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a b s t r a c t 

The evolution of multicellularity was a major transition in the history of life on earth. Conditions un- 

der which multicellularity is favored have been studied theoretically and experimentally. But since the 

construction of a multicellular organism requires multiple rounds of cell division, a natural question is 

whether these cell divisions should be synchronous or not. We study a population model in which there 

compete simple multicellular organisms that grow by either synchronous or asynchronous cell divisions. 

We demonstrate that natural selection can act differently on synchronous and asynchronous cell division, 

and we offer intuition for why these phenotypes are generally not neutral variants of each other. 

© 2018 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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1. Introduction 

The evolution of multicellular organisms from unicellular an-

cestors was one of the major transitions in the evolutionary his-

tory of life, and occurred at least 25 times independently, begin-

ning as far back as 3–3.5 billion years ago ( Bonner, 1988, 1998;

Grosberg and Strathmann, 2007; Knoll, 2003; Niklas and Newman,

2013; Rokas, 2008; Maynard Smith and Szathmary, 1995 ). Progress

has been made in elucidating conditions that select for simple,

undifferentiated multicellularity over unicellularity, both in theory

( Driscoll and Travisano, 2017; Ghang and Nowak, 2014; Michod,

2007; Niklas, 2014; Olejarz and Nowak, 2014; Pfeiffer and Bon-

hoeffer, 2003; van Gestel and Tarnita, 2017 ) and in experimental

work ( Herron et al., 2018; Ratcliff et al., 2012, 2013a; Solari et al.,

2006a,b; Tarnita et al., 2015 ). 

Staying together and coming together are mechanisms for the

formation of biological complexity ( Tarnita et al., 2013 ). Many sim-

ple multicellular organisms grow by the staying together (ST) of

dividing cells, starting from a single progenitor cell ( Grosberg and

Strathmann, 1998 ). Thus, a progenitor cell divides, and the daugh-

ter cell stays attached to the parent cell to form a complex of two

cells (a ‘2-complex’). Further cell divisions produce new cells that

stay with the group, and the organism grows. Eventually, when
∗ Corresponding author. 
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he organism is large enough, it starts to produce progenitor cells,

hich disperse to seed the growth of new multicellular organisms.

In simplest terms, the rate of growth (and ultimately the pro-

uctivity) of a multicellular organism depends on the rate of di-

ision of its cells at various stages of its growth. For example, if

 k -complex produces new cells k times faster than a unicellular

rganism does, then the per-cell division rate of the multicellular

rganism is always equal to that of the unicellular organism, and

ulticellularity is no more productive than unicellularity ( Bonner,

998; Tarnita et al., 2013; Willensdorfer, 2009 ). But this represents

nly a single possibility. More generally, it is natural to consider

ases where selection acts differently on complexes of different

izes ( Tarnita et al., 2013; Willensdorfer, 20 08, 20 09 ). For exam-

le, if each k -complex produces new cells at a rate more than k

imes faster than a unicellular organism, then the ST phenotype

utcompetes the solitary phenotype, and multicellularity evolves.

atural selection may also act in non-linear, non-monotonic, or

requency-dependent ways on complexes of different sizes ( Celiker

nd Gore, 2013; Julou et al., 2013; Koschwanez et al., 2013; Lavren-

ovich et al., 2013; Ratcliff et al., 2013b; Tarnita, 2017 ), and for

any interesting cases, the population dynamics of ST are well

haracterized ( Allen et al., 2013; Ghang and Nowak, 2014; Kaveh

t al., 2016; Maliet et al., 2015; Michod, 2005; Michod et al., 2006;

omeni et al., 2013; Olejarz and Nowak, 2014; van Gestel and

owak, 2016 ). 

Against the background of this rich set of possibilities for the

tness effects of multicellularity, a question that has been ignored

to our knowledge) concerns the timing of cell divisions in the con-
nder the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 
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truction of a multicellular organism. Specifically, should their tim-

ng be independent or temporally correlated? That is, can there be

election for synchrony in cell division? Here, we study a model of

imple multicellularity to determine the conditions under which

ynchronized cell division is favored or disfavored. 

. Model 

We suppose that new cells remain attached to their parent cell

fter cell division. This process continues until a complex reaches

ts maximum size, n . A complex of size n then produces new soli-

ary cells. 

First, consider a population of asynchronously dividing cells. For

synchronous cell division, the reproduction of each individual cell

s a Poisson process, and cells divide independently. For illustra-

ion, consider the case of neutrality. The distribution of time inter-

als between production of new cells is exponential, with an aver-

ge rate of a single cell division in one time unit. In one time unit,

n average, a single cell reproduces to form a complex containing

wo cells (the parent and the offspring). With asynchronous cell

ivision, it takes only another 1/2 time unit, on average, for either

f the cells of the 2-complex to reproduce and form a 3-complex.

nce the 3-complex appears, in another 1/3 time unit, on average,

ne of the three cells of the 3-complex will reproduce to form a 4-

omplex. If n = 4 , then each 4-complex produces new solitary cells

t a rate of 4 cells per time unit, and the cell division and staying

ogether process starting from each new solitary cell is repeated.

For a more detailed explanation, see Appendix A .) 

Next, consider a population of synchronously dividing cells. For

ynchronous cell division, all cells in a k -complex divide simul-

aneously, and simultaneous division of an entire cluster of cells

s a Poisson process. The growth process starting from a single

ell is subtly different if cells divide synchronously. For illustration,

gain consider the case of neutrality. The distribution of time inter-

als between doubling of an entire cluster of cells is exponential,

ith an average rate of one doubling of a cluster’s size in a single

ime unit. In one time unit, on average, a single cell reproduces to

orm a 2-complex. In one time unit, on average, the two cells in

he 2-complex simultaneously divide, the result being a new com-

lex with four cells—the two parent cells and the two offspring.

Notice that 3-complexes do not form if cell division is perfectly

ynchronous.) If n = 4 , then each 4-complex produces new solitary

ells at a rate of 4 cells per time unit, and each new solitary cell

epeats the cell division and staying together process. 

