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Abstract

Human P-glycoprotein (P-gp) is an ATP-binding cassette multidrug transporter that confers resistance to a wide range of
chemotherapeutic agents in cancer cells by active efflux of the drugs from cells. P-gp also plays a key role in limiting oral
absorption and brain penetration and in facilitating biliary and renal elimination of structurally diverse drugs. Thus,
identification of drugs or new molecular entities to be P-gp substrates is of vital importance for predicting the
pharmacokinetics, efficacy, safety, or tissue levels of drugs or drug candidates. At present, publicly available, reliable in silico
models predicting P-gp substrates are scarce. In this study, a support vector machine (SVM) method was developed to
predict P-gp substrates and P-gp-substrate interactions, based on a training data set of 197 known P-gp substrates and non-
substrates collected from the literature. We showed that the SVM method had a prediction accuracy of approximately 80%
on an independent external validation data set of 32 compounds. A homology model of human P-gp based on the X-ray
structure of mouse P-gp as a template has been constructed. We showed that molecular docking to the P-gp structures
successfully predicted the geometry of P-gp-ligand complexes. Our SVM prediction and the molecular docking methods
have been integrated into a free web server (http://pgp.althotas.com), which allows the users to predict whether a given
compound is a P-gp substrate and how it binds to and interacts with P-gp. Utilization of such a web server may prove
valuable for both rational drug design and screening.
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Introduction

Human P-glycoprotein (P-gp, gene symbol ABCB1) is a large

polytopic membrane protein belonging to the ATP-binding

cassette (ABC) multidrug transporter superfamily. P-gp mediates

efflux of a wide range of xenobiotics and endogenous compounds

out of cells utilizing ATP hydrolysis as the source of energy for

substrate translocation [1,2,3]. P-gp substrates are mainly

hydrophobic and weakly amphipathic substances, including

antibiotics, steroid hormones, chemotherapeutics, immunosup-

pressants, and anti-HIV protease inhibitors [3,4,5]. In addition to

its ability of conferring multidrug resistance in cancer cells, P-gp is

highly expressed in normal organs important for the absorption

(the small intestine), elimination (the liver and kidney) and

distribution (e.g., the placental and blood-brain barriers) of drugs

and xenobiotics, and has been recognized as one of the most

important drug transporters that are involved in clinically relevant

drug disposition and drug-drug interactions [6]. P-gp consists of

1280 amino acid residues arranged into two homologous and

symmetrical halves, each comprising one membrane-spanning

domain (MSD) with six transmembrane (TM) a-helices followed

by one cytosolic nucleotide-binding domain (NBD) [1,3].

Since P-gp can influence the pharmacokinetics, efficacy, safety,

and tissue levels of substrate drugs, increasing efforts are being

devoted to investigating whether new molecular entities (NMEs)

are potential P-gp substrates in early drug discovery and

development. It is also very important to know if any existing

drugs are P-gp substrates so that clinically important drug

disposition and drug-drug interactions may be predicted. A

variety of in vitro assays, including drug-stimulated ATPase activity,

rhoadmine 123 or calcein-AM cellular accumulation, cell-based

bi-directional transwell transport, drug permeability, and radio-

active ligand binding have been used to classify drugs or drug

candidates as P-gp substrates or non-substrates [7]. The data

obtained from such in vitro studies can then be validated in vivo in

preclinical animal models or in human subjects to assess the
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interactions of drugs or drug candidates with P-gp [7,8,9,10].

Although the in vitro assays are highly efficient compared to in vivo

studies, they are nonetheless still time-consuming, particularly

when screening of a large number of NMEs is required in the early

drug discovery stage. Therefore, in silico methods for predicting P-

gp substrates and interactions are of high value for both rational

drug discovery and screening. The availability of a vast amount of

experimental transport data and the recently resolved X-ray

structure of mouse P-gp [11] would now make it possible to

develop much improved in silico prediction models.

