytoplasm. NRTKs can be phosphorylated by different RTKs or
trans-autophosphorylated upon dimerization (10).

RTK irregularities can lead to a range of diseases. More than
half of the oncogene and proto-oncogene products have RTK
activities, and their abnormal expression leads to the disorder
of cell regulation, which eventually leads to tumorigenesis
(11). In addition, RTK irregularities are related to tumor
neovascularization, invasion, metastasis, and chemotherapy
resistance (4). Therefore, RTKs have become a focus of research
on antitumor drugs. Most TKIs are small molecule inhibitors
designed to interfere with binding of the RTK intracellular
domain with ATP or other substrates, thereby inhibiting the
catalytic activity of RTKs (Figure 1) (12, 13). Many of the

TKIs inhibit several RTKs as the intracellular domain is
relatively conserved among RTKs (14). The targeted drugs that
showed efficacy in osteosarcoma treatment are these multi-target
TKIs (15).

In this review, we first summarize the TKIs that have shown
results in registered clinical trials of osteosarcoma treatment.
Further, we compare and discuss the targets of these TKIs. This
comprehensive review will be a valuable resource for further
research on the use of TKIs in osteosarcoma treatment.

TKIS REPORTED IN REGISTERED
CLINICALTRIALS FOR OSTEOSARCOMA
TREATMENT

TKIs reported in registered clinical trials on patients with
osteosarcoma that have been conducted so far are listed in
Table 1. Clinical trials were included herein only if: (1) they
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TABLE 1 | Targets and clinical outcomes of TKIs which have shown results in registered clinical trials of osteosarcoma treatment.

TKIs RTKs and IC50 (nM, mean) Clinical outcome References

VEGFR1 VEGFR2 VEGFR3 KIT RET PDGFRα PDGFRβ FGFR1

Apatinib 70 1 - 429 13 >1,000 - >1,0000 PR rate 43% (16/37), 4-months

PFS rate 56.76%, m-PFS 4.5m.

(16, 17)

Axitinib 0.1 0.2 0.29 1.7 >1,000 5 1.6 231 5-months SD rate 100% (2/2). (18, 19)

Cabozantinib 12 0.035 6 4.6 5.2 - 234 5,294 PR rate 12% (5/42), 6-months

PFS rate 33%, m-PFS 6.2m.

(20–22)

Cediranib 5 <1 3 2 - 36 5 26 One of four patient had PR after

two cycles.

(23, 24)

Imatinib 19,500 10,700 5,700 97 - 72 - 31,200 Five of 27 patients had SD at 4

months.

(25–27)

Lenvatinib 4.7 3 2.3 85 6.4 29 - 61 PR rate 8% (2/26), 4-months

PFS rate 33%, m-PFS 3.4m.

(28, 29)

Regorafenib 13 4.2 46 7 1.5 - 22 202 PR rate 8% (2/26), 12-weeks

PFS rate 62%, m-PFS 16.4w.

(30, 31)

Sorafenib - 4 20 68 0.4 18 57 580 PR rate 9% (3/35), 4-months

PFS rate 46%, m-PFS 4m.

(32–34)

PFS, progression-free survival; TKI, tyrosine kinase inhibitor; RTKs, receptor tyrosine kinases; PR, partial response; VEGFR, vascular endothelial growth factor receptor; KIT, stem cell

factor receptor; RET, rearranged during transfection; FGFR1, fibroblast growth factor receptor; PDGFR, platelet-derived growth factor receptor; SD, stable disease.

FIGURE 2 | The chemical structure of protein tyrosine kinases.

were prospective clinical trials, (2) they were registered with
ClinicalTrials.gov, (3) their subjects were osteosarcoma patients,
(4) the administered pharmacotherapy exclusively included
TKIs, with no other drugs, and (5) those with detailed results
were retrievable on https://pubmed.ncbi.nlm.nih.gov. There are
retrospective studies on other TKIs (pazopanib and sunitinib) in
the treatment of osteosarcoma (35, 36). We have not listed them
here as retrospective nature is a limitation of such studies.

Apatinib
Apatinib (Figure 2) was approved for the treatment of metastatic
or advanced gastric cancer in China in 2014 (37). Because of its
low price, it is widely used off-label in China for treating various
malignant tumors, including osteosarcoma (17, 37, 38). Apatinib

has fewer confirmed targets compared to other multi-target TKIs;
these targets include vascular endothelial growth factor receptor-
1 (VEGFR1, IC50 = 70 nM), VEGFR2 (1 nM), rearranged
during transfection (RET, 13 nM), stem cell factor receptor (KIT,
429 nM), and v-src avian sarcoma (Schmidt-Ruppin A-2) viral
oncogene homolog (SRC, 530 nM) (Table 1) (16).

