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Metabolic heterogeneity of cancer contributes significantly to its poor treatment outcomes
and prognosis. As a result, studies continue to focus on identifying new biomarkers and
metabolic vulnerabilities, both of which depend on the understanding of altered
metabolism in cancer. In the recent decades, the rise of mass spectrometry imaging
(MSI) enables the in situ detection of large numbers of small molecules in tissues.
Therefore, researchers look to using MSI-mediated spatial metabolomics to further
study the altered metabolites in cancer patients. In this review, we examined the two
most commonly used spatial metabolomics techniques, MALDI-MSI and DESI-MSI, and
some recent highlights of their applications in cancer studies. We also described
AFADESI-MSI as a recent variation from the DESI-MSI and compare it with the two
major techniques. Specifically, we discussed spatial metabolomics results in four types of
heterogeneous malignancies, including breast cancer, esophageal cancer, glioblastoma
and lung cancer. Multiple studies have effectively classified cancer tissue subtypes using
altered metabolites information. In addition, distribution trends of key metabolites such as
fatty acids, high-energy phosphate compounds, and antioxidants were identified.
Therefore, while the visualization of finer distribution details requires further
improvement of MSI techniques, past studies have suggested spatial metabolomics to
be a promising direction to study the complexity of cancer pathophysiology.

Keywords: spatial metabolomics, cancer heterogeneity, breast cancer, esophageal cancer, glioblastoma, MALDI-
MSI, DESI-MSI, lung cancer
INTRODUCTION

Today, cancer is one of the leading causes of morbidity and mortality, resulting in around 10 million
deaths worldwide each year. While new therapy and treatment methods are constantly being
developed, cancer remains a challenging and deadly disease, partly due to its heterogeneous nature.
For example, malignancies such as lung cancer, breast cancer, and glioma have high inter-and intra-
tumoral heterogeneity and thus calls for more personalized therapy (1).
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The complexity of cancer etiology and pathophysiology
contributes significantly to its heterogeneity. Accumulations of
genetic mutations and alterations of the epigenome are the
common causes of cancer (1–3). However, environmental
factors such as certain diets, obesity, and chronic inflammation
also post risks to carcinogenesis (4–6). Therefore, the exact
causes of the disease can be a mix of interactions between
genetic and environmental factors and can vary greatly
between patients. Furthermore, cancer develops an
independent tumor microenvironment (TME) that consists of
numerous cell types and engages in complex metabolic activities.
Poor treatment outcomes are often attributed to metabolic
differences between cancer cells and non-cancer cells within
the TME (7). Hence, to better understand the pathophysiology
of cancer and develop more effective therapies, we need to
conduct studies that examine the heterogeneity of the
tumor tissues.

Since one of the hallmarks of cancer is its altered metabolism,
metabolomics arises as a promising direction of study.
Metabolomics, or the study of small molecules, may provide a
new perspective for understanding the altered interactions
between the different biological pathways, enzymes, and small
molecules in tumor tissues. Particularly, the emergence of spatial
metabolomics offers the opportunity to detect molecules’
localizations on top of their relative abundances. This way,
alterations of small molecules can be directly correlated to
anatomical features. Thus it may lead to the invention of
personalized medicine and faster diagnostic methods, and
further understanding of heterogeneous diseases (8, 9). In this
review, we summarize the recent developments of spatial
metabolomics, including its common techniques (with a focus
on a newer technique called AFADESI-MSI), advantages, current
limitations, and some of the major findings in terms of
cancer studies.
HISTORY OF SPATIAL METABOLOMICS

Despite being a relatively new field of study, metabolomics has
taken several leaps forward. In 2004, Alan Saghatelian lysed cells
with or without specific enzymes and examined the lysates with
mass spectrometry to compare small molecule profiles (10). This
approach yields metabolites that cannot be found in vitro.
However, it was also a long and demanding process. Then,
more advanced detection techniques such as liquid and gas
chromatography-mass spectrometry, and nuclear magnetic
resonance (NMR) enabled researchers to increase the
metabolome coverage. With these techniques, studies have
identified common metabolites and metabolic pathway
alterations associated with various diseases such as
hepatocellular carcinoma (HCC) (11), neurodegenerative
disease (12), diabetes (13), etc. Liquid and gas chromatography,
as well as NMR, offer great opportunities to discover many
globally altered metabolites. However, they cannot preserve
spatial information of those metabolites since they require
prior extractions of the molecules from the tissues. More
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recently, several studies have used mass spectrometry imaging
(MSI) techniques to carry out spatially resolved metabolomics,
which involves examining both the chemistry and the
localization of metabolites in a given tissue. Around 50 years
ago, MSI was first introduced by two physicists, Benninghoven
and Sichtermann, as they studied semiconductor surfaces. Then,
Caprioli and co-workers combined ionization techniques with
MSI and triggered a surge of growth in visualizing molecules in
situ (14, 15). MSI techniques were first used in proteomics and
lipidomic (16). However, with the rise of metabolomics, more
and more studies used MSI to detect tissue distributions of key
metabolites. The abnormal distributions and abundances of
metabolites usually signal the alterations of biological pathways
in various diseases (17). Therefore, the use of MSI in
metabolomics once again increases the potentials of the field
by considering the heterogeneity of the diseased tissues.
COMMON TECHNIQUES FOR
SPATIAL METABOLOMICS

Spatial metabolomics preserves metabolites’ spatial information
and therefore requires simultaneous examination of large
numbers of small molecules in situ. Most of the spatially
resolved metabolomics studies coupled ionization techniques
with mass spectrometry imaging (MSI) to create images of
metabolites distribution. Unlike the traditional staining
methods, MSI is a label-free, high-throughput technique that
can detect many more molecules at once (18). As of now, most of
the spatial metabolomics techniques stem from either matrix-
assisted laser desorption ionization mass spectrometry imaging
(MALDI-MSI) or desorption electrospray ionization mass
spectrometry imaging (DESI-MSI). Both techniques are
constantly being optimized. Therefore, here, we will be
focusing on comparing MALDI-MSI and DESI-MSI, with a
side focus on introducing one of a newer technique called air
flow-assisted desorption ionization mass spectrometry imaging
(AFADESI-MSI), which is based on DESI-MSI. For clearer
reference, Table 1 contrasts these three types of MSI
techniques to depict their separate advantages and limitations.