Ligand-based and protein structure-based prediction methods

are the two main classes of in silico prediction methods for protein-

ligand interactions. Protein structure-based methods such as

molecular docking allow prediction of protein-ligand interactions

in atomic details, when high resolution experimental protein

structures are available. Low resolution structures and homology

models decrease the accuracy of docking calculations mostly due

to the uncertainty of side chain conformations. However, a

drawback of this method lies in the generation of a large number

of potentially false positive results – that is, non substrates could

also be calculated to bind to protein with high affinity. Thus,

docking calculations alone cannot accurately predict P-gp

substrates. On the other hand, ligand-based models, such as

QSAR and SVM may be capable of predicting transport

properties of test compounds based on their similarity to chemical

structures of known substrates as well as their physicochemical

properties. However, ligand-based methods do not provide

information on protein-ligand interactions at the molecular level.

Although a number of classification methodologies have been used

in the development of QSAR models for P-gp substrates, there is

no general rule concerning the selection of the best method for a

specific classification problem. Penzotti et al. reported a compu-

tational ensemble pharmacophore model that had an overall

classification rate of 80% for the training set and a prediction

accuracy of 63% for a hold-out set [12]. Chang et al. applied

pharmacophore models combined with screening of databases to

retrieve molecules that bind to P-gp [13]. De Cerqueira Lima et al.

developed a QSAR model for classification of drugs as P-gp

substrates or non-substrates using a combination of methods and

descriptor types [14]. Cabrera et al. used a topological substructural

molecular design approach to predict whether a compound is a P-gp

substrate and achieved a prediction accuracy of ,71% on an

external test set of marketed drugs [15]. Self-organizing maps

(SOMs) represent another promising approach, and neural network

can be used for classification purposes, too. Wang et al. [16] and

Kaiser et al. [17] used SOMs to discriminate between P-gp

inhibitors and substrates. In the latter study, the trained maps were

subsequently used to identify highly active P-gp substrates in a

virtual screening of a large compound library. Zhang et al. [18]

applied the recursive partitioning method to classification of P-gp

substrates and non-substrates based on in vitro bi-directional Caco-2

cell permeability and five descriptors of 14 marketed drugs and

more than 100 discovery compounds. For a validation set of 46

compounds, the prediction accuracy was ,72% and 89% for non-

substrates and substrates, respectively [18].

Another ligand-based approach, namely, the support vector

machine (SVM) technique, has been successfully used in a wide

range of applications in computational biology [19]. The theory of

SVM has been extensively reviewed elsewhere [20] and will only

be briefly discussed here. The key point of SVM is to treat the

objects that are to be classified as points in a high-dimensional

space and to find a line (hyperplane) that separates them.

Molecules are presented in the space with the help of molecular

descriptors. The margin of the hyperplane is defined as the

distance from the separating hyperplane to the nearest data point

and SVM finds the maximum margin separating the hyperplane.

The selection of this hyperplane maximizes the capability of SVM

to predict the correct classification of new compounds. There are

other hyperplane-based classification methods; however, SVM is

distinct from them in the way how the hyperplane is selected.

SVM is a mathematical entity, an algorithm used for maximizing a

mathematical function with respect to collection of data. Since the

SVM method is an excellent tool particularly for classification

problems in chemometrics [21], it has been used to classify

molecules as substrates or non-substrates of enzymes. For example,

Mishra et al. developed an SVM-based web server for predicting

the metabolizing capability of major isoforms of cytochrome P450

enzymes [22]. Likewise, SVM has also been used to predict P-gp

substrates. Xue et al. used SVM and reported a prediction

accuracy of 81% for P-gp substrates and 79% for non-substrates

[23]. Huang et al. applied SVM optimized by a particle swarm

and reported a prediction accuracy of 90% for P-gp substrates

[24]. Most recently, Wang et al. developed several models using

SVM based on a large training set of 212 compounds (131 P-gp

substrates and 81 non-substrates), and the best model gave a

prediction accuracy of 88% for a test set of 120 compounds [25].

It is important to note that the current in silico models are not

readily available to experimental scientists, and hence do not

significantly aid in the design of experiments for scientists who do

not have access to these models. The goal of this study was to

develop a predictive model and a free web server that can be used

for in silico prediction of binding and transport characteristics of P-

gp substrates for the scientific community. We have recently

developed a similar system for evaluation of drug-human serum

albumin binding interactions [26]. As discussed above, ligand-

based and protein structure-based prediction methods are

complementary to each other – that is, ligand-based methods

may give a high prediction accuracy for given classes of drugs or

drug candidates, while molecular docking calculations provide

atomic details on protein-ligand interactions. Therefore, in the

present study, both ligand-based (SVM) and P-gp structure-based

(molecular docking) in silico methods were used for predicting P-gp-

mediated transport and complex geometry. These prediction

methods have now been integrated into a free web server (http://

pgp.althotas.com). This web-based platform enables the users to

predict the capability of P-gp to transport the query ligands and

the complex geometries in the inward-facing conformation of

human and mouse P-gp calculated using molecular docking tools.