In the treatment of osteosarcoma, preclinical studies have
shown that apatinib promotes apoptosis and autophagy through
VEGFR2/STAT3/BCL-2 signaling pathways in osteosarcoma
cells (39), and it inhibits invasion, migration, and PD-L1
expression in osteosarcoma cells (40). Apatinib also attenuates
doxorubicin-induced cancer stemness and cancer cell migration
of osteosarcoma cells by inhibiting Sox2 (41). Only one phase II
trial has been conducted on patients with advanced osteosarcoma
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(17). In this open-label clinical trial, 37 patients with advanced or
metastatic osteosarcoma after failure of standard chemotherapy,
received 500 or 750mg of apatinib once daily in accordance with
their body surface area until unacceptable toxicity or disease
progression was observed. Consequently, the 4-months PFS was
57% among the apatinib-treated patients, with a median PFS of
4.5 months, and a marked 43% partial response (PR) rate. Doses
were reduced or interrupted among 25 of 37 (67%) patients,
owing to drug toxicity. The most common grade 3–4 adverse
events (AEs) were pneumothorax (16%), wound dehiscence
(10%), proteinuria (8%), diarrhea (8%), and palmar-plantar
erythrodysesthesia syndrome (8%). No treatment-related deaths
were observed. The PR rate in this trial was significantly higher
than that reported by retrospective studies (42, 43). It may be due
to the high dose of apatinib, which was 750mg per day in the
registered trial, compared with 500mg per day in retrospective
studies. In conclusion, apatinib is an important and effective TKI
in osteosarcoma treatment.

Axitinib
Axitinib (Figure 2) is an orally administered TKI of VEGFR1
(0.1 nM), VEGFR2 (0.2 nM), VEGFR3 (0.1–0.3 nM), platelet-
derived growth factor receptor-α (PDGFRα, 5.0 nM), PDGFRβ

(1.6 nM), Colony stimulating factor 1 receptor (CSF-1R, 73 nM),
KIT (1.7 nM), fibroblast growth factor receptor (FGFR1,
231 nM), and RET (>1,000 nM) (Table 1) (18). Axitinib was
developed for the treatment of many solid malignancies. It was
approved by the Food and Drug Administration (FDA) of the
United States to treat advanced renal cell carcinoma (RCC) after
failure of other systematic therapies in 2012 (44).

There is no preclinical evidence of axitinib in the treatment
of osteosarcoma, and only one clinical trial of axitinib in
the treatment of osteosarcoma (19). This phase 1 and pilot
consortium trial was about the safety and efficacy of axitinib
in adolescents with recurrent or refractory solid tumors.
In this trial, 19 patients received axitinib twice daily in
continuous 28-days cycles. The most common (>20%) grade
1–2 AEs during treatment included anorexia, anemia, diarrhea,
fatigue, hypertension, and nausea. Non-hematological toxicity
of grade ≥3 AEs included elevated serum lipase levels and
hypertension. Drug exposure and dosage were not associated
with hypertension. Five patients presented with stable disease
(SD) as the optimal response, including two osteosarcoma
patients. One patient with alveolar soft part sarcoma presented
a partial response. This result suggests that axitinib has limited
efficacy in osteosarcoma compared to other TKIs listed in
Table 1. Perhaps that is why there have been few studies on
axitinib for osteosarcoma.

Cabozantinib
Cabozantinib (Figure 2) is a fairly multiple target TKI with
activity not only for VEGFR2 (0.035 nM) but also for
the N-methyl-N0-nitroso-guanidine human osteosarcoma
transforming gene RTK (MET, 1.3 nM), KIT (4.6 nM), RET
(5.2 nM), VEGFR3 (6 nM), anexelekto RTK (AXL, 7 nM),
VEGFR1 (12 nM), and PDGFRβ (234 nM) (21, 22). Registered
clinical trials of cabozantinib for prostate (45), lung (46), renal

cell (47), and thyroid cancers have been completed (48). It was
approved by FDA for the treatment of advanced or metastatic
medullary thyroid cancer, RCC and hepatocellular carcinoma
(HCC) (49).

In osteosarcoma, preclinical studies have shown that
cabozantinib is able to inhibit proliferation and migration
of osteosarcoma cells through the ERK and AKT signaling
pathways (50). The French sarcoma group had carried out a
multicenter, phase II trial involving patients with advanced or
metastatic osteosarcoma after failure of other systemic therapy
(20). Ninety osteosarcoma patients received cabozantinib orally
every day continuous 28-days cycles until unacceptable toxicity
or disease progression was observed. The median follow-up
duration was 31 months among osteosarcoma patients. Forty-
two (93%) osteosarcoma patients were assessable for treatment
efficacy through histological and radiological analyses. Five
(12%) osteosarcoma patients presented a PR and the median
PFS was 6.2 months. The most frequent grade 3 or 4 AEs were
hypophosphatemia, increased aspartate aminotransferase levels,
palmar-plantar syndrome, pneumothorax, and neutropenia.
No treatment-related deaths occurred. The longer median-PFS
results represent the best achievement to date in the treatment of
osteosarcoma by TKIs.