. Results 

.1. n = 4 cells 

We begin by studying the evolutionary dynamics for n = 4 . The

ynamics of asynchronous cell division and staying together for

 = 4 are described by the following system of differential equa-

ions: 

 

 

 

˙ y 1 
˙ y 2 
˙ y 3 
˙ y 4 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

−α1 0 0 4 α4 

α1 −2 α2 0 0 

0 2 α2 −3 α3 0 

0 0 3 α3 0 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

y 1 
y 2 
y 3 
y 4 

⎞ 

⎟ ⎠ 

− φy ( � α; � y ) 

⎛ 

⎜ ⎝ 

y 1 
y 2 
y 3 
y 4 

⎞
⎟⎠

(1) 

he notation ˙ y i indicates the time derivative. Here, the variables

 1 , y 2 , y 3 , and y 4 denote the frequencies of complexes with 1, 2,

, and 4 asynchronously dividing cells, respectively. The parame-

ers αk for 1 ≤ k ≤ 4 represent the consequences of staying together

n the fitness of cells in k -complexes. We use the shorthand nota-

ion 

�
 α = { α } to denote the set of α values. In Eq. (1) , we choose
k k 
y ( � α; � y ) such that y 1 + 2 y 2 + 3 y 3 + 4 y 4 = 1 at all times. We obtain

y ( � α; � y ) = 1 + 

4 ∑ 

k =1 

ky k (αk − 1) . (2)

The dynamics of synchronous cell division and staying together

or n = 4 are described by the following system of differential

quations: 
 

˙ x 1 
˙ x 2 
˙ x 4 

) 

= 

( −α1 0 4 α4 

α1 −α2 0 

0 α2 0 

) ( 

x 1 
x 2 
x 4 

) 

− φx ( � α; � x ) 

( 

x 1 
x 2 
x 4 

) 

. (3) 

ere, the variables x 1 , x 2 , and x 4 denote the frequencies of com-

lexes with 1, 2, and 4 synchronously dividing cells, respectively.

The parameters αk for 1 ≤ k ≤ 4 do not depend on synchroniza-

ion or asynchronization in cell division. Therefore, � α = { αk } is

efined exactly as for the case of asynchronous cell division, as

escribed above, although in the case of synchronization, the α3 

alue in 

�
 α is irrelevant.) In Eq. (3) , we choose φx ( � α; � x ) such that

 1 + 2 x 2 + 4 x 4 = 1 at all times. We obtain 

x 

(→ 

α; → 

x 

)
= 1 + 

2 ∑ 

p=0 

kx k ( αk − 1 ) , where k = 2 

p . (4)

In what follows, we use an asterisk to denote quantities that

re in steady-state. For asynchronously dividing cells, { y ∗
k 
} denote

he frequencies of k -complexes when ˙ y k = 0 for all k . Also for

synchronously dividing cells, φ∗
y ( � α) denotes the population fitness

hen ˙ y k = 0 for all k . (Notice that φ∗
y ( � α) is equal to the largest real

igenvalue of the matrix on the right-hand side of Eq. (1) , and this

uantity represents the growth rate of the population (if we ne-

lect death of cells) when that matrix multiplies the vector of com-

lex frequencies. A higher growth rate then requires a larger com-

ensating value of φ∗
y ( � α) in order to keep the population size con-

tant. As such, φ∗
y ( � α) can be viewed as an overall death rate due to

vercrowding.) Similarly, for synchronously dividing cells, { x ∗
k 
} and

∗
x ( � α) denote the frequencies of k -complexes and the population

tness, respectively, when ˙ x k = 0 for all k . The processes of staying

ogether with synchronous and asynchronous cell division for the

ase n = 4 are shown schematically in Fig. 1 . 

Suppose that we have a mixed population of cells with the syn-

hronously and asynchronously dividing phenotypes. Notice that

here is competitive exclusion. If φ∗
x < φ∗

y , then asynchronously di-

iding cells outcompete synchronously dividing cells. If φ∗
x > φ∗

y ,

hen synchronously dividing cells outcompete asynchronously di-

iding cells. If φ∗
x = φ∗

y , then synchronously and asynchronously di-

iding cells can coexist. 

From Eqs. (2) and (4) , for the partic-

lar case α1 = α2 = α3 = α4 = 1 , we have

x (1 , 1 , 1 , 1 ; � x ) = φy (1 , 1 , 1 , 1 ; � y ) = φ∗
x (1 , 1 , 1 , 1) = φ∗

y (1 , 1 , 1 , 1) = 1

nd there is neutrality between the synchronously and asyn-

hronously dividing phenotypes. But the case α1 = α2 = α3 = α4 =
 is nongeneric. What happens if αk � = 1 for some k ? 

To understand the effect of αk on the evolutionary dynam-

cs, we consider a couple of simple cases. First, we consider

he case (α1 , α2 , α3 , α4 ) = (1 , 1 , 1 , α) . The difference between the

teady-state growth rates of the synchronously and asynchronously

ividing subpopulations, φ∗
x (1 , 1 , 1 , α) and φ∗

y (1 , 1 , 1 , α) , respec-

ively, is plotted in Fig. 2 A. If α = 1 , then φ∗
x (1 , 1 , 1 , α) and

∗
y (1 , 1 , 1 , α) are exactly equal, as already noted. If α < 1, then
∗
x (1 , 1 , 1 , α) < φ∗

y (1 , 1 , 1 , α) , and asynchronously dividing cells

utcompete synchronously dividing cells. But if α < 1, then a soli-

ary phenotype would outcompete the staying-together phenotype,

nd there would be no formation of clusters in the first place. If

> 1, then φ∗
x (1 , 1 , 1 , α) > φ∗

y (1 , 1 , 1 , α) , and synchronously divid-

ng cells outcompete asynchronously dividing cells. Thus, for α > 1,

ulticellularity with synchronized cell division evolves. 
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Fig. 1. Growth of multicellular organisms by synchronous and asynchronous cell division, when maximum size is n = 4 cells. (A) In synchronous cell division, a solitary cell 

divides to form a 2-complex, and then both cells of the 2-complex divide simultaneously to form a 4-complex. Further cell divisions in the 4-complex give rise to dispersing 

single cells. When all cells are equally productive in terms of their own division rates, no matter what size complex they are in (the neutral case), a steady state is reached 

where 1/2 of organisms are single cells (accounting for 1/4 of all cells), 1/4 are 2-complexes (1/4 of all cells), and 1/4 are 4-complexes (1/2 of all cells). 3-complexes are 

never produced. (B) In asynchronous cell division, a solitary cell divides to form a 2-complex, after which one of the cells in the 2-complex divides to form a 3-complex, 

after which one of the cells in the 3-complex divides to form a 4-complex. Further divisions lead to dispersing single cells. In the neutral case, an asynchronous population 

reaches a steady state where 1/2 of complexes are single cells (6/25 of all cells), 1/6 are 2-complexes (4/25 of all cells), 1/12 are 3-complexes (3/25 of all cells), and 1/4 are 

4-complexes (12/25 of all cells). 