Methods

Data Set
P-gp substrates and non-substrates used in this study were

primarily taken from four compilations previously published

[10,27,28,29], which contain structurally diverse compounds. A

number of compounds from other sources were also included in

order to further increase molecular diversity of the data set. It should

be noted that a number of contradictions exist in the literature in

classification of compounds as P-gp substrates or non-substrates,

which are discussed in details in the Results and Discussion section.

Finally, 197 compounds (99 P-gp substrates and 98 non-substrates)

were selected in our data set. 32 compounds were defined as ‘‘the

external validation set’’ containing 16 P-gp substrates and 16 non-

substrates and was set up for evaluation of prediction power with no

bias as follows. Each compound was placed into n-dimensional

space defined by the calculated molecular descriptors (see below).

Correlation of the descriptors was used to calculate molecular

similarity. The molecular space of P-gp substrates or non-substrates

Predicting P-gp-Mediated Drug Transport
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was then divided into 16 subsets and one molecule was randomly

selected from each of these subsets to form the external validation

set. All the compounds in the data sets are listed in Table S1.

Support Vector Machine (SVM)
Structures of all P-gp substrates or non-substrates in the data

sets were downloaded from the PubChem Database (http://

pubchem.ncbi.nlm.nih.gov). All molecules were subjected to

geometry optimization using the Molconvert software (Che-

mAxon, Budapest, Hungary), which applies the Dreiding molec-

ular mechanics force field, and to calculation of the Gasteiger

partial charges [30]. The DragonX software (www.talete.mi.it) was

used to calculate a total of 3250 molecular descriptors for each

molecule. The descriptors with .80% zero values and too small

standard deviation values (less than 3%) were eliminated. The

Libsvm software (www.csie.ntu.edu.tw/,cjlin/libsvm) was then

used for SVM calculations. Linear, polynomial, and radial basis

function (RBF) kernels were tested in the course of the study. The

average Matthews coefficient of the external set based on 100

independent SVM calculations was 0.53, 0.18 or 0.54 using linear,

polynomial or Gaussian RBF kernel, respectively. Therefore, in

our SVM calculations, a Gaussian RBF was chosen as the kernel

function:

K(xi, xj)~exp(- jjxi-xjjj2)

where c is a kernel width parameter, xi and xj are instance label

pairs, and K is the kernel function. In the training process, the

regularization parameter ‘C’ and the kernel width parameter ‘c’

were optimized using a grid search approach. The prediction

power of SVM is greatly influenced by the selection of kernel and

the parameters C and c. The best combination of C and c was

selected by a grid-search with exponentially growing sequences of

C and c. Each combination of parameter choices was checked

using cross validation, and the parameters with best cross-

validation accuracy were selected. After the best parameters C

and c were found, the whole training set was trained again to

generate the final model. The feature selection tool fselect.py

(http://www.csie.ntu.edu.tw/,cjlin/libsvmtools) provided by the

Libsvm developer was used to measure the relative importance of

each feature. For each feature, an F-score can be calculated using

fselect.py. Generally, the larger the F-score, the more likely the

feature is discriminative. Therefore, this score was used as a

feature selection criterion. Features with high F-scores were

selected and then SVM was applied. High-F-score features were

gradually added until the validation accuracy decreased. Descrip-

tors were checked for their correlation. Among the descriptors

with a correlation of .0.9, the descriptors with higher F-scores

were kept for further SVM calculations. One hundred SVM

calculations were run using the training data set, trained, and

validated by cross-validation in such a way that a test set with a

data size comparable to that of the external validation set was

generated (i.e. a ratio of the training set to the test set of 0.8 was

chosen, generating test sets of 33 compounds).