Cediranib
Cediranib (Figure 2) is an oral multi-target TKI with targets
including VEGFR1 (5 nM), VEGFR2 (<1 nM), VEGFR3 (3 nM),
KIT (2 nM), PDGFRβ (5 nM), FGFR-1 (26 nM), and PDGFRα

(5.0 nM) (Table 1) (23). Cediranib has shown promising activity
in a series of malignancies (51), including alveolar soft-part
sarcoma, in preclinical models and in clinical trials (52); however,
these results are not sufficient to get approval for its routine use
until now.

Just like axitinib, there is no preclinical evidence of cediranib
being efficient to treat osteosarcoma, and only one phase I
trial has been conducted on patients with osteosarcoma (24).
In this trial, 16 patients were recruited. Grade 3 or 4 AEs
included nausea, vomiting, fatigue, hypertension, and prolonged
corrected QT interval. Grade 1 or 2 AEs included palmar-
plantar erythrodysesthesia, left ventricular dysfunction, weight
loss, elevated thyroid stimulating hormone levels, and headache.
One of four patients presented with minor PR as the optimal
response. The results were similar to those of axitinib. This
may be because the two drugs have similar targets and target
sensitivity (Table 1).

Imatinib
Imatinib (Figure 2) is significantly different from the other TKIs
presented in Table 1. The main difference is that imatinib does
not affect VEGFR1 (19,500 nM), VEGFR2 (10,700 nM), VEGFR3
(5,700 nM), and FGFR1 (31,200 nM). Its sensitive targets include
KIT (97 nM), PDGFRα (72 nM), and CSF-1R (291 nM) (25).
Imatinib was approved by FDA for the treatment of chronic
myeloid leukemia and advanced or metastatic gastrointestinal
stroma tumors (GIST) (53, 54).

In preclinical studies, imatinib inhibits proliferation of
osteosarcoma cells and inhibits tumor growth in preclinical
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murine models of osteosarcoma (55). However, another study
suggests that imatinib is effective in osteosarcoma treatment
only when imatinib is combined with another therapeutic
intervention, such as induction of cellular stress, that renders
cell survival dependent on PDGF signaling (56). In a phase II
multicenter trial on patients with osteosarcoma administered
with imatinib (27), five of 27 osteosarcoma patients achieved
SD at 4 months after treatment initiation, and various genes
in the KIT/PDGFR pathway were either aberrantly expressed
or mutated, suggesting that imatinib was not effective against
advanced-stage osteosarcoma. This undesirable outcome has led
to the exclusion of imatinib from clinical treatment options
for osteosarcoma.

Lenvatinib
Lenvatinib (Figure 2) is an oral multi-target TKI with targets
including VEGFR1 (4.7 nM), VEGFR2 (3 nM), VEGFR3
(2.3 nM), PDGFRα (29 nM), KIT (85 nM), FGFR-1 (61 nM),
and RET (6.4 nM) (Table 1) (28). Phase I trials of lenvatinib
were conducted simultaneously worldwide, for the treatment
of thyroid cancer, endometrial cancer, RCC, melanoma, colon
cancer, and sarcoma (57). Lenvatinib is approved by FDA
for the treatment of advanced HCC, radioiodine-refractory
differentiated thyroid cancer, and advanced RCC (58).

There are no preclinical studies of lenvatinib in osteosarcoma.
An ongoing clinical trial of lenvatinib in relapsed osteosarcoma
reported initial results (29). In this trial, patients were aged 2–
25 years, and had undergone <2 previous targeted therapies.
Twenty-six patients received 14 mg/m2/day of lenvatinib.
The most common AEs were diarrhea, proteinuria and
hypothyroidism, and the most common grade 3 or 4 AEs were
dyspnea and back pain. The 4-months PFS was 33%, the median
PFS was 3.4 months, and the PR rate was 8%. This result indicates
that lenvatinib has activity against osteosarcoma, and further
studies will most probably prove this.

Regorafenib
Regorafenib (Figure 2) is an orally administered multi-target
TKI that targets VEGFR1 (13 nM), VEGFR2 (4.2 nM), VEGFR3
(46 nM), PDGFRβ (22 nM), KIT (7 nM), FGFR-1 (202 nM), and
RET (1.5 nM) (Table 1) (30). Regorafenib is the first TKI that
showed efficacy in advanced or metastatic colorectal cancer (59),
and was approved in 2012 by FDA for this indication. In addition,
regorafenib is approved by FDA for the treatment of GIST and
HCC (60, 61). It has also been examined in several different
tumor types, including relapsed glioblastoma (62), RCC and soft-
tissue sarcoma (63, 64). And additional phase II trials in other
solid malignant tumors are ongoing (65).