MALDI-MSI and DESI-MSI share many similarities as they
are both based onMSI to visualize metabolites information. They
both have high chemical specificity and sensitivity and can detect
many unlabeled analytes with relatively high spatial resolutions
(19). The imaging process for both techniques, in short, involves
virtually separating the sample into many “pixels,” which would
each be described by a mass-to-charge (m/z) spectrum (20).
Then, with the help of special analysis tools, labeled pixels that
have similar metabolites signals are assigned a color and cluster
together (21–23). This way, an image of the sample can be
generated. Because metabolites are detected by pixels, spatial
information is preserved. However, MALDI and DESI operate
on different ionization principles, and therefore they each have
some unique advantages. The ionization processes of these
techniques are visualized in Figure 1.
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MALDI-MSI is a matrix-dependent technique that has very
high spatial resolutions. Preparation of MADI involves coating
tissue samples with a low molecular weight matrix. Subsequently,
a laser beam is first directed at the crystallized matrix to
transform the solid matrix into a gaseous form. The energy
then ionizes the sample (24). Imaging mass spectrometry is used
to detect the ions and form metabolites images. MALDI is one of
the most commonly used ionization methods linked to MSI as it
provides a favorable balance between sample preparation,
chemical sensitivity and spatial resolution (25). Now, with
high-resolution MALDI-MSI, scientists can consistently detect
hundreds of metabolites at a spatial resolution of <10 µm (26,
27). Spengler’s group even achieved a spatial resolution of 1.4 µm
with atmospheric pressure (AP)-MALDI (28). However, as the
diameter of the laser spot size decreases to achieve a finer spatial
Frontiers in Oncology | www.frontiersin.org 3
resolution, the ion yield usually decreases as well (25, 29).
Therefore, currently, when conducting spatial metabolomics
experiments, researchers would need to balance between
having finer spatial resolutions and getting enough signal
intensities. Yet, MALDI-2 has also been developed to address
the sensitivity concern. With the addition of a secondary laser,
MALDI-2 has improved sensitivity by 100 fold for some
molecule species (25, 30). Other drawbacks of MALDI-MSI
includes the decrease in resolution caused by delocation, which
represents molecules diffusing across and away from the tissue.
Furthermore, some papers have mentioned that MALSI-MSI can
struggle in detecting low-weight molecules (<600 Da). This is
because the matrix ions have similar profiles with multiple lower-
weight metabolite ions and can interfere the visualizations of the
metabolites (27, 31). With these limitations, there has been a
FIGURE 1 | Schematics of MALDI, DESI, and AFADESI. Overview of MALDI, DESI, and AFADESI processes prior to MSI. All three techniques accept frozen or
FFPE tissues, and MALDI requires an additional matrix deposition step. Subsequently, MALDI technique uses a laser to ionize the sample before MS detection
whereas DESI and AFADESI use high pressure solvent to directly ionize the sample. Additionally, AFADESI depends on air flow to carry the ions over long distances
to be detected.
TABLE 1 | Contraction between MALDI-MSI and AFADESI-MSI.

MSI technique MALDI-MSI DESI-MSI AFADESI-MSI

Ionization
method

Matrix-assisted laser desorption ionization (MALDI) Desorption electrospray
ionization (DESI)

Air flow-assisted desorption electrospray
ionization (AFADESI)

Type of MSI Vacuum Ambient Ambient
Max spatial
resolution

Lowest at around 1.4 µm
Currently, most cancer metabolomics papers conduct
experiments at around 10 µm

Lowest at 10-20 µm
50-200 µm for most of the
current studies

Around 100 µm

Sample
preparation

Frozen tissue or FFPE
Matrix deposition

Frozen tissue or FFPE Frozen tissue or FFPE

Key advantages High spatial resolution and mass resolution
Good for examining small samples
Reliable results

High throughput
Ambient operating conditions
Minimum sample preparations
Quick results

Ambient operating conditions
Minimum sample preparations
Wide field and large coverage
Improve sensitivity and spatial resolution from
DESI

Major limitations Extra preparation steps
Vacuum condition

Lower spatial resolution and
sensitivity

Low reproducibility of results due to complex
parameters
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growing focus on developing multimodal imaging, which means
computationally imposing other imaging data with MALSI-MSI
images to improve resolutions (25, 29). In the future, such
approach may lead to fundamental improvement in the
imaging quality of MALDI-MSI.

Another relatively newer but fast-rising technique for spatial
metabolomics is DESI-MSI, which is a high-coverage technique
with little pretreatment needed (32, 33). The DESI technique was
introducedbyCooks’ group in 2004 andwas incorporatedwithMSI
in 2006 (34). DESI-MSI uses an ionization technique that involves
directly spraying the samplewith an electronically-charged solution
(35). In contrast with MALDI-MSI, which is a vacuum MSI
technique, DESI-MSI is the first ambient MSI technique.
Ambient MSI is operationally easier and can analyze larger
samples rapidly, enabling the possibility of real-time diagnosis
(36–39). In addition, unlike MALDI, DESI does not require a
matrix deposit. Therefore, it does not suffer from high risks of
spatial assignment error caused by sample movement, which is
common for the MALDI technique (40). Because of its low
pretreatment requirements, DESI also allows the samples to be
accessible to observation and additional processes during the
analysis (35). However, improving the sensitivity of DESI-MSI
has been a major challenge for the groups using the technique.
Recently, a group shows thatdoping the solventwith silver ionsmay
be able to improve the sensitivity and specificity of the DESI-MSI
(41). Moreover, DESI-MSI also has lower spatial resolution than
MALDI-MSI (30-50 µm) due to factors such as solvent
composition, capillary size, and gas flow rate (42). To combat
such limitations, several recent studies have used nano-DESI-MSI
to achieve lower spatial resolutions (10 µm), demonstrating the
potential advancements of DESI-MSI in the future (43, 44).