Prediction power of the above SVM method was evaluated

based on the number of true positive (TP), true negative (TN), false

positive (FP), and false negative (FN) predictions. Additional widely

used parameters, namely accuracy (ACC), sensitivity (SE),

specificity (SP) as well as the Matthews correlation coefficient

(MCC) were also calculated using the equations given below [31].

ACC~(TPzTN)=(TPzTNzFPzFN)|100

SE~TP=(TPzFN)|100

SP~TN=(FPzTN)|100

MCC~(TP|TN{FP|FN)

=½(TPzFN)(TPzFP)(TNzFP)(TNzFN)� 1=2

Prediction power is a measure of true hits in the entire

calculations with both P-gp substrates and non-substrates

included, whereas sensitivity and specificity reflect the prediction

accuracies for P-gp substrates and non-substrates, respectively.

The Matthews correlation coefficient considers over and under

prediction and often provides a much more balanced evaluation of

prediction than, for example, accuracy. MCC = 1 means a perfect

prediction, whereas MCC = 0 indicates a random prediction.

Homology modeling
The primary sequence of human P-gp was taken from Universal

Protein Resource (http://www.uniprot.org) with the accession

code P08183. For homology modeling of human P-gp, the X-ray

structure of mouse P-gp (PDB code 3G60) was used as a template.

The X-ray structure of the template was downloaded from the

Protein Data Bank (http://www.rcsb.org). A sequence alignment

between mouse and human P-gp was performed using ClustalW

[32]. The alignment – as mouse and human P-gp share 87%

sequence identity – was the same as that in previously published

models [33]. Three-dimensional (3D) atomic models comprising all

non-hydrogen atoms were generated by the Modeller9.8 package

[34] using the refine.very slow option for simulated annealing. A

bundle of ten models from random generation of the starting

structures were calculated. The model possessing the lowest DOPE

score was chosen for docking calculations. The quality of the model

was evaluated using Procheck [35]. Ramachandran plot showed

that 97% of the residues fell into the allowed region. The backbone

root mean square deviation (RMSD) between the mouse P-gp

template and the human P-gp model was 0.63 Å.

Molecular docking
Molecular docking calculations were carried out using the

Autodock Vina software [36] integrated in the Molecular Docking

Server (http://www.dockingserver.com) [37]. Structures of the

query ligands were optimized using the Dreiding force field

integrated in the Molconvert program of ChemAxon (ChemAxon,

Budapest, Hungary). Gasteiger partial charges were calculated on

ligand atoms [30]. The X-ray structure of mouse P-gp (PDB code

3G60) and our human P-gp model were used for docking

calculations. Polar hydrogen atoms were added to P-gp and

Gasteiger partial charges were calculated using Autodock Tools.

Water molecules and heteroatoms were removed from the

structures, since water is implicitly included in Autodock.

Simulation boxes were centered on ligands in the structures of

P-gp-ligand complexes. A simulation box of 22622622 Å was

used in each docking calculation with an exhaustiveness option of

8 (average accuracy).

The web server
A free web server (http://pgp.althotas.com) has been developed

based on the SVM and molecular docking methods described

Predicting P-gp-Mediated Drug Transport
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above. This web server allows the users to predict whether a query

ligand may be a P-gp substrate, its binding property, and the

geometry of P-gp-ligand complex. The Autodock Vina software was

integrated in the web server for complex geometry calculations. The

server was developed with PHP-MySQL and several external

programs. The chemical structure of a query ligand can be

uploaded or drawn in by the users using the built-in Chemaxon

Marvin Java applet. The web server is linked to Pubchem so that

ligands can be directly retrieved with text search. Structural

conversions and 3D geometry optimization by the Dreiding method

are carried out using the Molconvert software. 2-dimensional and 3-

dimensional molecular descriptors are calculated using the

DragonX software. The built-in SVM model of this study is used

to predict P-gp substrates. The geometry of P-gp-ligand complex is

predicted by docking calculations using the Autodock Vina

algorithm [36] integrated in the web server. The X-ray structures

of mouse P-gp (PDB codes 3G60 and 3G61) and the homology

model of human P-gp are integrated in the web server.