In vitro experiments have shown that regorafenib inhibits
osteosarcoma cell growth by inducing apoptosis of cells (66). Two
registered clinical trials have been reported on regorafenib in
osteosarcoma. The first is a non-comparative, placebo-controlled
phase II trial about the efficacy and safety of regorafenib in
metastatic osteosarcoma patients (31). In this trial, 38 patients
with metastatic osteosarcoma after failure of one or two previous
lines of chemotherapy were enrolled. Patients were randomly
assigned to receive either regorafenib or a matching placebo.

Non-progression was observed in 65% (17 of 26) patients in the
regorafenib group. The 12-weeks PFS was 62%, the median PFS
was 16.4 weeks, and the PR rate was 8%. Themost common grade
3 or 4 AEs included hypertension, hand–foot skin reactions,
fatigue, hypophosphatemia, and chest pain. No treatment-related
deaths occurred. Another clinical trial was similar to the above
(3). This trial enrolled 42 patients with advanced or metastatic
osteosarcoma, after failure of at least one prior line of therapy.
Study enrolment was terminated early, upon review by the data
safety monitoring committee. The median PFS was significantly
higher in the regorafenib group than that in the placebo group.
And the efficacy and safety were similar to the above trial. These
two studies met their primary end point, demonstrating the
efficacy and safety of regorafenib in patients with advanced or
metastatic osteosarcoma after failure of prior therapy.

Sorafenib
As a multi-target TKI, the targets of sorafenib (Figure 2) include
VEGFR2 (4 nM), VEGFR3 (20 nM), PDGFRβ (22 nM), KIT
(68 nM), FGFR-1 (580 nM), and RET (0.4 nM) (Table 1) (32, 33).
In 2005, sorafenib was approved by FDA for the treatment of
advanced RCC (67). Moreover, it was the first TKI approved
for patients with radioiodine-refractory differentiated thyroid
cancer (68).

Sorafenib is the most studied multi-target TKI in
osteosarcoma. Preclinical studies have found that sorafenib
blocks tumor growth, tumor angiogenesis, and tumor metastatic
potential of osteosarcoma in preclinical murine models (69).
Another study has shown that sorafenib targets the PTKs
RET and VEGFR2 and suppresses cell proliferation (31). Two
registered clinical trials have been reported on sorafenib in
osteosarcoma. The first is a phase II trial of sorafenib in patients
with advanced or metastatic osteosarcoma after failure of
standard treatment (34). In this trial, 35 patients were enrolled,
and the 4 months PFS rate was 46%, the median PFS was 4
months, and the PR rate was 9% (3/35). Sorafenib treatment
was reduced or briefly interrupted in 46% patients owing to
toxicity. Another clinical trial yielded similar results (70). These
two clinical trials are milestone achievements for the treatment
of advanced osteosarcoma, because they are the first multicenter
prospective clinical trials to demonstrate the efficacy of TKIs
in osteosarcoma.

WHICH RTK IS THE KEY TARGET?

The targets of the aforementioned multi-target TKIs, namely
RTKs, are listed in Table 1 and Figure 3. It can be seen that only
KIT is the common target of all multi-target TKIs mentioned
above. Other RTKs that are targets of majority TKIs include
VEGFRs, RET, PDGFRs, and FGFR1. To determine which RTK
is the key target for osteosarcoma, we continue to review the
relevant literature.

VEGFRs
VEGF is a highly specific vascular endothelial growth factor,
which can promote vascular permeability, extracellular matrix
degeneration, endothelial cell migration, proliferation, and
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FIGURE 3 | A visual interaction map of the different targets of the different drugs. Preclinical data indicate that all eight targets shown in the figure play an important

role in the progression of osteosarcoma. However, clinical trials in osteosarcoma have demonstrated the low efficacy of single-target therapy by inhibiting VEGFs (by

bevacizumab), KIT and PDGFRs (by imatinib), and IGF-1R (by cixutumumab). The results of these clinical trials suggest that the inhibition of one type of targets in the

treatment of osteosarcoma is not feasible. PFS, progression-free survival; TKI, tyrosine kinase inhibitor; PR, partial response; VEGFR, vascular endothelial growth

factor receptor; KIT, stem cell factor receptor; RET, rearranged during transfection; FGFR1, fibroblast growth factor receptor; PDGFR, platelet-derived growth factor

receptor; SD, stable disease.

angiogenesis (71). VEGF signaling pathways have three RTKs,
namely VEGFR1, VEGFR2, and VEGFR3 (72). VEGFR1 has
the strongest binding affinity to VEGF and more thorough
phosphorylation, but it has less effect on the activation
of intracellular signaling intermediates (73). VEGFR2 is the
dominant receptor that mediates the biological effect and pro-
angiogenic functions of VEGF, which is closely related to cell
division and chemotaxis (74). And this pathway has been under
research focus on priority for the development of antiangiogenic
therapies (75). VEGFR3 exists only in lymphoid endothelial cells
in adults. In a variety of cancer types, VEGFR3 is associated
with tumor lymphangiogenesis, lymph node invasion and
metastasis (76). Currently, anti-angiogenic therapies targeting
VEGF/VEGFRs signaling pathway include anti-VEGF antibodies
(Bevacizumab) (77), anti-VEGFR2 antibodies (ramucirumab)
(78), and TKIs (14). Both bevacizumab and ramucirumab have
been approved by FDA for use in therapy of a series of
malignancies. At present, more than a dozen types of TKIs that
target VEGFRs have been approved by FDA for the treatment of
cancer therapy.

