
Lu et al. J Nanobiotechnol          (2021) 19:115  
https://doi.org/10.1186/s12951-021-00799-3

RESEARCH

A dual‑targeting ruthenium nanodrug 
that inhibits primary tumor growth and lung 
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Abstract 

Background:  Many studies have found that ruthenium complexes possess unique biochemical characteristics and 
inhibit tumor growth or metastasis.

Results:  Here, we report the novel dual-targeting ruthenium candidate 2b, which has both antitumor and antimeta-
static properties and targets tumor sites through the enhanced permeability and retention (EPR) effect and transfer-
rin/transferrin receptor (TF/TFR) interaction. The candidate 2b is composed of ruthenium-complexed carboline acid 
and four chloride ions. In vitro, 2b triggered DNA cleavage and thus blocked cell cycle progression and induced apop-
tosis via the PARP/ATM pathway. In vivo, 2b inhibited not only Lewis lung cancer (LLC) tumor growth but also lung 
metastasis. We detected apoptosis and decreased CD31 expression in tumor tissues, and ruthenium accumulated in 
the primary tumor tissue of C57BL/6 mice implanted with LLC cells.

Conclusions:  Thus, we conclude that 2b targets tumors, inhibits tumor growth and prevents lung metastasis.
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Background
Metal-based antitumor drugs, such as cisplatin, have 
been extensively studied over the past few decades [1]. 
Research shows that ruthenium complexes inhibit tumor 
growth or metastasis due to their unique biochemical 
characteristics [2–10]. In a phase I clinical study, NAMI-
A inhibited lung metastasis [11–13] and generation of 
peripheral blood vessels in tumor tissues [14, 15] but did 
not suppress primary tumor growth.

Carboline alkaloid is an active ingredient extracted 
from traditional Chinese medicine. Our group has con-
ducted in-depth research on its antitumor and other 
activities [16, 17]. Many studies have combined carboline 

and its derivatives with ruthenium to obtain a series 
of antitumor active compounds [18–22]. However, 
these complexes have not been reported to inhibit lung 
metastasis.

Although platinum (IV) prodrugs have great poten-
tial to kill tumor cells and reduce side effects [23, 24], 
few studies have focused on ruthenium (IV) complexes. 
Vilaplana et  al. [25] designed and synthesized the first 
ruthenium (IV) complex with antitumor effects. The 
cytotoxic complex was likely transported into tumor sites 
via transferrin (TF) because halides are easily replaced at 
the TF binding site [26]. TF is a glycoprotein that con-
trols the extracellular iron level. TF reversibly binds poly-
valent ions, including iron, copper, cobalt, and ruthenium 
[27]. Transferrin receptors (TFRs) are expressed in both 
normal and cancer tissues. However, TFR expression in 
cancer cells can be 100-fold higher than that in normal 
cells [28, 29].
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Our aim was to obtain a dual-targeted ruthenium com-
plex with both antitumor and antimetastatic proper-
ties. This complex targets tumor sites through both the 
enhanced permeability and retention (EPR) effect and 
TF/TFR interaction. We designed and synthesized the 
ruthenium complex 2b (ruthenium (IV)) (Fig. 1a). To test 
the hypothesis that chloridion plays an important role 
in tumor-targeting therapy, complex 2a (ruthenium (II)) 
was synthesized to be used for comparison. In vitro, we 
compared the cytotoxic effects of ligand 2 and complexes 
2a and 2b on various cancer cell types and normal cells 
using MTT assays. We determined the self-assembly 
and interaction of 2b with DNA and TF to explore dual-
targeting functions. We also determined the localization 
of ruthenium via inductively coupled plasma mass spec-
trometry (ICP-MS), protein expression in A549 cancer 
cells via western blotting, and effects of 2b on apopto-
sis and the cell cycle to further explain its mechanism. 
In vivo, we evaluated the effects of 2b on primary tumor 
growth and lung metastasis in C57BL/6 mice implanted 
with Lewis lung carcinoma (LLC) cells. We also assessed 
apoptosis in tumor tissues via terminal deoxynucleotidyl 
transferase dUTP nick end labeling (TUNEL) and plate-
let endothelial cell adhesion molecule-1 (CD31) expres-
sion via immunohistochemistry.