Results and Discussion

SVM Calculations
SVM has some advantages – that is, it can treat both linear and

non-linear data sets, and can be used for both classification and

regression analysis; and the results can be easily interpreted. The

method has gained popularity in a wide variety of biochemical

applications, because it can be used for classification of small

molecules on a given biological target [19]. Basically, compounds

are represented with N calculated properties in the N dimensional

space and the main task of an SVM calculation is to find a

hyperplane in this space capable of separating the active molecules

from the non-active ones. In order to build a reliable model, data

selection is crucial in SVM. There are a number of experimental

methods for determining P-gp substrate properties. The results of

the different experimental methods might contradict. Stimulation of

ATPase activity may be taken as an indication of direct interaction

with P-gp. However, daunorubicin, which is an excellent P-gp

substrate, does not significantly stimulate ATPase activity of P-gp,

while verapamil and vincristine, also P-gp substrates, stimulate it

well [10]. The MDCK cell monolayer model shows a net difference

in substrate concentration between the apical and basal compart-

ments only if the substrates are transported by P-gp at a rate that is

higher than that of reuptake into cells (carrier mediated or passive

diffusion). In direct drug binding studies, even if the binding affinity

is high (low kd values), the compounds may still not be well

transported because the ratio between association (Kon) and

dissociation (Koff) rates may be unfavorable. Moreover, different

experimental conditions (e.g., pH and temperature) besides different

methods used in determining substrate properties in different studies

could also result in conflicting results for the same compounds. All

the above factors often led to contradictions in the literature as to

whether certain compounds are P-gp substrates or non-substrates.

For example, yohimbine was considered as a P-gp substrate by

Seelig [27], but was not classified as a P-gp substrate by Varma et al.

[28]. Doxorubicin was considered as a non-substrate [10,28], but

was found to be transported by P-gp in other studies [38]. Similar

situation exists for trazodone (non-substrate [10,28] and substrate

[16]) and venlaflaxine (non-susbtrate [39] and substrate [40]).

Lidocaine, lovastatine, propranolol, and itraconazole were charac-

terized to be non-substrates by Varma et al. [28] and Polli et al.

[10], and simvastatine was characterized to be a non-substrate by

Susanto et al. [41]; however, these compounds were all published as

P-gp substrates or inhibitors in Pharmacology Weekly. Therefore, if

the ability of compounds to be net-transported or have a high

binding affinity, or the ability of compounds to stimulate ATPase

activity is used synonymously to evaluate whether the compounds

are P-gp substrates or non-substrates, this can lead to conflicting

results on certain compounds and compromise correct classification

in the training and validation data sets. Thus, in our data sets, a

compound that had conflicting reports in the literature was treated

as a P-gp substrate or non-substrate only if more independent

studies confirmed its classification. We indicated the assay methods

used to identify these compounds as P-gp substrates or non-

substrates and references in Table S1.

SVM prediction of P-gp substrates or non-substrates was carried

out by means of 100-fold cross-validation. Cross-validation serves

two purposes: i) estimation of prediction power of the models

generated, i.e. approximation of the general character of the

models; and ii) comparison of prediction performance of the

models and identification of the ‘best model’ for available data sets.

The choice of the kernel is crucial in SVM calculations. Therefore,

linear, polynomial, and Gaussian RBF kernels were tested in

preliminary calculations. Our results showed that the average

Matthews coefficient of the external set based on 100 independent

SVM calculations (different ligand sets were used as the training

and test data set in different runs) was 0.53, 0.18 or 0.54 using

linear, polynomial or Gaussian RBF kernel, respectively. This is

consistent with the results of previous P-gp SVM studies in which

RBF was suggested as a reasonable choice [23,24,25]. Thus, the

Gaussian RBF kernel was used throughout this study. The mean

values of SVM prediction performance parameters of the 100 runs

are presented in Table 1. These data indicate that the average

accuracy of prediction for an external validation data set is near

80%. Note that specificity (SP) and sensitivity (SE) values are very

close to each other (Table 1), indicating that the prediction for P-

gp substrates and non-substrates is not discriminative, i.e. the

model does not have preference for a random ligand to be a

substrate or non-substrate. We did not compare our prediction

results with those reported by others regarding prediction

performance because such a direct comparison seems not

appropriate due to large differences in compounds collected in

data sets and data size. Nonetheless, Huang et al. [24] and Wang

et al. [25] noticed that the prediction accuracy varied between 63

and 90% in 7 previous studies, and four of the studies gave a

prediction accuracy of approximately 80%, which is comparable

to that of this study.