Fig. 2. The difference in the steady-state fitnesses of the synchronously and asynchronously dividing subpopulations is shown for two choices of � α for n = 4 . When multi- 

cellularity is selected for ( α > 1), synchronization of cell divisions is the more successful phenotype in some cases (A), and asynchronization in others (B). 
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What is the intuition for this result? To develop insight, we re-

turn to the simple case of α = 1 . In steady state, what fraction of

the total number of cells in the synchronously and asynchronously

dividing subpopulations belong to 4-complexes? The steady-state

distributions of cluster sizes are shown in Fig. 1 . For the syn-

chronous phenotype, exactly 1/2 of all cells belong to 4-complexes

in steady state. For the asynchronous phenotype, exactly 12/25

( < 1/2) of all cells belong to 4-complexes in steady state. The frac-

tion of cells that belong to 4-complexes—and are therefore affected

by small changes in α—is larger for the synchronous phenotype.

This suggests that, if α differs from 1 by a small amount, then the

corresponding effect on the population’s fitness—either positive or

negative—is amplified for synchronously dividing cells. 

For example, if α = 1 + ε with 0 < ε � 1, then approximately

1/2 of all synchronously dividing cells produce new cells at an

enhanced rate 1 + ε, while only approximately 12/25 of all asyn-

chronously dividing cells produce new cells at the same enhanced

rate 1 + ε. In this case, synchronization is the more successful phe-

notype. If, instead, α = 1 − ε with 0 < ε � 1, then approximately

1/2 of all synchronously dividing cells produce new cells at a

reduced rate 1 − ε, while only approximately 12/25 of all asyn-
hronously dividing cells produce new cells at the same reduced

ate 1 − ε. In this case, asynchronization is the more successful

henotype. 

Our intuition further suggests that, for different values of ( α1 ,

2 , α3 , α4 ), the asynchronous phenotype can outcompete the syn-

hronous phenotype, under conditions in which multicellularity

ill evolve. Consider again the steady-state distributions of k -

omplexes for the case of α = 1 , as shown in Fig. 1 . What frac-

ion of all cells in the synchronous and asynchronous subpopula-

ions belong to k -complexes of size k ≥ 2? In steady state, 3/4 of

ll synchronously dividing cells belong to complexes with at least

 cells, while 19/25 ( > 3/4) of all asynchronously dividing cells be-

ong to complexes with at least 2 cells. Therefore, we anticipate

hat, for the fitness values (α1 , α2 , α3 , α4 ) = (1 , α, α, α) , and for

= 1 + ε with 0 < ε � 1, the asynchronous phenotype is more suc-

essful, and multicellularity is also evolutionarily preferred over

he solitary phenotype. 

The difference between the steady-state growth rates of

he synchronously and asynchronously dividing subpopulations,
∗
x (1 , α, α, α) and φ∗

y (1 , α, α, α) , respectively, is plotted in Fig. 2 B.

ur expectation is correct: If α < 1, then the synchronous phe-
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otype outcompetes the asynchronous phenotype, but a solitary

henotype would also outcompete the staying-together phenotype,

nd there would be no formation of clusters. If α > 1, then the

synchronous phenotype outcompetes the synchronous phenotype,

nd evolutionary construction develops. 

.2. n = 8 cells 

We can also consider the case n = 8 , for which a complex con-

ains a maximum of 8 cells. The dynamics of asynchronous cell

ivision and staying together for n = 8 are described by the fol-

owing equations: 

 

 

 

 

 

 

 

 

 

˙ y 1 
˙ y 2 
˙ y 3 
˙ y 4 
˙ y 5 
˙ y 6 
˙ y 7 
˙ y 8 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

−α1 0 0 0 0 0 0 

α1 −2 α2 0 0 0 0 0 

0 2 α2 −3 α3 0 0 0 0 

0 0 3 α3 −4 α4 0 0 0 

0 0 0 4 α4 −5 α5 0 0 

0 0 0 0 5 α5 −6 α6 0 

0 0 0 0 0 6 α6 −7 α
0 0 0 0 0 0 7 α

n Eq. (5) , we choose φy ( � α; � y ) such that the total number of cells

quals one at all times. We obtain 

y ( � α; � y ) = 1 + 

8 ∑ 

k =1 

ky k (αk − 1) . (6)

he dynamics of synchronous cell division and staying together for

 = 8 are described by the following equations: 

 

 

 

˙ x 1 
˙ x 2 
˙ x 4 
˙ x 8 

⎞ 

⎟ ⎠ 

= 

⎛ 

⎜ ⎝ 

−α1 0 0 8 α8 

α1 −α2 0 0 

0 α2 −α4 0 

0 0 α4 0 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

x 1 
x 2 
x 4 
x 8 

⎞ 

⎟ ⎠ 

− φx ( � α; � x ) 

⎛ 

⎜ ⎝ 

x 1 
x 2 
x 4 
x 8 

⎞ 

⎟ ⎠ 

. 

(7) 

n Eq. (7) , we choose φx ( � α; � x ) such that the total number of cells

quals one at all times. We obtain 

x 

(→ 

α; → 

x 

)
= 1 + 

3 ∑ 

p=0 

kx k ( αk − 1 ) , where k = 2 

p . (8)

otice that, from Eqs. (6) and (8) , if αk = 1 for all k , then

y ( � α; � y ) = φx ( � α; � x ) = φ∗
y ( � α) = φ∗

x ( � α) = 1 , and there is neutrality.

he processes of staying together with synchronous and asyn-

hronous cell division for the case n = 8 are shown schematically

n Fig. 3 . 

To see what this means for the evolutionary dynamics, con-

ider the steady-state fraction of total cells in the synchronously

nd asynchronously dividing subpopulations that belong to 8-

omplexes if there is neutrality. The steady-state distributions of

luster sizes are shown in Fig. 3 . For the synchronous case, that

raction is 2/5, while for the asynchronous case, that fraction

s 280/761 ≈ 0.368 ( < 2/5). This suggests that, for the case � α =
(1 , 1 , 1 , 1 , 1 , 1 , 1 , α) , and for α = 1 + ε with 0 < ε � 1, multicellu-

arity is selected and the synchronous phenotype is more success-

ul. If instead α = 1 − ε with 0 < ε � 1, then the asynchronous phe-

otype would be more successful, but multicellularity is not se-

ected. As shown in Fig. 4 A, our expectation is correct. 