More recently, Abliz’s group developed a technique based on
DESI called AFADESI, which significantly expands the length
and area of the imaging field. AFADESI adopts the technique of
DESI, ionizing the sample directly with an electrospray plume.
Airflow is then used to carry ions over long distances for mass
spectrometry imaging (40). In addition to inheriting the
advantages of the DESI-MSI, AFADESI-MSI also can achieve a
very high coverage of metabolites being examined. It can
simultaneously detect thousands of molecules in an untargeted
experiment (45). It also allows for the imaging of whole-body
sections (46). Such coverage greatly expands the possible
applications of spatial metabolomics as many more metabolites
can be analyzed and compared at once. More importantly,
AFADESI can achieve picomolar sensitivity when the distance
between the ion transport tube and the MSI aperture is
optimized (47). However, AFADESI currently has a lower
spatial resolution than MALDI (around 100 µm). This would
be a limitation when observing metabolites with fine localization
differences. Furthermore, recent developments of AFADESI
would need to focus on improving reproducibility because this
technique is strongly dependent on source parameters and has
relatively poor reproducibility (48). In order to improve
sensitivity and reproducibility, future studies can prepare a
series of uniform tissues to test out the optimal parameters and
solvent compositions to be used repeatedly.
Frontiers in Oncology | www.frontiersin.org 4
The three aforementioned techniques all have their unique
strengths and weaknesses and are to be chosen based on the
specific needs of the experiments. Besides these common MSI
techniques, optimized ionization or data analysis methods are
continually being developed to achieve higher through-put,
resolution, and sensitivity. In addition, the possibility of
developing multimodal imaging in the future may open up
even more applications for the MSI techniques.
APPLICATIONS OF SPATIAL
METABOLOMICS ON CANCER STUDIES

One of the most outstanding characteristics of tumor tissues is
the alteration of the metabolic processes. Therefore, the study of
spatial metabolomics has been helpful in exploring the etiology,
properties, and vulnerabilities of various cancers. Previously,
liquid chromatography-mass spectrometry (LC-MS) has made
huge contributions in understanding key cancer metabolic
pathways mediators such as the carnitine system. However, the
loss of spatial information of the metabolites prevents the
researchers from exploring the heterogeneity of the cancer
tissues. The use of various MSI techniques in the recent studies
has offered new insights into the tumor-associated metabolic
reprogramming. Here, we summarized the major findings of
spatial metabolomics in four types of cancer: breast cancer,
esophageal cancer, glioblastoma, and lung cancer. These four
types of cancers were specifically discussed because in our search
for spatial metabolomics studies, most of the publications that
used one of the three aforementioned techniques conducted
studies on one of these types of cancer. Therefore, discussing
the results for these four cancer types facilitates the comparisons
between the three techniques. Table 2 lists out the key papers we
mentioned, the types of cancer and tissue they studied, the
metabolites and metabolic pathways of interest, their possible
clinical applications, and their methods of study.

Breast Cancer
Breast cancer is one of the most commonly diagnosed cancers in
women. It is also one of the most heterogenous cancers as it
consists of many different types of malignancy, originating in
different cells or tissues. Hence, several groups have used MSI to
visualize different aspects of metabolic alterations in various
types of breast cancer. First of all, a couple of different groups
used DESI-MSI to detect metabolites information and to
distinguish tumor tissues from normal tissues (49, 50). In the
screening, they found out that free fatty acids and phospholipids
distributions played a major role in class separation. Fatty acids
and phospholipids with mass greater than 760 Da have much
higher levels in tumor tissues than in normal tissues. This result
is consistent with our prior knowledge that cancerous cells
engage in rapid lipogenesis. Using the differential fatty acids
and phospholipids data in different tissue samples, Guenther and
co-workers were able to correctly predict diagnosis 98.2% of the
times. They found 2-10 folds increases of fatty acids and
phospholipids levels from normal to diseased tissues. These
July 2022 | Volume 12 | Article 891018
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TABLE 2 | Summary of Key Papers on Spatial Metabolomics in Cancer Study.

Type of
cancer

Authors Tissue and
tumor type

Key metabolites Major ions and m/z
values

Metabolic pathways or
biological processes

Clinical relevance Technique
used

Breast
Cancer:

Calligaris
et al., 2014
(49)

Invasive ductal
carcinoma
tissues and
surrounding non-
neoplastic tissues

Fatty acids and
lipids, especially oleic
acid

Oleic acid (281.2),
isobaric lipids (391.4,
655.6), PI18:0/20:4
(885.7)

G-protein coupled
receptors signaling
pathways; migration,
proliferation, and invasion

Possible development of
rapid detection of cancer
residual

DESI-MSI

Guenther
et al., 2015
(50)

Invasive ductal
and lobular
carcinoma; tumor
tissue, tumor-
associated
stroma, normal
glandular and
stromal tissue

Free fatty acids and
phospholipids

Lactate 2M+Na
(201.04), lactate
M+Na4Cl4 (320.86),
calcidiol M-2H+Na
(421.32)

De novo lipogenesis;
immune response and
inflammation

Distinguish tumor grade
and HR status; separate
tumor-related tissues
from normal tissues within
samples

DESI-MSI

Sun et al.,
2020 (51)

Breast cancer
tissue, normal
stromal and
adipose tissues

L-carnitine &
acylcarnitine

L-carnitine (162.11),
acylcarnitine (204.12),
acylcarnitine C3:0
(218.14), C4:0 (232.15),
C5:0 (246.17), C6:0
(260.19)

B-oxidation; carnitine-
dependent transport
system

Demonstrate carnitine
reprograming in breast
cancer; relate CPT 1A,
CPT 2, and CRAT to
altered carnitine
metabolism and
distribution gradient

MALDI-MSI

Esophageal
Cancer:

Abbassi-
Ghadi
et al., 2020
(52)

esophageal
adenocarcinoma
and healthy
esophageal
epithelium tissue

glycerophospholipids PG 36:4 (769.5025), PG
38:6 (793.5025), PG
40:8 (817.5025), PI 34:1
(835.5342),

De novo lipogenesis Rapid categorization of
premalignant tissues;
provide possible ways for
early diagnosis of the
cancer and quick tumor
margin detection

DESI-MSI

Sun et al.,
2019 (45)