There is no general rule concerning the selection of ‘‘the best

model’’. An obvious approach would be to select the model which

provides the highest prediction accuracy for the training data set.

However, this approach could be misleading because a model with

the highest accuracy for a training data set does not necessarily

give the highest accuracy for an independent external data set. For

example, one of our models gave an accuracy of 94% for the

training set and 75% for the test and external data sets. It is

Table 1. The mean values of SVM prediction performance
parameters of 100 runs.

Data Set ACC SP SE MCC

Training 80 81 79 0.6064

Test 75 75 75 0.5117

External 76 77 74 0.5176

ACC, SP, SE, and MCC are accuracy, specificity, sensitivity, and the Matthews
correlation coefficient, respectively.
doi:10.1371/journal.pone.0025815.t001
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therefore necessary to take prediction accuracies for both the

training and test sets into account when the ‘‘best model’’ is to be

selected. Hence, the differences in prediction accuracies between

the training and test data sets were calculated, and the models with

the smallest differences (below 5%) were selected. We obtained 6

models using this criterion, and the prediction performance

parameters of the 6 ‘‘best models’’ are summarized in Table S2. A

large difference can be observed between specificity and sensitivity

in the test set in models 1–4, indicating an overfitting of the

models. These models contain a larger number of descriptors (48

descriptors in models 1–3 and 12 descriptors in model 4)

compared to models 5 and 6 (6 descriptors). Indeed, it is known

that the inclusion of too many descriptors in the SVM model

decreases the accuracy of the performance for two reasons. First,

the inclusion of too many descriptors may produce overfitted

models. Second, the inclusion of unnecessary or irrelevant

descriptors creates noise in the model. Thus, the model with the

smallest number of descriptors and the highest MCC value for the

external validation set was selected as the final model, which is the

model 5 (Table S2). We noted that classification of individual

compounds in the independent external data set as P-gp substrates

or non-substrates were very similar in these models. The

predictions of the external data set by the above-mentioned 6

best models are indicated in Table S3. Among the external data

set of 32 molecules, twenty-three compounds were classified

correctly by each model (Figures 1 and 2), and 6 compounds

Figure 1. SVM prediction results for compounds in the external validation data set. Shown are chemical structures of the correctly
predicted P-gp substrates by all the 6 best models.
doi:10.1371/journal.pone.0025815.g001
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(chloroquine, estriol, L-glutamic acid, doxapram, itraconazole,

and narcotine) were misclassified unambiguously by all the 6

models (Figure 3). We note that all the unambiguously

misclassified substrates are relatively small in size, whereas the

misclassified non-substrates possess larger molecular weights

(Figure 3). Only 3 compounds (lansoprazole, hydrocodone, and

trazodone) were not uniformly predicted as P-gp substrates or non-

substrates by the 6 models (Figure 4).

The final model (the model 5) is based on the following

descriptors: ATS1m (Broto-Moreau autocorrelation of a topolog-

ical structure-lag 1/weighted by atomic masses), EEig12x

(Eigenvalue 12 from edge adj. matrix weighted by edge degrees),

ESpm02d (Spectral moment 02 from edge adj. matrix weighted by

dipole moments), BELv6 (lowest eigenvalue n. 6 of Burden

matrix/weighted by atomic van der Waals volumes), BELe6

(lowest eigenvalue n. 6 of Burden matrix/weighted by atomic

Sanderson electronegativities), BELp6 (highest eigenvalue n. 6 of

Burden matrix/weighted by atomic polarizabilities). These

descriptors are well suited to quantify transport properties relevant

to P-gp substrates. This is manifested by the fact that the descriptor

values are weighted by the atomic mass (ATS1m), the size

(BELv6), the polarizibility and logP (BELp6), electronegativity

(BELe6), and dipole moment (ESpm02d) of the ligands of the data

set. Our findings are consistent with previous SVM studies,

namely, it has been showed that 60% of the molecular descriptors

important for P-gp substrates are of topological nature [42]. The

X-Ray structure of mouse P-gp reveals a large hydrophobic

binding site packed with a number of aromatic residues. Thus,

substrate binding seems to be a result of a combination of

hydrophobic, aromatic, and electrostatic interactions. The pres-

ence of aromatic residues in the binding pocket explains the role of

polarizability and logP in the descriptors.