Consider also the steady-state fraction of total cells in the syn-

hronously and asynchronously dividing subpopulations that be-

ong to complexes containing at least 2 cells if there is neutrality.

or the synchronous case, that fraction is 4/5, while for the asyn-

hronous case, that fraction is 621/761 ≈ 0.816 ( > 4/5). This sug-

ests that, for the case � α = (1 , α, α, α, α, α, α, α) , and for α = 1 +
with 0 < ε � 1, multicellularity is selected and the asynchronous

henotype is more successful. If instead α = 1 − ε with 0 < ε � 1,
8 α8 

0 

0 

0 

0 

0 

0 

0 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

y 1 
y 2 
y 3 
y 4 
y 5 
y 6 
y 7 
y 8 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

− φy ( � α; � y ) 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

y 1 
y 2 
y 3 
y 4 
y 5 
y 6 
y 7 
y 8 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (5) 

hen the synchronous phenotype would be more successful, but

ulticellularity is not selected. As shown in Fig. 4 B, our expecta-

ion is again correct. 

.3. Any number of cells 

We have considered the cases n = 4 and n = 8 , but more gen-

rally, we can describe the evolutionary dynamics for any value of

he maximum complex size, n . The dynamics of asynchronous cell

ivision and staying together are described by the following equa-

ions: 

˙ y 1 = −α1 y 1 + nαn y n − φy ( � α; � y ) y 1 ;
˙ y k = (k − 1) αk −1 y k −1 − kαk y k − φy ( � α; � y ) y k ∀ 1 < k < n ;
˙ y n = (n − 1) αn −1 y n −1 − φy ( � α; � y ) y n . 

e choose φy ( � α; � y ) such that the total number of cells equals one

t all times. We obtain 

y ( � α; � y ) = 1 + 

n ∑ 

k =1 

ky k (αk − 1) . (9)

he dynamics of synchronous cell division and staying together are

escribed by the following equations: 

˙ x 1 = −α1 x 1 + nαn x n − φx ( � α; � x ) x 1 ;
˙ x k = αk/ 2 x k/ 2 − αk x k − φx ( � α; � x ) x k ∀ k = 2 

p , 0 < p < log 2 n ;
˙ x n = αn/ 2 x n/ 2 − φx ( � α; � x ) x n . 

e choose φx ( � α; � x ) such that the total number of cells equals one

t all times. We obtain 

x 

(→ 

α; → 

x 

)
= 1 + 

log 2 n ∑ 

p=0 

kx k ( αk − 1 ) , where k = 2 

p . (10)

rom Eqs. (9) and (10) , it follows that, if αk = 1 for all k , then

y ( � α; � y ) = φx ( � α; � x ) = φ∗
y ( � α) = φ∗

x ( � α) = 1 , and there is neutrality.

ut the same intuition that applies for the cases n = 4 and n = 8

lso applies for larger values of n : If αk � = 1 for some value of

 , then, in general, natural selection will act differently on syn-

hronous and asynchronous phenotypes. 

.4. Different fitnesses for cells of asynchronous and synchronous 

henotypes 

The consideration of the same fitness, αk , of cells in a k -

omplex between the asynchronous and synchronous phenotypes

hus reveals that natural selection acts differently on the two

odes of cellular division. More generally, one can consider

hat cells in k -complexes that divide asynchronously versus syn-

hronously do not necessarily have the same fitness. Denote by βk 

he fitness of cells in an asynchronously dividing k -complex. We



174 J. Olejarz et al. / Journal of Theoretical Biology 457 (2018) 170–179 

Fig. 3. Growth of multicellular organisms by synchronous and asynchronous cell division, when maximum size is n = 8 cells. 

Fig. 4. The difference in the steady-state fitnesses of the synchronously and asynchronously dividing subpopulations is shown for two choices of � α for n = 8 . When multi- 

cellularity is selected for ( α > 1), synchronization of cell divisions is the more successful phenotype in some cases (A), and asynchronization in others (B). 
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have the following dynamics: 

˙ Y 1 = −β1 Y 1 + nβn Y n − �Y ( � β; � Y ) Y 1 ;
˙ Y k = (k − 1) βk −1 Y k −1 − kβk Y k − �Y ( � β; � Y ) Y k ∀ 1 < k < n ;
˙ Y n = (n − 1) βn −1 Y n −1 − �Y ( � β; � Y ) Y n . 

We choose �Y ( � β; � Y ) such that the total number of cells equals one

at all times. We obtain 

�Y ( � β; � Y ) = 1 + 

n ∑ 

k =1 

kY k (βk − 1) . 

Denote by γ k the fitness of cells in a synchronously dividing k -

complex. We have the following dynamics: 

˙ X 1 = −γ1 X 1 + nγn X n − �X ( � γ ; � X ) X 1 ;
˙ X k = γk/ 2 X k/ 2 − γk X k − �X ( � γ ; � X ) X k ∀ k = 2 

p , 0 < p < log 2 n ;
˙ X n = γn/ 2 X n/ 2 − �X ( � γ ; � X ) X n . 

We choose �X ( � γ ; � X ) such that the total number of cells equals one

at all times. We obtain 

�X 

(→ 

γ ; → 

X 

)
= 1 + 

log 2 n ∑ 

p=0 

kX k ( γk − 1 ) , where k = 2 

p . 
ere, in general, βk � = γ k . What is the condition for the syn-

hronous phenotype to be favored over the asynchronous pheno-

ype, or vice versa? 

For the asynchronously dividing phenotype, setting ˙ Y k = 0 for

ll k , we have the following homogeneous linear system: 

 = 

n ∑ 

j=1 

B i j ( � β, �∗
Y ( 

�
 β)) Y ∗j ∀ 1 ≤ i ≤ n. 

or the synchronously dividing phenotype, setting ˙ X k = 0 for all k ,

e have the following homogeneous linear system: 

 = 

1+ log 2 n ∑ 

j=1 

C i j ( � γ , �∗
X ( � γ )) X 

∗
k where k = 2 

j−1 

∀ 1 ≤ i ≤ 1 + log 2 n. 