Regarding osteosarcoma, a systematic review showed that
high VEGF expression in osteosarcoma patients were associated

with lower PFS rate. In addition, osteosarcoma patients with
high VEGF expression were associated with shorter overall
survival (OS) (79). These findings suggested that targeting
the VEGF signaling pathway may be an effective treatment
for osteosarcoma. However, this is not the case. The clinical
outcomes of targeting VEGF/VEGFR signaling pathways in
osteosarcoma are not always favorable. The clinical efficacy of
bevacizumab in osteosarcoma was limited (Figure 3) (80), and
there is not even a single study on the clinical treatment of
osteosarcoma with ramucirumab until now. As shown in Table 1

and Figure 3, TKIs—including apatinib, cabozantinib, lenvatinib,
regorafenib, and sorafenib—having better therapeutic effect on
osteosarcoma include VEGFRs as targets, whereas TKI (imatinib)
whose targets did not include VEGFRs had poor therapeutic
effect on osteosarcoma. This seems to prove that VEGFRs are
essential for TKIs to be effective in osteosarcoma treatment.
However, not all multi-target TKIs that target VEGFRs are
effective in treating osteosarcoma; for example, axitinib and
cediranib (Table 1 and Figure 3). In conclusion, therapy that
targets VEGF/VEGFR is an important and effective anticancer
method. However, the efficiency of inhibiting just VEGF/VEGFR
in osteosarcoma treatment is limited.
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KIT
The KIT is a kind of RTK, and its ligand is stem cell factor (81).
KIT also contains an extracellular domain, a transmembrane
domain, and an intracellular domain (82). After binding with
a ligand, KIT induces multiple signaling cascades, which are
essential for biological processes including cell differentiation,
proliferation, and migration (83). KIT plays important roles in
the functioning of nervous system, kidney, gastrointestinal tract,
bones, lungs, and pancreas (81). Abnormal expression of KIT has
been documented in various neoplasms (82, 84). These results
have encouraged researchers to work on the use of KIT as a
potential target in the treatment of malignant tumors.

Although KIT has been widely studied in neoplastic and
non-oncological diseases, there are few preclinical and clinical
studies on KIT in osteosarcoma. In 2007, a study showed that
tumor specimens from 20 out of 100 patients with osteosarcoma
were KIT-positive and that OS were not different between
patients with and without KIT expression (85). In 2011, another
study found that KIT was expressed in 46.15% patients with
osteosarcoma and that KIT-positive tumors had worse response
to chemotherapy (86). The results of both studies point to the
possibility that KIT is not a key player in proliferation and
metastasis of osteosarcoma. Although all the TKIs effective in
osteosarcoma listed in Table 1 and Figure 3 include KIT as a
target, there are still three TKIs (axitinib, cediranib, and imatinib)
that include KIT as a target but are not effective in osteosarcoma.
Based on the limited evidence described above, we surmise
that KIT is not a key RTK in osteosarcoma treatment and that
targeting KIT alone in osteosarcoma treatment is inefficient.

RET
The RTK RET is coded by the gene RET (87). As an RTK,
RET also has characteristic composition of extracellular domain,
transmembrane domain, and intracellular kinase domain (88).
RET binds with the ligand–coreceptor complex of glial cell line-
derived neurotrophic factor family ligands and glial cell line-
derived neurotrophic factor family receptor alpha (89). The RET-
bound complex then leads to phosphorylation of intracellular
kinase domain, which activates downstream signaling pathways.
RET signals are associated with many RET-mediated functions
(90). RET mutations have been documented in a variety of organ
systems (91–93). Abnormal expression of RET has been observed
in many malignancies (94, 95). These results have led to the
use of RET as a capable target in cancer therapy. Several multi-
target TKIs targeting RET are approved by the FDA for cancer
therapy and non-oncologic disease treatment (94). Selective RET
inhibitors selpercatinib and pralsetinib are undergoing clinical
trials respectively, with preliminary results demonstrating partial
response and low incidence of serious AEs (96, 97).