Figure 2. SVM prediction results for compounds in the external validation data set. Shown are chemical structures of the correctly
predicted non-substrates of P-gp by all the 6 best models.
doi:10.1371/journal.pone.0025815.g002
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Molecular docking calculations
Several studies have shown that the correlation between the

experimental and calculated binding energies is below 0.6 with

any docking software available on the market [43]. Therefore,

docking itself is not reliable for differentiating compounds between

substrates and non-substrates. Thus, we predicted P-gp substrates

using the ligand-based SVM method as described above.

However, since molecular docking calculations have been shown

to yield accurate complex geometry predictions in a number of

protein families [43], we used molecular docking to predict

substrate-P-gp interactions at an atomic level. It should be noted

that the P-gp structure - including the substrate translocation pore

- is treated as a rigid object in the docking procedure, which is not

the case experimentally. However, since the drug-binding

conformation of P-gp (an inward-facing closed apo conformation)

was used, the docking results do provide insights into the possible

complex geometry of ligand-bound P-gp prior to ATP hydrolysis.

To validate if docking can predict accurately the geometry of P-gp-

ligand complex, the cyclic peptide P-gp inhibitor (QZ59-RRR)

was re-docked to the original mouse P-gp structure with QZ59-

RRR bound (PDB code 3G60), and the experimental and

calculated complex geometries were compared. As shown in

Figure 3. SVM prediction results for compounds in the external validation data set. Shown are chemical structures of the 6 incorrectly
predicted P-gp substrates (top lane) and non-substrates (bottom lane) by all the 6 best models.
doi:10.1371/journal.pone.0025815.g003

Figure 4. SVM prediction results for compounds in the external validation data set. Shown are chemical structures of the 3 ambiguously
predicted P-gp substrates and non-substrates by different models.
doi:10.1371/journal.pone.0025815.g004
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Figure 5, QZ59-RRR was docked to the experimentally

determined structure of mouse P-gp with a high accuracy with a

RMSD value of 1.27 Å, thus confirming the capability of docking

calculations to predict P-gp-ligand complex geometry. Obviously,

the side chains of P-gp residues are appropriately oriented for

QZ59-RRR, which is not the case for other compounds. Therefore,

docking calculations of other ligands are expected to yield lower

prediction accuracies than this validation with QZ59-RRR.

We next investigated whether docking calculations to our

homology model of human P-gp can predict complex geometry. In

the modeling, mouse P-gp was used as a template. As human and

mouse P-gp share 87% amino acid identity, a reliable homology

model of human P-gp can be built with simple modeling

procedure. This high sequence identity makes the sequence

alignment obvious (data not shown). Indeed, recent studies have

revealed identical sequence alignments in developing homology

models of human P-gp [44]. The inward-facing closed apo

conformation of P-gp has been used to predict residues that are

experimentally implicated in drug transport and demonstrate that

P-gp has a high affinity for drug substrates [45].

To validate our homology model of human P-gp, rhodamine B,

a known P-gp substrate with experimental binding data available

was docked to our human P-gp model. Rhodamine B is a highly

hydrophobic compound and a well-characterized P-gp substrate

[46]. It was included in our SVM training set and was correctly

predicted to be a P-gp substrate by our SVM model. Since

numerous studies have shown that the drug-binding cavity in P-gp

is primarily formed by TM helices [11,47], we anticipate that

rhodamine B would most likely bind to P-gp in the MSD through

hydrophobic interactions. Indeed, such interactions and location

of the rhodamine B binding site in P-gp can be directly visualized

by docking calculations (Figure 6). Rhodamine B may interact

with the following aromatic residues that form a binding pocket:

Phe72, Phe336, Phe728, Phe732, Tyr307, and Tyr310. These

residues may have hydrophobic interactions with the hydrophobic

side chains of rhodamine B as well as pi-pi interactions with the

aromatic ring system of the compound. Hydrophobic side chains

of other residues, namely Leu975, Val981 and Val982, are also

possibly within the interacting distance. Additionally, two cation-pi

interactions were observed between the two positively charged

nitrogens of rhodamine B and Phe728 and Tyr307. The

carboxylate side chain of rhodamine B could form a double

hydrogen bond with the hydroxyl groups of Tyr307 and Tyr310.