Esophageal
squamous cell
carcinoma
tissues (ESCC)
and surrounding
non-cancerous
tissues

Amino acids, uridine,
polyamines, fatty
acids

Uracil (111.0200),
histamine (112.0870),
glutamate (146.0459),
uridine (243.0624), FA-
22:4 (331.2624), PE
36:4 (72.5146),

Amino acid metabolism
(proline and glutamine),
uridine metabolism, fatty
acid and polyamine
biosynthesis; membrane
synthesis, cellular
signaling, and energy
consumption

Identify metabolic
enzymes that are possibly
involved in
carcinogenesis; provide a
possible way of rapidly
testing large numbers of
metabolites without
specific targets

AFADESI-
MSI

He et al.,
2018 (46)

ESCC tissue and
surrounding non-
cancerous tissue

polyamines,
nitrogenous base,
nucleoside,
glutamine, carnitines,
and lipids

Aspartate (132.0296),
Adenine (134.0468),
spermidine (146.1650),
glutamate (169.0584),
inosine (267.0739),
adenosine (302.0669)

Polyamine catabolism,
glutamine metabolism,
TCA cycle

Rapidly tell apart various
classes of molecules with
similar masses can be
helpful in specifying fine
intra-regional
heterogeneity

AFADESI-
MSI

Zang et al.,
2021 (53)

Human
esophageal
cancer cell line
KYSE-30
spheroid, ESCC
tissue and
surrounding non-
cancerous tissue

Amino acids, choline,
fatty acids, creatine

Creatine (132.08), malic
acid (133.01), glutamine
(145.06), inosine
(267.07), FA 20:3
(305.25), PG 38:4
(797.53), PI 38:3
(887.56), PI 38:4
(885.55)

Fatty acid synthesis, de
novo synthesis of choline
and ethanolamine,
glutamine metabolism,
TCA cycle

Enable detailed study of
MCTS as a cancer
model; expand future
usage of MCTS
combined with MALDI for
biomarker discovery and
in situ drug and
metabolomic study

MALDI-MSI

Glioblastoma: Kampa
et al., 2020
(54)

Glioblastoma
tissue and
surrounding non-
cancerous tissue

Antioxidants, fatty
acids, purine and
pyrimidine
metabolites, 2-HG,
etc.

No specification of
observed m/z
Arachidonic acid (20:4),
adrenic acid (22:4), oleic
acid (18:1), ADP,
AMPUDP, UMP, uridine,
lactate, glutamine,
citrate, NAA

Purine and pyrimidine
metabolism, arachidonic
acid synthesis, energy
consumption (hydrolysis),
TCA cycle

Distinguish glioblastoma
subtypes; defining
infiltrative tumor borders;
possible use in examining
therapeutic effects

MALDI-
TOF-MSI

Randall
et al., 2019
(55)

Glioblastoma
xenograft tissue

ATP, Heme,
acylcarnitine

9-Hexadecenoylcarnitine
(398.3265),
palmitoylcarnitine
(400.3422),
myristoylcarnitine
(410.2666),

Fatty acid metabolism,
glycolysis; antioxidant and
anti-apoptotic functions

Establish xenograft for
glioblastoma therapeutic
testing; understand
relationship between drug
efficiency and tumor
metabolism

MALDI-
FTICR-MSI

(Continued)
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results were consistent with the previous global lipidomic data
conducted with LC-MS (59). Moving forward, Both Guenther
and coworkers and Calligaris and co-workers exploited the
unique advantage of MSI to provide spatial information on the
metabolite distributions by investigating the stratification power
of DESI-MSI. By examining the level of metabolites such as free
fatty acid, phosphatidylcholine, lactate, and calcidiol, Guenther
and co-workers classified the breast cancer samples into these six
subregions: normal stroma, tumor-associated stroma, normal
adipose tissue, tumor-associated adipose tissue, normal
glandular tissue, and the tumor itself (neoplastic glandular
cells). Each subregion can be distinguished using the
metabolite information with high accuracy (the group achieved
an 83.8% correct classification rate across different breast cancer
types). Similarly, Calligaris and co-workers delineated the tumor
margin by examining the differential intensity of representative
ions such as oleic acid (m/z 281.2) and the lipid PI18:0/20:4 (m/z
885.7). For 12 out of 14 cases examined, the DESI-MSI data led
to correct detection of the tumor margins. Hence, these studies
provided a proof-of-concept experiment that confirmed the use
of DESI-MSI to acquire metabolites’ spatial information in
tumors. The differential metabolite distributions subsequently
help the authors to classify tumor regions and types with a
specificity that could not be achieved using global metabolomics
data alone.

To compare the use of different ionization techniques and to
investigate other key metabolites in breast cancer, we describe
another group’s research below. Sun and co-workers studied the
altered energy consumption of breast cancer tissues by detecting
the carnitine family, which are the key regulators and
transporters in fatty acid, carbohydrate, and lipid metabolisms
(51). Notably, with MALDI-MSI, molecules with smaller
Frontiers in Oncology | www.frontiersin.org 6
molecular weights and lower m/z values were detected. Sun et
al’s study examined ions over the m/z range of 80-1000, which is
over a much larger range than that in Guenther et al.’s and
Calligaris et al.’s studies (200-1000, ~700-1000, respectively). The
experimental flow and clinical significance were comparable
between these studies, though. First of all, as Guenther et al.
have done, Sun and co-workers proved that MALDI-MSI data
can help distinguish cancerous tissues from normal ones with
high accuracy. They also showed that 100% ethanol wash
improve the imaging of low-molecular-weight compounds
such as carnitines. Using the optimized MADLI-MSI, they also
found several interesting trends regarding the spatial distribution
of carnitines. For example, L-carnitine and short acylcarnitine
have higher levels in cancerous tissue and are strongly correlated.
In addition, the abundance of L-carnitine decreases continuously
as the distance from the cancer center grows. MADLI-MSI’s fine
spatial resolution enabled the detection of such highly-specified,
intra-regional differences in carnitine distributions. Because L-
carnitine plays an important role in b-oxidation, they also
examined the key enzymes of b-oxidation in situ. The results
of enzyme distribution match the trend of L-carnitine. Such
proteomics combined with metabolomics study is meaningful as
it linked altered metabolites phenotypes to enzymatic changes in
the biological processes. Thus, Sun and co-workers’ results not
only justified the use of spatial metabolomics techniques to finely
stratify cancer tissues but also reinforced our understanding of
carnitines’ roles in metabolic reprogramming.