For the asynchronously dividing phenotype, using a cofactor ex-

ansion, we can solve implicitly for �∗
Y 

: 

et (B i j ( � β, �∗
Y ( 

�
 β))) = �∗

Y 

n −1 ∏ 

i =1 

( �∗
Y + iβi ) −

n ∏ 

i =1 

iβi = 0 . (11)
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or the synchronously dividing phenotype, using a cofactor expan-

ion, we can solve implicitly for �∗
X : 

det (C i j ( � γ , �∗
X ( � γ ))) 

= (−1) log 2 n 

( 

nγn 

log 2 n ∏ 

i =1 

γk − �∗
X 

log 2 n ∏ 

i =1 

( �∗
X + γk ) 

) 

= 0 

where k = 2 

i −1 . (12) 

We are interested in the largest real values of �∗
Y 

and �∗
X 

that

atisfy Eqs. (11) and (12) , respectively. If �∗
Y > �∗

X , then the asyn-

hronous phenotype outcompetes the synchronous phenotype. If
∗
Y 

< �∗
X 
, then the synchronous phenotype outcompetes the asyn-

hronous phenotype. If �∗
Y 

= �∗
X 
, then the asynchronous and syn-

hronous phenotypes coexist. 

.5. Weak selection 

We can further consider the simplified case in which βk = 1 +
(δβk ) and γk = 1 + ε(δγk ) , where 0 < ε � 1. Accordingly, we have
∗
Y 

= 1 + ε(δ�∗
Y 
) and �∗

X 
= 1 + ε(δ�∗

X 
) . With these substitutions,

q. (11) becomes 

(δ�∗
Y ) 

n ∑ 

i =1 

1 

i 
+ 

n −1 ∑ 

i =1 

i 

i + 1 

( δβi ) −
n ∑ 

i =1 

(δβi ) = 0 . 

e can solve explicitly for δ�∗
Y 

: 

�∗
Y = 

∑ n −1 
i =1 

1 
i +1 

(δβi ) + (δβn ) ∑ n 
i =1 

1 
i 

. (13) 

lso, Eq. (12) becomes 

(δ�∗
X ) 

(
1 + 

log 2 n 

2 

)
+ 

1 

2 

log 2 n ∑ 

i =1 

δγk −
1+ log 2 n ∑ 

i =1 

δγk = 0 where 

k = 2 

i −1 . 

e can solve explicitly for δ�∗
X 

: 

�∗
X = 

∑ log 2 n 

i =1 
(δγk ) + 2(δγn ) 

2 + log 2 n 

where k = 2 

i −1 . (14)

f δ�∗
Y > δ�∗

X , then the asynchronous phenotype outcompetes the

ynchronous phenotype. If δ�∗
Y 

< δ�∗
X 
, then the synchronous phe-

otype outcompetes the asynchronous phenotype. If δ�∗
Y 

= δ�∗
X 
,

hen the asynchronous and synchronous phenotypes coexist. 

.5.1. Particular case 

As an example, consider � β = 

�
 γ as a monotonically increasing

unction of the number of cells, k , in a k -complex. For 0 < ε � 1,

ne possibility is: 

k = βk = αk = 1 + ε

(
k − 1 

n − 1 

)c 

. (15)

or the particular choice of � α given by Eq. (15) , and for n = 4 ,

he parameter c can be thought of as interpolating between the

ases (α1 , α2 , α3 , α4 ) = (1 , 1 + ε, 1 + ε, 1 + ε) in the limit c → 0

nd (α1 , α2 , α3 , α4 ) = (1 , 1 , 1 , 1 + ε) in the limit c → ∞ , which fa-

ilitates comparison with the results described above. 

For this example, we restrict our attention to positive values

f ε, which ensures that multicellularity evolves in the first place.

or sufficiently small values of c, αk is a concave function of k , and

ne might expect evolution of asynchronous cell division, while for

ufficiently large values of c, αk is a convex function of k , and one

ight expect evolution of synchronous cell division. Is there a crit-

cal value of c above which the synchronous phenotype becomes

referred over the asynchronous phenotype? 
Using Eq. (13) , we have 

�∗
Y = 

1 
3 

(
1 
3 

)c + 

1 
4 

(
2 
3 

)c + 1 

1 + 

1 
2 

+ 

1 
3 

+ 

1 
4 

. 

sing Eq. (14) , we have 

�∗
X = 

(
1 
3 

)c + 2 

4 

. 

etting δ�∗
Y 

= δ�∗
X 

and simplifying, we can solve implicitly for the

ritical value of c : 

 

(
2 

3 

)c 

= 3 

(
1 

3 

)c 

+ 

2 

3 

(16) 

The numerical solution of Eq. (16) is c ≈ 4.32. If c � 4.32, then

he asynchronous phenotype wins over the synchronous pheno-

ype. If c � 4.32, then the synchronous phenotype wins over the

synchronous phenotype. Thus, for n = 4 , αk must increase very

harply with k around k = 4 for synchronization of cell division

imes to evolve. 

. Discussion 

We have studied a population model in which there compete

imple multicellular organisms that grow by either synchronous

r asynchronous cell division. We have shown that, under certain

onditions, selection favors the synchronous phenotype. The basic

ntuition is that an organism growing by synchronous cell division

ypasses certain sizes in terms of cell number—specifically, those

hat are not a power of 2—and if these bypassed sizes are rela-

ively unproductive, then synchronous cell division can be favored.

More specifically, the effect of synchrony is to alter the fre-

uencies of the various organism sizes in the population’s steady-

tate distribution, which, in general, alters the population’s growth

ate in steady state. If the fitness of a k -complex, αk , is equal

o 1 for all k , then there is neutrality between the synchronous

nd asynchronous phenotypes. But the case αk = 1 for all k is

ongeneric. For example, for n = 4 , we have demonstrated that if

�
 = (1 , 1 , 1 , 1 + ε) with 0 < ε � 1, then synchronization is the more

uccessful phenotype. The intuition is that, in steady state, 1/2 of

ll synchronously dividing cells belong to 4-complexes, while only

2/25 of all asynchronously dividing cells belong to 4-complexes.

o a greater fraction of cells of the synchronous phenotype exhibit

n enhanced fitness 1 + ε compared with the asynchronous phe-

otype, and synchronization in this setup is favored. An intriguing

ossibility is that solitary cells are less fit than clusters of any size

reater than one, i.e., � α = (1 − ε, 1 , 1 , 1) for 0 < ε � 1. The same in-

uition applies: In steady state, 1/4 of all synchronously dividing

ells are solitary, while only 6/25 of all asynchronously dividing

ells are solitary. So a greater fraction of cells of the synchronous

henotype exhibit a reduced fitness 1 − ε compared with the asyn-

hronous phenotype, and asynchronization in this setup is favored.