These results of docking calculations appear to be consistent with

experimental data. For example, activities of the human P-gp

mutants, I340C (in TM6), L975C (in TM12), V981C (in TM12),

and V982C (in TM12), were found to be highly protected from

inhibition by MTS-rhodamine by pre-treatment with rhodamine

B, indicating that these residues likely participate in rhodamine B

binding to human P-gp [48]. It is important to note that several

binding residues for rhodamine B identified in this study (e.g.,

Phe336/(Ile in mouse P-gp), Phe728, and Leu975 (Ser in mouse P-

gp) were the same or proximate to the binding residues for ligands

such as QZ59-RRR identified in the X-ray structure of mouse P-

gp [11] which served as the template for the human P-gp model,

suggesting that these hydrophobic ligands may occupy distinct, but

overlapping binding sites or bind to different regions within the

same binding site in the large drug-binding cavity.

A free web server
To make the SVM and docking methods publicly available, we

have developed a free web server (http://pgp.althotas.com) which

enables the users to predict if a compound is a P-gp substrate, as well

as its complex geometry in P-gp. The PubChem database is

integrated so that any compounds can be searched and submitted

by their names. With this web server, any molecule of interest can be

searched by its name, uploaded in PDB, mol, mol2, hin, or SMILES

format or drawn in using a Marvin applet by the users. After

submitting the molecule, the web server performs: i) SVM

prediction for P-gp substrate; ii) identification of physicochemical

parameters of the ligand such as molecular weight, logP, and

polarizability; and iii) docking calculations for predicting the

complex geometry, docking energy, and interaction surface of the

ligand in the structure of mouse P-gp and the homology model of

human P-gp.

In summary, P-gp confers multidrug resistance in cancer cells

[1,3], and is also involved in clinically relevant drug disposition

and drug-drug interactions [6]. Therefore, to evaluate the

pharmacokinetics, safety, and efficacy of drugs or NMEs, it is of

important value to predict whether they are P-gp substrates and

how they might interact with P-gp, which, at present, remains

largely unknown. As an effort to address this issue, in the present

study, we have applied an SVM method to predict potential P-gp

substrates based on a relatively large data set of 197 known P-gp

substrates and non-substrates. This SVM method showed a

prediction accuracy of ,80% in an independent external data

set of 32 compounds. The selected descriptors were related to

molecular properties such as molecular weight, electronegativity

and polarizability. Since the 3D crystal structures of mouse P-gp

with or without ligands are already available [11], homology

model of human P-gp was constructed and interactions of P-gp

substrates with particular residues in the transporter could be

investigated by molecular docking calculations. We have shown,

by the example of rhodamine B, a known P-gp substrate, that

molecular docking calculations can predict the complex geometry

in an internal drug-binding cavity of P-gp that is consistent with

experimental data. Therefore, SVM prediction and molecular

docking calculations may prove valuable for prediction of P-gp

substrates as well as analysis of P-gp-substrate interactions at the

molecular level, and hence facilitate both rational drug design and

Figure 5. The Docking of QZ59-RRR to P-gp. Docking of QZ59-RRR
to the X-ray structure of P-gp-QZ59-RRR complex (PDB code: 3G60) was
performed using the Autodock Vina algorithm to validate the accuracy
of docking calculations. The geometry of P-gp-QZ59-RRR complex
obtained by docking calculations (yellow carbons) was compared with
that of the P-gp-QZ59-RRR complex in the X-ray structure (blue
carbons). Potential binding residues of P-gp for QZ59-RRR in the
internal cavity are indicated.
doi:10.1371/journal.pone.0025815.g005

Predicting P-gp-Mediated Drug Transport

PLoS ONE | www.plosone.org 8 October 2011 | Volume 6 | Issue 10 | e25815



screening. This approach is particularly useful and cost-effective in

the early drug discovery stage. To make the prediction methods

described in this study available to the large scientific community,

a free web server (http://pgp.althotas.com) has been developed

which integrates both the SVM prediction and molecular docking

calculations. To the best of our knowledge, this is the first free web

server for predicting P-gp-mediated drug transport and complex

geometry.
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