Results
Characterization and nanoscale self‑assembly properties 
of Ru(IV) complexes
We deduced the compound structures (Fig.  1a) from 
the characterization information obtained from mass 
spectroscopy (MS), Fourier-transform infrared spectros-
copy (FTIR), and 1H NMR and 13C NMR spectroscopy 
(Additional file 1). The NMR spectra and FTIR data indi-
cated coordination of ligand 2 to the metal precursor. A 
slight downfield shift was observed compared to ligand 
2, which was consistent with results reported in the lit-
erature [30]. In addition, the peaks in the FTIR spectrum 
moved to the low wavenumber region. Specifically, the 
peak at 1720 cm−1 (υC=O) in the FTIR spectrum of ligand 
2 shifted to 1621  cm−1 and changed to a broad peak in 
the FTIR spectrum of complex 2b. The final complexes 
were characterized using mass spectra.

Complexes 2a and 2b were air stable and water soluble, 
while the carboline derivative 2 was only slightly water 
soluble (Photographs of the compound aqueous solution 
are shown in Additional file 1: Figure S14). This indicates 
that the addition of ruthenium increased the water solu-
bility of the complexes.

We first simulated the self- assembly of complex 2b 
using a Materials Studio molecular dynamics simula-
tion technique and found that 2b formed a spherical 
structure (Fig.  1a). Next, we compared the nanoscale 

self-assembly properties of ligand 2 and complex 2b from 
three aspects: shape and size were observed via transmis-
sion electron microscopy (TEM) and scanning electron 
microscopy (SEM) (Fig. 1b, c), the average hydrodynamic 
diameters were measured with a dynamic light-scatter-
ing (DLS) analyzer (Fig.  1d), and the zeta potential was 
determined over 96  h (Fig.  1e). TEM and SEM images 
showed that both 2 and 2b have a spherical structure; the 
diameter of 2b is approximately 50 nm; that of ligand 2 
is larger, at approximately 300 nm. The average hydrody-
namic diameters of 2b and 2 are approximately 100 nm 
and 400–600 nm, respectively. We think that the smaller 
particle size of the 2b nanoparticles is associated with an 
increase in solubility and that the addition of hydrophilic 
charged groups further increases solubility in water [31, 
32]. The particle size in solution was found to be slightly 
larger than that in the solid state and changed slightly at 
different pH values.

The zeta potential of 2b essentially remained stable 
for 96 h, while the zeta potential of 2 gradually fell to 0 
within 96 h. This indicates that the 2b nanoparticles were 
stable and dispersed in aqueous solution over 96 h. The 
zeta potential of 2 and 2b are approximately − 10  mV 
and − 15  mV, respectively, at pH 7.0. The negative zeta 
potential is likely due to the negative charge of the COO− 
groups [33]. As the pH decreased, the zeta potential of 2b 
changed slightly but that of 2 decreased substantially. At 
a low pH of 2.0, 2 even showed a positive zeta potential 
but showed negative zeta potentials at higher pH values. 
This is consistent with previous nanoparticle studies [34, 
35].

Human transferrin (hTF) binding
We studied the binding ability of human transferrin (hTF) 
to complex 2b by measuring fluorescence quenching of 
hTF [7, 27, 36]. With the addition of the Ru complexes, 
the tryptophan fluorescence peak (315  nm) decreased, 
whereas the fluorescence peak (450  nm) of complex 2b 
increased (Fig. 1g). We calculated several constants rep-
resenting the binding ability measured at 315 nm: Stern–
Volmer quenching constant (Ksv, L mol−1), biomolecular 
quenching rate constant (Kq, L  mol−1  s−1), binding con-
stant (Kb, L    mol−1) and the number of binding sites (n) 
(Table 1). The Kq value (Table 1) suggested that the fluo-
rescence quenching process was static. The number of 
binding sites n and binding constant Kb (Table  1) indi-
cated that complex 2b could bind stably to hTF.