In conclusion, the studies have shown that both DESI- and
MALDI-MSIs can provide valuable spatially-resolved metabolic
data that help to differentiate breast cancer types and various
tissue boundaries. These techniques were also able to detect a
large range of metabolites and identify new biomarkers or
TABLE 2 | Continued

Type of
cancer

Authors Tissue and
tumor type

Key metabolites Major ions and m/z
values

Metabolic pathways or
biological processes

Clinical relevance Technique
used

stearoylcarnitine
(428.3734), ATP
(508.0030), heme
(616.1766),

Calligaris
et al., 2013
(56)

Glioblastoma
surgical samples
that contain
viable and
necrotic tumor
tissues

N/A Molecules not specified.
Ions with observed m/z
of 279.0, 391.3, 544.5,
626.6, 650.6, 437.3,
491.3, 572.7

N/A Help in real-time surgical
decision-making;
determine tumor border;
distinguishing viable from
nonviable tumor tissues

DESI-MSI

Lung Cancer: Neumann
et al., 2022
(57)

AC and SqCC
tissues with
tumor and
stroma regions

Phospholipids,
antioxidants,
glutamine, 2HG

Taurine (124), [M + Cl]−
ion of oxalic acid (125),
2HG (147), chloride
adduct of glutamine
(181), phosphatidylserine
(502), phospholipid (742)

Lipogenesis, tricarboxylic
acid cycle, 2HG
metabolism

Distinguish tumor and
stroma areas; classify
ADC and SqCC subtypes
for more accurate
diagnosis; identify IDH
mutant from wild-type
cases

MALDI-MSI

Bensussan
et al., 2020
(58)

AC and SqCC
tissues and FNA
samples

Glycerophospholipids FA (20:4) (303.233), PG
(34:1) (747.560), PG
(36:2) (773.533), PI
(38:4), (788.544), PI
(34:1) (835.534), PS
(36:1) (885.550)

N/A Quick discrimination of
normal vs. tumor tissues
for diagnosis;
classification of ADC and
SqCC subtypes with
tissues and FNA samples

DESI-MSI
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confirm old ones based on their differential distributions. DESI-
MSI demonstrated its strength in rapid, large scale detection
whereas MALDI-MSI performed better in detection of smaller
metabolites with finer spatial resolutions.

Esophageal Cancer
Esophageal cancer experienced a surge in incidence during the
past few decades and continues to have a poor prognosis (60).
The predominant form of esophageal cancer is squamous cell
carcinoma (ESCC), ranking as the top ten most common cancers
(61) . Another major type of esophageal cancer is
adenocarcinoma (EA), which is the most common type of
esophageal cancer in the US. Here, we compare spatial
metabolomic studies on these two types of esophageal cancer
conducted with one of the three aforementioned MSI techniques,
DESI, AFADESI, and MALDI.

First, DESI-MSI has been increasingly studied as a rapid
diagnostic tool for various cancers, especially in the
premalignant stage. In a recent study, a group of researchers
focused on spatially-resolved lipid analysis to try to identify
invasive EA at an early stage from a number of premalignant
tissues (52). When examined with DESI-MSI, a wide range of
differentially distributed lipids were found with minimum
s amp l e p r e p a r a t i o n . W i t h t h e s p a t i a l d a t a o f
glycerophospholipids of mass range 600-100, the researchers
could distinguish Barrett metaplasia, Barrett dysplasia, and
smooth muscle within the same sample under the complex EA
microenvironment. Then, comparing the EA and normal tissues,
spatially-resolved lipid profiles also differ significantly that a clear
distinction can be made. Particularly, the EA samples differed
from the normal samples in many aspects of their
glycerophospholipid profiles. First, the group found that EA
samples had significantly higher levels of phosphatidylglycerol
and lower levels of phosphatidylethanolamines and phosphatidic
acids . Moreover , EA samples tend to have longer
glycerophospholipids acyl chain length. In terms of saturation
state, there are less saturated and monounsaturated acyls but
more polyunsaturated ones in EA samples. Then, using principal
component analysis (PCA) and recursive maximum margin
criterion (RMMC) model, the group classified cancerous tissue
types using phosphatidylglycerol levels, acyl chain length, and
desaturation states. Upon cross-comparison with the
transcriptomics data, the group also linked altered metabolites
levels in EA to gene expression changes. EA had significantly
higher levels of glycerophospholipid and fatty acids synthetic
genes. Hence, unregulated de novo lipogenesis in EA is likely the
cause of altered phosphatidylglycerol phenotypes. This study
provided an example of using multi-omics to investigate
metabolic changes in cancer tissues. Furthermore, it sheds light
on a major type of metabolic reprogramming (altered
lipogenesis) inside the esophageal cancer microenvironment.
The successful categorization of phenotypically-similar tissue
types with DESI-MSI data also demonstrated its strengths as a
rapid, low-demand, wide coverage MSI technique.