The role of RET in osteosarcoma has been far less studied
than in other malignancies. Using phosphoproteomic screening,
RET was first identified in vitro as a receptor that can
promote behavior of metastatic osteosarcoma cells and is
thought to be a potential therapeutic target for osteosarcoma
(98). It has also been confirmed that the overexpression of
RET is associated with chemotherapeutic resistance induced by
cisplatin and bortezomib, and with the increase of stem cell-like

properties of osteosarcoma (99–101). There are many clinical
trials on the role of RET in osteosarcoma. As shown in Table 1

and Figure 3, all multi-target TKIs (apatinib, cabozantinib,
lenvatinib, regorafenib, and sorafenib) with high efficiency in
osteosarcoma are inhibitors of RET. Further, the three multi-
target TKIs (axitinib, cediranib, and imatinib) with low efficiency
in osteosarcoma do not inhibit RET. In conclusion, RET is
an important and potentially critical target for osteosarcoma
treatment, and it may be equally important as VEGFRs. The
role of RET in osteosarcoma has not been studied in detail and
warrants further study.

PDGFRs
PDGF is named for its origin in platelets. It exists in normal
physiological state in platelets. When blood clots, PDGF is
released by disintegrated platelets and activated (102). PDGF
signaling pathway consists of four ligands and two receptors
(PDGFR-α and PDGFR-β) (103). Ligand-induced receptor
dimerization of PDGF receptors leads to autophosphorylation
of the receptors (103, 104). A series of downstream signaling
molecules bind to specific phosphotyrosines in the intracellular
domain of PDGFRs andmediate intracellular signal transduction
(105, 106). Activation of these pathways leads to cell proliferation
and migration (103, 107). PDGFs/PDGFRs are expressed in
many normal human cells and are involved in the normal
development and physiological process of important organs
(105). The PDGFs/PDGFRs pathway play an important role in
the development and metastasis of cancers (104). Given the
association between PDGF over-activity and malignant tumors,
different kinds of PDGF inhibitors have been developed. These
inhibitors include the fully human IgG1 monoclonal antibody
against PDGFRα named olaratumab (108), andmulti-target TKIs
such as cediranib, imatinib, and sorafenib (Table 1).

Many studies have confirmed that PDGFs/PDGFRs
signaling pathway play an important role in the proliferation
and migration of osteosarcoma (109, 110). However, the
expression of PDGFs/PDGFRs in osteosarcoma has a significant
heterogeneity (111), and the association of PDGFs expression
with osteosarcoma prognosis has not yet been established.
Some studies have suggested that high expression of PDGFs
is associated with poor prognosis of osteosarcoma patients
(111, 112). On the contrary, other studies have shown that
OS and PFS analysis was not different between osteosarcoma
patients on the basis of PDGFs/PDGFRs expression level
(113, 114). The use of PDGFR inhibitor alone in clinical trials
is not efficacy, whereas its combination with other drugs
seems more promising (27, 115–117). As shown in Table 1

and Figure 3, axitinib and cediranib are effective inhibitors
of PDGFRs, yet their efficacy in osteosarcoma is as poor as
imatinib. Apatinib, which is more effective in osteosarcoma, does
not target PDGFRs. The PDGFs/PDGFRs signaling pathway
may not to be the driver of osteosarcoma, especially in the
presence of other signaling pathways such as VEGFs. Therefore,
the application of PDGFs/PDGFRs inhibitor would be expected
to be effective only if used in combination with another drug.
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FGFRs
FGFRs are a subfamily of RTKs, with four subtypes including
FGFR1, FGFR2, FGFR3, and FGFR4 (118). As RTKs, FGFRs
also has characteristic composition of extracellular domain,
transmembrane domain, and intracellular kinase domain that
transduces downstream signaling (119). The ligands of FGFRs
comprise 22 growth factors, which are classified into seven
subgroups (120). FGFs/FGFRs signaling pathway are activated
through FGFs binding to FGFRs, which depends on heparan
sulfate, a glycosaminoglycan (121). Activation of FGFRs results in
receptor dimerization, transphosphorylation of receptor kinase
domains, and activation of downstream signaling pathways
(122, 123). FGFs/FGFRs signaling pathway play an important
role in many physiological processes such as embryogenesis,
tissue repair, wound healing, and inflammation (119). Aberrant
activation of the pathway due to FGFRs amplification, mutations,
or gene fusions has been observed in many malignancies (124).
Currently, several multi-target or selective TKIs that target
FGFRs have been approved by FDA for the treatment of
malignancies (125, 126).