Therefore, importantly, the evolutionary success of synchrony

ver asynchrony does not require unrealistic situations where, for

xample, organisms of sizes 2, 4, and 8 cells are very efficient at

roducing new cells but organisms of sizes 3, 5, 6, and 7 cells

re inefficient. The relative efficiency of synchrony can in fact be

nsured under sensible specifications of the efficiency of different

rganism sizes, for example, the monotonically increasing convex

pecification in Eq. (15) . Many other realistic specifications can be

magined. For example, if the benefit to multicellularity is that it

educes the diffusion of heat or some chemical out of the complex

y increasing the ratio of volume to surface area, then the fitness

dvantage of multicellularity would seem to grow with complex

ize k according to this ratio, viz. αk ∼ k 1/3 . For the case αk = k 1 / 3 ,

or both n = 4 and n = 8 , numerical solutions of Eqs. (11) and
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(12) reveal that the asynchronous phenotype is more successful

than the synchronous phenotype. 

The evolutionary success of synchrony over asynchrony also

does not depend on the assumption of exponentially distributed

waiting times between reproduction events, as has been consid-

ered here. For example, there could be a minimum time between

creation of a new cell and reproduction by that cell ( Iwasaki and

Innan, 2017; Neagu et al., 2018; Smith and Martin, 1973 ), and

whether cells divide synchronously or asynchronously will still af-

fect the steady-state distribution of complex sizes. To demonstrate

this, we consider a simple model of synchronous and asynchronous

cell division in discrete time in Appendix B . 

A possible consideration is that synchronous cell division, what-

ever its benefits in principle, is in practice difficult to achieve. But

many instances of synchronized cell division can be found in na-

ture. Early development in animals is characterized by rapid syn-

chronous cell divisions [for example, the first 11 or 12 cell divisions

of Xenopus embryos are synchronous ( Newport and Kirschner,

1982; Satoh, 1977 )]. In Xenopus , these synchronous early cell di-

visions are the result of clock-like cycles of activation and inactiva-

tion of the kinase protein Cdc2, driven by an autonomous negative-

feedback loop between cyclin synthesis (which activates Cdc2) and

the anaphase-promoting complex ( Murray and Kirschner, 1989;

Pomerening et al., 2005 ). This indicates that synchronous cell divi-

sions in a multicellular organism are quite possible and suggests a

mechanism by which they may be achieved: biochemical negative-

feedback loops. (Later cell divisions of an animal embryo are not

synchronous, as it undergoes gastrulation and tissue differentia-

tion, but these are stages that would not characterize the simple,

undifferentiated, multicellular organisms we have modeled.) 

Moreover, synchronously dividing cultures of bacteria and other

microbes have been produced experimentally by first enforcing a

stationary phase in which cells undergo no new rounds of cell

division, and then suddenly inducing cell divisions by enriching

the environment of the culture. Several subsequent rounds of cell

division are then approximately synchronous across the culture

( Cutler and Evans, 1966 ). This suggests that basing cell division on

an approximately periodic intracellular cue could lead to synchrony

in the early cell divisions of a multicellular organism, as required

by our model. For example, if DNA replication is continuous, then

it can lead to synchronized cell divisions if it proceeds at an ap-

proximately constant speed across cells. Alternatively, if cell vol-

umes grow at an approximately constant speed across cells, then

the use of a certain threshold cell volume as the signal to divide

would lead to approximate synchrony in cell divisions. Selection

in favor of synchronous cell divisions, the conditions for which we

have studied, could then lead to reliance on as precisely periodic a

cue as possible, or even the entrainment of some cue onto a peri-

odic cycle. 

A crucial question is how synchrony might be selected for in a

stochastic setting ( Weber et al., 2014; Zilman et al., 2010 ). Without

external control, even a cell division cycle with a small variance in

division times would eventually result in an asynchronously divid-

ing population. It is therefore natural to ask how narrow the distri-

bution in cell division times must be for synchronous reproduction

to be evolutionarily favored in certain cases. We leave these im-

portant investigations for future work. 
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ppendix A. Exponentially distributed waiting times 

Consider that A and B are two independent Poisson processes

 Papoulis, 1984; Pfeiffer and Schum, 1973 ). The mean waiting time

or occurrence of event A is 1/ K , and the mean waiting time for

ccurrence of event B is 1/ L . The distribution of waiting times, T A ,

or occurrence of event A, p(T A = t) , and the distribution of wait-

ng times, T B , for occurrence of event B, p(T B = t) , are given by 

p(T A = t) = K e −Kt 

p(T B = t) = L e −Lt 

he probability that the waiting time for occurrence of event A is

ot less than t, P ( T A ≥ t ), and the probability that the waiting time

or occurrence of event B is not less than t, P ( T B ≥ t ), are given by 

P (T A ≥ t) = 1 −
∫ t 

0 

ds p(T A = s ) = e −Kt 

P (T B ≥ t) = 1 −
∫ t 

0 

ds p(T B = s ) = e −Lt 

he distribution of waiting times, T A ∪ B , for occurrence of either

vent A or event B is then 

p(T A ∪ B = t) = p(T A = t) P (T B ≥ t) + p(T B = t) P (T A ≥ t) 

= (K + L ) e −(K+ L ) t 

e thus arrive at a basic property of the Poisson process: If the

ean waiting time for occurrence of event A is 1/ K and the mean

aiting time for occurrence of event B is 1/ L , then the mean wait-

ng time for occurrence of either event A or event B is 1 / (K + L ) . 

This is the rationale behind the entries in the matrices on the

ight-hand sides of Eqs. (1) and (5) . For example, if a complex con-

ains two cells, and if division of each of those cells occurs inde-

endently at rate 1, then the rate at which either of those cells

ivides to form a 3-complex is equal to 2. As another example, if a

omplex contains three cells, and if division of each of those cells

ccurs independently at rate 1, then the rate at which any one of

hose cells divides to form a 4-complex is equal to 3. 

ppendix B. Discrete time 

In the main text, we only consider dynamics in continuous

ime. Here, we briefly investigate asynchronous and synchronous

ell division for n = 4 in discrete time. 