However, looking to further expand DESI-MSI’s coverage
and sensitivity, Abliz’s group, developed the AFADESI-MSI
Frontiers in Oncology | www.frontiersin.org 7
technique and conducted several studies on the esophageal
squamous cell carcinoma (ESCC). The studies combined MSI
with metabolic pathway analysis and IHC testing to investigate
the reasons for regional metabolites alterations. These studies
provided valuable insights onto the metabolic reprogramming of
ESCC as well as the strengths and limitations of the AFADESI-
MSI technique as compared to MALDI and DESI. In one study,
the group used AFADESI-MSI to acquire region-specific
metabolites data from 256 ESCC tissues in an untargeted
experiment (45). The authors were able to prove that the
AFADESI-MSI technique has high throughput and sensitivity.
The detectable range of m/z spanned from around 100 to 1000.
Moreover, multiple classes of significantly different metabolites
were discovered. In terms of the specific data, fatty acid
metabolism, pyrimidine metabolism, polyamine biosynthesis,
and many of the amino acid metabolisms were found to be
significantly dysregulated in the ESCC samples. By comparing
the distributions of key synthetic enzymes, metabolic precursors,
and related molecules, the group linked the upregulations of
proline, glutamate, uracil, histidine, fatty acids, and polyamines
to enzymatic changes and pathways dysregulations. In another
study conducted by the same group, polyamines including
spermine (m/z 203.2228) and spermidine (m/z 146.1650) were
again found to be up-regulated in esophageal cancer tissues (46).
Since spermine and spermidine regulate transcription and
translation, such results may connect tumor tissues’ altered
metabolism to its changes in transcriptomics and proteomics.
More importantly, He and co-workers showed the sensitivity of
AFADESI-MSI by finding many other classes of differentially
distributed molecules with similar m/z ratios. For example,
nucleosides including inosine (267.0739) and adenosine
(302.0669) were found to be downregulated while glutamine
(169.0584) was significantly upregulated. Other molecules such
as L-carnitine C3:0 (218.1384) and creatine (154.0587) were also
identified to be differentially distributed. Thus, AFADESI-MSI
has demonstrated large coverage and high sensitivity in these two
studies. These two studies also revealed the difficulties and
importance of distinguishing molecules with very similar m/z
values during spatial metabolomic studies.

However, despite all the progresses on improving the
sensitivity of the DESI-based MSI, these techniques still
generally have a lower sensitivity and spatial resolution.
Therefore, MALDI-MSI remains the most popular method to
analyze small tissue specimens. In a recent study, Abliz’s group
used MALDI-MSI to examine spatial metabolomics of
esophageal cancer multicellular tumor spheroids (MTCS) (53).
During this study, a fine spatial resolution of 12 µm was
achieved, which guaranteed visualization of spatially-resolved
metabolic profiles at cellular dimensions. This way, the authors
were able to examine the validity of MCTS as an esophageal
cancer model and to subsequently discover metabolic trends with
the established model. Interestingly, choline (104.11),
glycerophosphocholine (258.11), glutamate (146.05), glutamine
(145.06), xanthine (151.03), and inosine (267.07) were found to
have higher concentrations in the periphery regions. Such results
showed that metabolic activity is higher in the outer
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(proliferative) region than in the central (quiescent and necrotic)
regions. Moreover, the MALDI-MSI was also able to detect
trends in lipids distributions and revealed that the central
regions of the tumor model engage in increased fatty acid and
lipid metabolism due to hypoxia conditions. This result matched
the conclusion of previous studies regarding tumor oxygen and
energy usage (62–65). Further comparison between the MCTS
and the human esophageal cancer tissues data revealed that
MCTS is representative of the real cancer tissues. Glutamine was
significantly downregulated in both the MCTS and the actual
cancer tissues. It is one of the major molecular hallmarks of
esophageal cancer. Creatine and malic acid were also
downregulated in tumor tissues, reflecting their unchecked
energy metabolism. Noticeably, the study provided the
MALDI-MSI images for the cancer tissues and MCTS. Not
only did the molecules show similar overall distribution trends,
but the spatial distribution images of the samples under MALDI-
MSI were highly comparable. Abliz’s group’s study set the
example of using MTCS model combined with MALDI-MSI to
investigate the detailed metabolic profiles or drug distribution
patterns in tumor tissues. Lastly, it is worth mentioning that the
glutamine, creatine, and malic acid distribution trends were also
observed in recent studies on hepatocellular carcinoma (66, 67).
Therefore, much metabolic reprogramming may be conserved
across different types of cancers.

Numerous spatial metabolomics studies have been conducted
on esophageal cancers, allowing us to compare the strengths and
limitations of DESI-MSI, AFADES-MSI, and MALDI-MSI.
DESI-MSI-derived techniques share the characteristics of
having wide field and large coverage. Therefore, researchers
tend to use them to develop possible rapid diagnosis and
intraoperative margin detection tools. On the other hand,
MALDI-MSI once again has been shown to have good spatial
resolution and serves well in the examination of small biological
models or samples.

Brain Cancer (glioblastoma)
Glioblastoma, or grade 4 astrocytoma, is a common type of brain
tumor and is one of the most fast-growing and aggressive
cancers. It accounts for 46.1% of all primary brain malignancy
incidences (68). It has some special properties as it is a central
nervous system cancer and affects some unique types of cells
(astrocytes and glia in the nervous system). Because glioblastoma
differs significantly from most of the other types of cancer,
studies have made special efforts to understand the metabolites
alterations in such diseased tissues. Possibly due to the size of the
common brain sample tissue and the complexity of the
microenvironment, MALDI-MSI is by-far the most commonly
used spatial metabolomic technique in these studies. MALDI-
MSI can be coupled with different mass analyzers such as time-
of-flight (ToF) and Fourier transform ion cyclotron resonance
(FT ICR) to increase its mass resolution (69, 70). By doing so,
these groups were able to effectively examine the highly
heterogeneous glioblastoma tissues.