Regarding osteosarcoma, a study revealed low expression
of FGFR-2 and FGFR-3 across standard and patient-derived
osteosarcoma cells (127). Another study, which included 352
osteosarcoma samples, detected FGFR1 amplification in 18%
of the chemotherapy resistant osteosarcoma patients (128).
This suggests that FGFR1 amplification is associated with poor
response of osteosarcoma to chemotherapy. Another study
showed that deregulated FGFRs signaling plays an important
role in osteosarcoma formation and the development of lung
metastases (129). There are no clinical trials of selective
FGFR inhibitors in osteosarcoma. There are many clinical
trials of multi-target FGFR TKIs in osteosarcoma. As shown
in Table 1 and Figure 3, cediranib, a multi-target FGFR1
TKI, is not effective in the osteosarcoma treatment. However,
apatinib and cabozantinib, which do not target FGFR1, can
effectively treat osteosarcoma. To sum up, it is clear that FGFR
signaling pathways might be relevant but is unimportant in
osteosarcoma treatment.

OTHER RTKS IN OSTEOSARCOMA

By summarizing the clinical trials of various multi-target TKIs in
osteosarcoma and their targets, we have identified the above five
RTKs that may be associated in the treatment of osteosarcoma.
However, the key RTKs for osteosarcoma seem to be more
than that.

MET
MET kinase is a heterodimer protein (130). As an RTK,
MET contains a characteristically extracellular domain,
transmembrane domain, and intracellular kinase domain (131).
The binding of its ligand, hepatocyte growth factor, results in
MET dimerization, transphosphorylation of receptor kinase
domains, and activation of downstream signaling pathways
(132). MET signaling pathway play an important role in many
physiological processes (132, 133). Aberrant activation of the
pathway due to MET amplification, mutations, or gene fusions

has been observed in many malignancies and degenerative
diseases (133, 134). Several small-molecule inhibitors and
monoclonal antibodies of MET are in the development (134).

Regarding osteosarcoma, a study has shown that
overexpression of the MET caused primary osteoblasts to
transform into osteosarcoma cells (135). Another study
suggested that MET receptor is aberrantly expressed in almost
all the human osteosarcoma cells (136). Other studies also
found that inhibiting the MET signaling pathway can increase
apoptotic rate and suppress the migration, proliferation, and
invasion of osteosarcoma cells (137, 138). There is no report
about the treatment of osteosarcoma with a selective MET
inhibitor. However, the multi-target MET inhibitor cabozantinib
has a high efficiency in osteosarcoma (Table 1 and Figure 3)
(20). All this evidence suggests that MET may be one of the
drivers of osteosarcoma.

IGF-1R
IGF-1R is a hetero-tetrameric transmembrane glycoprotein with
RTK activity, which is ubiquitously expressed in various human
cell types and tissues (139). As an RTK, IGF-1R has a typical
extracellular domain, transmembrane domain, and intracellular
tyrosine kinase domain (136, 140). It plays an important
role in growth and various physiological functions, including
differentiation, development, apoptosis, and metabolism by
binding to its ligand IGF-1 (141). Aberrant activation of IGF-
1 has been observed in many malignancies (142). There are
many new drugs being developed to target IGF/IGF-1R signaling
pathway (139).

Regarding osteosarcoma, a study showed that the relative
expression of IGF-1R in osteosarcoma was significantly higher
than that in corresponding non-cancerous bones. The expression
of IGF-1R is closely related to distant metastasis and prognosis
of osteosarcoma. Higher IGF-1R expression in osteosarcoma
patients is associated with poorer survival (143). Extensive
screening and validation strategies identified IGF-1R as one
of the specific RTKs that can activated and promote the
phenotype of osteosarcoma cells in vitro (98). However, despite
encouraging preclinical data, clinical trials of IGF-1R inhibitors
for osteosarcoma have not yielded satisfactory results. In a phase
II trial of the IGF-1Rmonoclonal antibody R1507 in patients with
osteosarcoma, only two PRs were observed in 38 patients, with
median PFS of 5.7 weeks (144). In another phase II trial of the
IGF-1R antibody cixutumumab in children with osteosarcoma,
no PRs were observed in 11 patients (Figure 3) (145). In general,
IGF-1R might be one of the drivers of osteosarcoma, but
inhibiting it alone is clearly not an option.

AXL
AXL kinase contains a characteristically extracellular domain,
transmembrane domain, and intracellular domain (146). Upon
high-affinity binding to its ligand, growth arrest-specific protein
6 (GAS6), undergoes homodimerization, and subsequent
transautophosphorylation within the intracellular kinase
domain, thus activating downstream signaling pathways (147).
The Gas6/AXL signaling pathway play an important role in
many physiological processes (148). The aberrant expression
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of Gas6/AXL has been observed in many malignancies (147).
Different small-molecule inhibitors and monoclonal antibodies
of AXL have been developed (148).