First, consider asynchronous cell division in discrete time. At

ach time step, a solitary cell divides with probability P 1 , each cell

f a 2-complex divides independently with probability P 2 , each cell

f a 3-complex divides independently with probability P 3 , and each

ell of a 4-complex divides independently with probability P 4 . If a

olitary cell does not divide (with probability 1 − P 1 ), then it re-

ains a solitary cell. If a solitary cell divides (with probability P 1 ),

hen it becomes a 2-complex. If neither cell of a 2-complex di-

ides (with probability (1 − P 2 ) 
2 ), then the 2-complex remains a

-complex. If one of the cells of a 2-complex divides while the

ther does not (with probability 2 P 2 (1 − P 2 ) ), then the 2-complex

ecomes a 3-complex. If both cells of a 2-complex divide (with

robability P 2 2 ), then the 2-complex becomes a 4-complex. If none

f the cells of a 3-complex divide (with probability (1 − P ) 3 ), then
3 

https://doi.org/10.13039/100000006
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he 3-complex remains a 3-complex. If at least one of the cells of

 3-complex divides (with probability 1 − (1 − P 3 ) 
3 ), then the 3-

omplex becomes a 4-complex. If two of the cells of a 3-complex

ivide (with probability 3 P 2 
3 
(1 − P 3 ) ), then one additional solitary

ell is produced. If all three of the cells of a 3-complex divide

with probability P 3 
3 

), then two additional solitary cells are pro-

uced. Therefore, the corresponding matrix element for production

f solitary cells by 3-complexes is 3 P 2 3 (1 − P 3 ) + 2 P 3 
3 

= P 2 3 (3 − P 3 ) .

-complexes do not become any larger, and since each cell of a

-complex divides independently with probability P 4 , the corre-

ponding matrix element for production of solitary cells by 4-

omplexes is 4 P 4 . 

The dynamics of asynchronous cell division are therefore speci-

ed by 
 

 

 

A 1 ( n + 1 ) 
A 2 ( n + 1 ) 
A 3 ( n + 1 ) 
A 4 ( n + 1 ) 

⎞ 

⎟ ⎠ 

= 

1 

D A 

(→ 

P ;
→ 

A 

( n ) 

)

×

⎛ 

⎜ ⎝ 

1 − P 1 0 P 2 3 ( 3 − P 3 ) 4 P 4 
P 1 ( 1 − P 2 ) 

2 0 0 

0 2 P 2 ( 1 − P 2 ) ( 1 − P 3 ) 
3 0 

0 P 2 2 1 − ( 1 − P 3 ) 
3 1 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

A 1 ( n ) 
A 2 ( n ) 
A 3 ( n ) 
A 4 ( n ) 

⎞ 

⎟ ⎠ 

. (B.1) 

n Eq. (B.1) , D A 

(
�
 P ; � A (n ) 

)
is chosen such that A 1 (n ) + 2 A 2 (n ) +

 A 3 (n ) + 4 A 4 (n ) = 1 for all n . We have 

 A 

(→ 

P ;
→ 

A 

( n ) 

)
= 

(
1 2 3 4 

)

×

⎛ 

⎜ ⎝ 

1 − P 1 0 P 2 3 ( 3 − P 3 ) 4 P 4 
P 1 ( 1 − P 2 ) 

2 0 0 

0 2 P 2 ( 1 − P 2 ) ( 1 − P 3 ) 
3 0 

0 P 2 2 1 − ( 1 − P 3 ) 
3 1 

⎞ 

⎟ ⎠ 

⎛ 

⎜ ⎝ 

A 1 ( n ) 
A 2 ( n ) 
A 3 ( n ) 
A 4 ( n ) 

⎞ 

⎟ ⎠ 

. (B.2) 

Next, consider synchronous cell division in discrete time. At

ach time step, a solitary cell divides with probability P 1 , both cells

f a 2-complex divide simultaneously with probability P 2 , and all

our cells of a 4-complex divide simultaneously with probability

 4 . If a solitary cell does not divide (with probability 1 − P 1 ), then

t remains a solitary cell. If a solitary cell divides (with probability

 1 ), then it becomes a 2-complex. If both cells of a 2-complex do

ot divide (with probability 1 − P 2 ), then the 2-complex remains

 2-complex. If both cells of a 2-complex divide (with probabil-

ty P 2 ), then the 2-complex becomes a 4-complex. 4-complexes do

ot become any larger, and since all four cells of a 4-complex di-

ide simultaneously with probability P 4 , the corresponding matrix

lement for production of solitary cells by 4-complexes is 4 P 4 . 

The dynamics of synchronous cell division are therefore speci-

ed by 

 

S 1 (n + 1) 
S 2 (n + 1) 
S 4 (n + 1) 

) 

= 

1 

D S 

(
�
 P ; � S (n ) 

)
( 

1 − P 1 0 4 P 4 
P 1 1 − P 2 0 

0 P 2 1 

) ( 

S 1 (n ) 
S 2 (n ) 
S 4 (n ) 

) 

. 

(B.3) 

n Eq. (B.3) , D S 

(
�
 P ; � S (n ) 

)
is chosen such that S 1 (n ) + 2 S 2 (n ) +

 S 4 (n ) = 1 for all n . We have 

 S 

(
�
 P ; � S (n ) 

)
= 

(
1 2 4 

)( 

1 − P 1 0 4 P 4 
P 1 1 − P 2 0 

0 P 2 1 

) ( 

S 1 (n ) 
S 2 (n ) 
S 4 (n ) 

) 

. 

(B.4) 

For asynchronously dividing cells, we use D 

∗
A 
( � P ) to denote the

opulation fitness when A k (n + 1) = A k (n ) for all k . (Notice that

 

∗
A 
( � P ) is equal to the largest real eigenvalue of the matrix on

he right-hand side of Eq. (B.1) , and this quantity represents the
rowth rate of the population (if we neglect death of cells) when

hat matrix multiplies the vector of complex frequencies. A higher

rowth rate then requires a larger compensating value of D 

∗
A 
( � P ) in

rder to keep the population size constant. As such, D 

∗
A 
( � P ) can be

iewed as an overall death rate due to overcrowding.) Similarly, for

ynchronously dividing cells, we use D 

∗
S 
( � P ) to denote the popula-

ion fitness when S k (n + 1) = S k (n ) for all k . 