One study uses MALDI-Tof-MSI to compare metabolites
between normal tissues and different subtypes of glioblastomas
Frontiers in Oncology | www.frontiersin.org 8
(54). The results yielded insights into the unique properties of
glioblastomas. Since diffuse infiltrative growth is one of the
defining characteristics of glioblastoma, histological images
generated by H&E staining failed to precisely define the border
of the cancerous tissues. In contrast, MSI data helped identify
tumor regions by detecting differentially distributed metabolites
such as antioxidants, fatty acids, and purine and pyrimidine
metabolism. Interestingly, antioxidants such as taurine and
ascorbic acids (vitamin C) showed decreased intensity as the
distance from the tumor center grew. While the increase of
taurine levels within glioblastoma tissues has been confirmed in
other studies (71), the increase in ascorbic acids was detected for
the first time. The high level of ascorbic acids at the tumor center
was an interesting finding given that they support tumor growth
and protect it from radiation. The alterations of fatty acids,
lactate, purine and pyrimidine metabolites in gliomas were
similar to those found in other cancers since they reflect
increased energy consumption. Furthermore, the authors
looked to distinguish different cancer subtypes by relying on
the fine mass resolution of MALDI-Tof-MSI to detect differential
metabolites. Survival rates can vary greatly between different
subtypes of glioblastoma. For example, patients with isocitrate
dehydrogenase (IDH) mutant gliomas have much better survival
outcomes than IDH wild-type gliomas patients (72, 73).
Therefore, finding ways to accurately classify the subtypes can
help improve treatment and prognosis. While studying the IDH-
mutant versus IDH wild-type gliomas, the group found
interesting differences between the two cancer subtypes that
may support previous hypotheses regarding IHC mutant
pathophysiology. Specifically, besides showing higher levels of
2-hydroxyglutarate as described in many previous studies (73,
74), the IDH-mutant tumors also showed a slight decrease in
antioxidants levels compared to the wild type ones. Such finding
can be further explored as it matches the hypothesis that IDH
mutant gliomas may be less resistant to oxidative stress, leading
to better therapy outcomes (75, 76). Here, MALDI-Tof-MSI
enabled clear distinction of the tumor borders and separation
of the cancer subtypes as it detected metabolites differences in a
highly heterogenous microenvironment. It also proved its use in
distinguishing tumor subtypes using differential metabolic
profiles. Therefore, the study suggested the possible usage of
the same technique for analyzing therapeutics effects on glioma.

To obtain more specific spatial data for the different
metabolites, a group of researchers used another improved
MADLI-MSI techniques on glioblastoma models (55).
Randall’s groups looked to MALDI-FTICR-MSI as an ultra-
high mass resolution technique to discover finer details of
metabolites distributions in tumor tissues and to test drug
efficiency in relation to the tumor metabolic profiles. With the
help of high-resolution imaging, Randall’s group revealed that
long-chain acylcarnitine not only showed an increase in the
tumor regions but were highly enriched in the tumor edge
specifically. Furthermore, ATP distribution was found to have
an inverse relationship with acylcarnitine distributions. Given
acylcarnitine’ roles in fatty acid transportation, such finding is,
again, in accordance with the previous understanding of tumor
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rewiring energy consumption. More importantly, the group
exploited the advantages of MALDI-MSI by focusing on the
spatial distribution of altered metabolites. By doing so, the group
identified that there were clear metabolic changes at the edge of
glioblastomas that distinguish the diseased regions from the
healthy ones. Lastly, the group tested different drugs
distributions and looked for their associations with the
metabolites’ distributions. The drug erlotinib was found to
have inverse distribution as acylcarnitine. Here, the group
combine xenograft model of glioblastoma with spatial
metabolomics and found new trends of acylcarnitine
distributions. They were able to demonstrate the metabolic
differences between the proliferative tumor edge and the tumor
core. Moreover, prove MALDI-MSI to be useful in detecting
spatial information of drug distribution and metabolism.

Even though MALDI-MSI has been the predominant method
for studying spatially-resolved metabolic profiles of glioblastoma,
a small number of studies explored DESI-MSI for glioblastoma
intraoperative or xenograft model assessments. For example,
Calligaris et al. did a proof-of-concept experiment to test the
DESI-MSI as a real-time, invasive method to discriminate viable
from nonviable tumor tissues (56). They were able to find ions
that exist exclusively in viable and nonviable tissues respectively.
The ions with m/z of 279.0 and 391.3 were discovered to be
present exclusively in viable tissues whereas ions with m/z of
544.5, 626.6, and 650.6 were observed exclusively in necrotic
tissues of the glioblastoma samples. Using the DESI-MSI data to
classify regions of a tumor tissues, the authors were able to
achieve very high success rate (around 98%-100%). Therefore,
DESI-MSI could potentially be developed as a tool for margin
delineation and tissue categorization during surgeries.

In the case of glioblastoma, MALDI-MSI serves increasingly
important roles in histopathology evaluations of tissue samples
and in determining biomarkers for the malignancy. DESI-MSI
has more limited usage due to its lower spatial resolution.
However, the high throughput imaging modality and simple
preparation requirements make it useful in surgical settings.

Lung Cancer
Lung cancer is the second-most diagnosed cancer worldwide
(11.4% in 2020) and is the leading cause of cancer-related deaths
(77). It also consists of numerous types of malignancies, with
non-small cell lung cancer (NSCLC) being the most common
one. NSCLC then contains many subtypes such as
adenocarcinoma (ADC) and squamous cell carcinoma (SqCC).
All of these levels of variations contribute to lung cancer’s
heterogeneity. They also call for more effective diagnostic and
subtyping methods for the different lung cancers. Therefore, in
recent years, more and more groups started using spatial
metabolomic techniques to discover new biomarkers and
categorize metabolic profiles of different cancer subtypes.

One recent effort used MALDI-MSI mediated spatial
metabolomics to classify the two major subtypes of NSCLC,
the ADC and the SqCC, and to compare the tumor with the
surrounding stroma regions (57, 78). Current IHC method fails
to produce a clear histomorphological distinction between the
subtypes. Therefore, Neumann and co-workers explored the
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distinguishing ability of MALDI-MSI. The MALDI classifier
can distinguish tumor from stroma with 96% confidence and
can distinguish between the two subtypes with 95% confidence.
Several key ions were found to facilitate the distinction.
Specifically, phospholipid (m/z 742) was more prominent in
tumor regions compared to stroma regions. On the contrary,
oxalic acid (m/z 125) was more prominent in stroma regions. In
the subtype discriminations, m/z 124 (antioxidant taurine) and
m/z 181 (chloride adduct of glutamine) showed the most
different distribution patterns. In addition, m/z 502
(phosphatidylserine) had a higher intensity in ADC and thus
help to distinguish the subtypes. Noticeably, during the
classification, one case showed an increased intensity of 2-
hydroxyglutarate (2HG) (m/z 147) in the tumor areas and was
later found to be IDH mutant. Hence, the case suggested that
MALDI-MSI can also possible distinguish IDH-mutated NSCLC
from wild type. With the spatial metabolic profiles collected by
MALDI-MSI, the researchers were able to not only classify
tissues within the tumor microenvironment but also classify
highly similar cancer subtypes.