There have been identified AXL as one of the specific RTKs
that can activated and promote the phenotype of osteosarcoma
cells in vitro (149). Higher AXL expression in osteosarcoma
patients is associated with poorer survival (150). Knockdown of
AXL in osteosarcoma cells leads to decreased proliferation and
increased apoptosis (151). In addition, miR-199a-3p and lncRNA
DANCR regulate the progression of osteosarcoma through
targeting AXL (152). A retrospective study showed that one in
five patients with osteosarcoma treated with an AXL inhibitor,
sunitinib, showed PR (36). In an phase II trial of the AXL
inhibitor cabozantinib in osteosarcoma, the 6-months PFS rate
was 33%, the median PFS was 6.2 months, and the PR rate
was 12% (Figure 3) (20). It should be noted that both sunitinib
and cabozantinib are multi-target TKIs. At present, there is no
report about the efficacy of single-target drugs against AXL in
osteosarcoma. From the above evidence, we suspect that AXL is
also a driver of osteosarcoma.

DISCUSSION

In this review, we first summarized the multitarget TKIs that
were reported in registered clinical trials in patients with
osteosarcoma. We compared the targets of these TKIs and found
that VEGFRs and RET may be the key RTKs for the treatment of
osteosarcoma.We further showed that KIT, PDGFRs, and FGFRs
might be relevant but unimportant RTKs for osteosarcoma. In
addition, we reviewed the literature and found that MET, IGF-
1R, and AXL may also be relevant targets for the treatment
of osteosarcoma.

Preclinical studies indicate that all eight RTKs mentioned
above play an important role in the progression of osteosarcoma.
However, clinical trials in osteosarcoma have demonstrated the
low efficacy of single-target therapy by inhibiting VEGFs (by
bevacizumab) (80), KIT and PDGFRα (by imatinib) (115), and
IGF-1R (by cixutumumab or R1507) (Figure 3) (144, 145). The
results of these clinical trials indicate that the inhibition of
one type of RTKs in the treatment of osteosarcoma is not
feasible. The molecular mechanism indicates that there is a
large amount of crossover and overlap among the downstream
signaling pathways of RTKs. For example, SRC kinase, which
plays a key role in the development of osteosarcoma (153),
can be activated, respectively by VEGFRs (154), KIT (81), RET
(90), PDGFRs (103), IGF-1R (155), and AXL (148). Therefore,
it can be determined that inhibition of one type of RTKs is
not effective in the treatment of osteosarcoma. It is necessary
to inhibit several key RTKs simultaneously in order to achieve
a breakthrough in the treatment of osteosarcoma. For example,
cabozantinib, which can simultaneously inhibit VEGFRs, KIT,
RET, PDGFRβ, MET, and AXL (21, 22), has the best effect
in the treatment of osteosarcoma, with a median PFS of
6.2 months, compared to other TKIs listed in Table 1 and
Figure 3 (20).

This review serves as a good reference in the field of RTK-
targeted osteosarcoma treatment. First, this study can provide
reference for new drug research and development. For example,
researchers have discontinued studies on several kinds of IGF-1R
antibodies because of poor clinical trial results. However, these
single-target TKIs are ideal for combination therapy. Researchers
should try to use these single-target drugs in combination with
other drugs. Secondly, it provides reference for drug screening.
Researchers can roughly determine whether a drug is effective
for osteosarcoma based on the literature review of the eight
RTKs mentioned above. Finally, according to this review, we
can treat osteosarcoma precisely to reduce the side effects and
improve the curative effect. For example, the combination of the
single-target drugs of abovementioned eight RTKs can not only
maximize the efficacy but also avoid the side effects associated
with ineffective targets.

Obviously, there is still a lot of important works need to be
done. Firstly, there are errors in IC50 values of some targets
of each drug (21, 22, 32). These errors will mislead researchers
while selecting drugs and cause confusion during follow-up
research. Therefore, it is necessary to correct the IC50 values
of each target of each TKI. Secondly, controlled clinical trials
are needed to compare the effectiveness of various TKIs in
the treatment of osteosarcoma. There is little work in this
area. The current clinical trials of TKIs in osteosarcoma are all
about one drug. Only controlled clinical trials can accurately
compare the efficiency differences of each TKIs in osteosarcoma.
Finally, this study is only a preliminary summary of these RTKs.
Relevant signaling pathways and mechanisms still need to be
studied further.

We can say that the current use of multi-target TKIs in the
treatment of osteosarcoma is only a stopgap. The main drawback
of this stopgap approach is the side effects associated with
ineffective targets. With the emergence of various selective TKIs,
the combination therapy using different selective (or single-
target) TKIs in osteosarcoma will be the future trend.

CONCLUSION

Currently, TKIs with promising therapeutic effect for
osteosarcoma include apatinib, cabozantinib, lenvatinib,
regorafenib, and sorafenib. Key RTKs for osteosarcoma
treatment may include VEGFRs and RET. The receptors MET,
IGF-1R, AXL, PDGFRs, KIT, and FGFRs might be relevant but
unimportant RTKs for osteosarcoma. Inhibition of one type
of RTK is not effective in the treatment of osteosarcoma. It is
necessary to inhibit several relevant RTKs simultaneously in
order to achieve a breakthrough in osteosarcoma treatment.
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