Suppose that we have a mixed population of cells with the syn-

hronously and asynchronously dividing phenotypes. Notice that

here is competitive exclusion. If D 

∗
S 

< D 

∗
A 
, then asynchronously di-

iding cells outcompete synchronously dividing cells. If D 

∗
S > D 

∗
A 
,

hen synchronously dividing cells outcompete asynchronously di-

iding cells. If D 

∗
S 

= D 

∗
A 
, then synchronously and asynchronously di-

iding cells can coexist. 

From Eqs. (B.2) and (B.4) , for the particular case P 1 = P 2 = P 3 =
 4 = p, we have D 

∗
S 
(p, p, p, p) = D 

∗
A 
(p, p, p, p) = 1 + p, and there is

eutrality between the synchronously and asynchronously dividing

henotypes. But the case P 1 = P 2 = P 3 = P 4 = p is nongeneric. What

appens if the P k are not all equal? 

To understand the effect of P k on the evolutionary dynam-

cs, we consider a couple of simple cases. First, we consider

he case (P 1 , P 2 , P 3 , P 4 ) = (1 / 2 , 1 / 2 , 1 / 2 , p ′ ) . The difference be-

ween the steady-state growth rates of the synchronously and

synchronously dividing subpopulations, D 

∗
S (1 / 2 , 1 / 2 , 1 / 2 , p ′ ) and

 

∗
A 
(1 / 2 , 1 / 2 , 1 / 2 , p ′ ) , respectively, is plotted in Fig. B.1 A. If p ′ =

 / 2 , then D 

∗
S 
(1 / 2 , 1 / 2 , 1 / 2 , p ′ ) and D 

∗
A 
(1 / 2 , 1 / 2 , 1 / 2 , p ′ ) are exactly

qual, as already noted. If p ′ < 1/2, then D 

∗
S (1 / 2 , 1 / 2 , 1 / 2 , p ′ ) <

 

∗
A 
(1 / 2 , 1 / 2 , 1 / 2 , p ′ ) , and asynchronously dividing cells outcom-

ete synchronously dividing cells. But if p ′ < 1/2, then a soli-

ary phenotype would outcompete the staying-together pheno-

ype, and there would be no formation of clusters in the first

lace. If p ′ > 1/2, then D 

∗
S 
(1 / 2 , 1 / 2 , 1 / 2 , p ′ ) > D 

∗
A 
(1 / 2 , 1 / 2 , 1 / 2 , p ′ ) ,

nd synchronously dividing cells outcompete asynchronously di-

iding cells. Thus, for p ′ > 1/2, multicellularity with synchronized

ell division evolves. 

The intuition for this result is similar to that for dynamics in

ontinuous time. To develop insight, we return to the simple case

(P 1 , P 2 , P 3 , P 4 ) = (1 / 2 , 1 / 2 , 1 / 2 , p ′ ) with p ′ = 1 / 2 . In steady state,

hat fraction of the total number of cells in the synchronously and

synchronously dividing subpopulations belong to 4-complexes? 

or the synchronous phenotype, exactly 1/2 of all cells belong to

-complexes in steady state. For the asynchronous phenotype, ex-

ctly 100/223 ( < 1/2) of all cells belong to 4-complexes in steady

tate. The fraction of cells that belong to 4-complexes—and are

herefore affected by small changes in p ′ —is larger for the syn-

hronous phenotype. This suggests that, if p ′ differs from 1/2 by

 small amount, then the corresponding effect on the population’s

tness—either positive or negative—is amplified for synchronously

ividing cells. 

For example, if p ′ = 1 / 2 + ε with 0 < ε � 1, then approximately

/2 of all synchronously dividing cells produce new cells with a

igher probability 1 / 2 + ε, while only approximately 100/223 of

ll asynchronously dividing cells produce new cells with the same

igher probability 1 / 2 + ε. In this case, synchronization is the more

uccessful phenotype. If, instead, p ′ = 1 / 2 − ε with 0 < ε � 1, then

pproximately 1/2 of all synchronously dividing cells produce new

ells with a lower probability 1 / 2 − ε, while only approximately

00/223 of all asynchronously dividing cells produce new cells

ith the same lower probability 1 / 2 − ε. In this case, asynchro-

ization is the more successful phenotype. 

Similarly to the dynamics in continuous time, for different

alues of ( P 1 , P 2 , P 3 , P 4 ), the asynchronous phenotype can out-

ompete the synchronous phenotype, under conditions in which

ulticellularity will evolve. Consider the steady-state distribu-

ions of k -complexes for the case (P 1 , P 2 , P 3 , P 4 ) = (1 / 2 , p ′ , p ′ , p ′ )
ith p ′ = 1 / 2 . What fraction of all cells in the synchronous and
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Fig. B.1. The difference in the steady-state fitnesses of the synchronously and asynchronously dividing subpopulations is shown for two choices of � P for n = 4 . The dynamics 

are in discrete time. When multicellularity is selected for ( p ′ > 1/2 in this figure), synchronization of cell divisions is the more successful phenotype in some cases (A), and 

asynchronization in others (B). 
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asynchronous subpopulations belong to k -complexes of size k ≥ 2?

In steady state, 3/4 of all synchronously dividing cells belong to

complexes with at least 2 cells, while 168/223 ( > 3/4) of all asyn-

chronously dividing cells belong to complexes with at least 2 cells.

Therefore, we anticipate that, for the fitness values (P 1 , P 2 , P 3 , P 4 ) =
(1 / 2 , p ′ , p ′ , p ′ ) , and for p ′ = 1 / 2 + ε with 0 < ε � 1, the asyn-

chronous phenotype is more successful, and multicellularity is also

evolutionarily preferred over the solitary phenotype. 

The difference between the steady-state growth rates of

the synchronously and asynchronously dividing subpopulations,

D 

∗
S 
(1 / 2 , p ′ , p ′ , p ′ ) and D 

∗
A 
(1 / 2 , p ′ , p ′ , p ′ ) , respectively, is plotted in

Fig. B.1 B. Our expectation is correct: If p ′ < 1/2, then the syn-

chronous phenotype outcompetes the asynchronous phenotype,

but a solitary phenotype would also outcompete a staying-together

phenotype, and there would be no formation of clusters. If p ′ > 1/2,

then the asynchronous phenotype outcompetes the synchronous

phenotype, and evolutionary construction develops. 
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