Another group also attempted to classify the ADC and SqCC
subtypes using DESI-MSI with fine needle aspiration samples
(FNA) (58). Overall, the DESI-MSI relied on lipid and other
metabolites profiles and achieved 100% accuracy on lung cancer
diagnosis and 94.1% accuracy on subtyping. When using the
FNA samples, the classifier achieved still an 100% accuracy on
diagnosis and an 87.5% accuracy on subtyping. Interesting, the
negative ion mode was examined in this study, which usually has
less sensitivity and coverage. As in typical DESI-MSI experiment,
a relatively high abundance of glycerophospholipids was found.
PG (36:2) (773.533), PG (34:1) (747.560), and FA (20:4)
(303.233) had higher intensity in normal lung tissues whereas
PI (38:4) (885.550), PI (34:1) (835.534), and PS (36:1) (788.544)
had higher abundance in tumor tissues. Moreover, PI (34:1)
(835.534), PI (36:1) (863.565), FA (20:4) (303.233) also show
significantly different distribution patterns in ADC and SqCC
subtypes and therefore were used for subtype classification. For
the FNA samples data, there was a decrease in the relative
abundance of m/z 500–900 lipids comparing to that of the
tissue data. Such decrease in overall detectable lipids may be
the reason why FNA samples were classified with a lower
accuracy. Generally, though, the two studies showed that in
combination with machine learning algorithms, both the
MALDI-MSI and the DESI-MSI data can be used to accurately
classify NSCLC subtypes, providing a new option for more
precise classification other than immunohistochemistry.
DISCUSSION

In recent years, spatial metabolomics has gained increasing
attention as a promising way of understanding the molecular
interactions and histological heterogeneity of various diseases.
Previous studies have described cancer as having highly dynamic
and complicated histology (79–81). Therefore, as we
summarized, many cancer researchers have used MSI
techniques to conduct in situ metabolomics on tumor tissues.
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MALDI and DESI remain the two most used MSI techniques for
their sensitivity and reliability. The studies we examined show
that under optimized conditions, MALDI and DESI produce
comparable results. However, they each have their own strength
and can be chosen based on the purpose of the study. Overall, the
simultaneous examination of hundreds and thousands of small
molecules has enabled researchers to compare metabolic
reprogramming between different subtypes of tissues while
discovering interesting trends regarding the localization of
metabolites. However, being a relatively new field of omics
research, the current spatial metabolomics study still has many
limitations and unexplored aspects. For example, most papers we
reviewed did not explore key metabolites’ spatial properties
extensively. Characterizations of tumor subregions and
identification of altered metabolites also remain limited. These
results may be caused by several reasons, including limitations in
MSI resolutions and sample preparations. Even though FFPE
and frozen tissues are both acceptable for MSI, samples need to
be prepared carefully in order to retain both the metabolites and
the morphology of the tissues (8, 82). On the bright side, from
MALDI-MSI to MALDI-FT ICR-MSI and from DESI-MSI to
AFADESI-MSI, new techniques and research methods are
continuously being developed. With the ultra-high resolution
and coverage MSI, future studies can further explore spatial
metabolomics of cancer tissues in several directions.

First, as the field is still relatively new, the spatial information
of metabolites for many types of cancer is yet to be studied. Such
metabolites data may not only help the researchers gain a
comprehensive understanding of tumor pathophysiology, but
also help identify new biomarkers. Many groups have been using
various methods such as imaging and omics studies to discover
biomarkers for personalized and targeted cancer therapies (83–
85). Yet, for cancers with high inter-and intra-heterogeneity,
such as lung and liver cancers, the process of examining small
molecules may be challenging (86). However, lung cancer spatial
metabolomics studies have mostly been subtyping studies. In the
case of liver cancer, there are still a lack of metabolomics study
using the three MSI techniques we mentioned. Thus, in the
future, MSI-mediated spatial metabolomics can be applied to
more types of cancer to compare the metabolic reprogramming
between them. Researchers can benefit a lot from using MSI
techniques as it offers them the opportunities to directly visualize
differences in metabolites distribution and abundance within
tumor tissues.

Besides expanding the use of MSI on different types of cancer,
researchers can also continue exploring finer spatial differences
of metabolite distributions. As of now, most papers limit their
discussions on the general differences between cancerous and
healthy tissues. However, with careful sample preparation and
ultrahigh-resolution and sensitivity MSI techniques (87), future
studies may be able to analyze new details in metabolites
distribution trends. Several papers that we have reviewed
explored the use of spatial metabolic data to classify different
tissue subtypes and the results showed high level of accuracy.
Hence, it is possible that with more detailed studies on
metabolites’ localization properties, researchers can find out
Frontiers in Oncology | www.frontiersin.org 10
ways to accurately and efficiently classify tumor subregions
and subtypes.

Furthermore, future studies can integrate more data and
methods of study during analysis. For example, when more
spatial metabolomics data on different cancer samples become
available, it may be worthwhile to cross-compare metabolites
distribution across multiple stages of cancer. Such comparison
may reveal metabolic and physiological characteristics of cancer
progression, which helps us better understand the molecular
basis of cancer development and metastasis. Lastly, as the multi-
omics study is now a popular topic, cross comparing
transcriptomics, proteomics, and spatial metabolomics data
may be a desirable direction. Spatial metabolomics data alone
may have limited power in explaining the cause of metabolic
alterations. However, when metabolic enzymes and their
expressions are analyzed together with spatial metabolomics
data, phenotypes can be linked to gene expression and protein
regulation changes. This way, the metabolic pathway analysis
may be more powerful and persuasive.
CONCLUSION

The development of MALDI- and DESI-based MSI enables in situ
detection of metabolites and offers great opportunities for studying
disease heterogeneity and metabolic reprogramming. In cancer
studies, MSI has helped identify the relative abundance and
distributions of thousands of metabolites, including fatty acids,
carnitines,ATP, lactate, etc.As a result, researchers attempted touse
these data to classify tumor tissues and verify the current
understandings of cancer metabolic interactions. Although mass
and spatial resolutions remain a challenge in the development of
spatial metabolomics, optimized MSI techniques are continuously
being tested. The field is yet to be explored, with much potential in
helping us understand cancer pathophysiology and improve
diagnostic and treatment methods.
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