The FTIR spectrum of hTF in the presence of complex 
2b clearly confirmed binding of hTF to 2b (Additional 
file 1: Figure S14). Upon addition of complex 2b, the peak 
of hTF at 1560 cm−1 shifted to higher wavenumbers and 
reached 1593  cm−1, with an increase in the 2b content 
and thus a decrease in the hTF/2b ratio. The hTF peak 
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Fig. 1  Physicochemical characterization of 2b. a Structure of 2 and 2b and mesoscale simulation of 2b. b TEM image of the Ru ligand 2 (up) and 
complex 2b (down). c SEM image of the Ru ligand 2 (up) and complex 2b (down). d Size of 2 (up) and 2b (down) at different pH values. e Zeta 
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equation and modified Stern–Volmer equation plots showing tryptophan quenching in hTF
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at 3442  cm−1 also shifted to higher wavenumbers and 
reached 3499 cm−1.

DNA binding
Using ultraviolet–visible (UV) spectroscopy quenching 
of 2b, we studied the ability of DNA to bind to complex 
2b [37]. With the addition of circulating tumor DNA 
(ctDNA) in PBS (pH 7.4), the UV absorption curve of 2b 
(12.5 μM) in solution decreased (Fig. 2f ). We calculated 
the binding constant of 2b with ctDNA to be 1.0 × 105. 
The interaction between DNA and complex 2b was also 
confirmed by FTIR spectra. Both peak I and II shifted to 
lower wavenumbers upon the 2b addition.

In vitro cytotoxicity study
We evaluated the effects of 2, 2a, 2b and NAMI-A on 
four lung cancer cell lines (LLC, 95D, A549-TAX and 
A549), a mouse sarcoma cell line (S180) and a nor-
mal liver cell line (L02; IC50 values in Additional file  1: 
Table  S1). As reported in the literature [14], NAMI-A 
exhibited no cytotoxic effects in vitro, and in all cell lines, 
the IC50 was more than 100  μM. 2b had similar effects 
on LLC, 95D and A549-TAX cancer cells, and the IC50 
values were all approximately 50–60 μM (Fig. 2a–c). The 
killing effect of 2b on A549 cells was better than that on 
the other cancer cell lines; the IC50 of 2b in A549 cells 
was 10–20 μM (Fig. 2d), which was 4–5 times more effec-
tive than that in the other three cancer cell lines. In addi-
tion, 2b killed more cancer cells within the same time 
than ligand 2 (Additional file 1: Table S1). Consequently, 
we chose A549 cells to observe the shape of cells in the 
control and administration groups (Fig.  2e). The figures 
show that A549 cells were fusiform under normal con-
ditions, while the cells treated with 2b decreased in size 
and became round.

Cellular uptake
We chose A549 cells to study the distribution of 2b in 
cells [38–41]. According to the manufacturer’s instruc-
tions, we separated the nuclei and mitochondria via cen-
trifugation and detected the ruthenium content using 
ICP-MS (Fig.  2f ). The results showed that ruthenium 
was mainly concentrated in the nucleus, with a nuclear 
content more than twice as high as the mitochondrial 
content.

Effect on protein expression in A549 cells
We determined the expression levels of a series of pro-
teins, including cleaved poly (ADP-ribose) polymer-
ase (PARP), cleaved caspase 3, ataxia-telangiectasia 
mutated (ATM), gamma H2A histone family member X 
(γ-H2A.X), CDK1 and programmed cell death 1 ligand 
1 (PDL1), in A549 lung cancer cells via western blotting 
[20, 21] (Fig. 2g, h). Compared with that in the normal 
group, cleaved PARP and cleaved caspase 3 expression 
increased significantly after incubation with 2b; ATM, 
γ-H2A.X and CDK1 expression decreased in a concen-
tration-dependent manner. No significant differences 
were observed between the high dose of 2b and cispl-
atin in the expression of these proteins. On the other 
hand, 2b also decreased expression of the immuno-
suppressive-related protein PDL1, suggesting that 2b 
enhances the response of tumor cells to immune cells.

The cell cycle and apoptosis
We studied the effect of 2b on the cell cycle using flow 
cytometry [7, 22]. Cells were divided into G0/G1, S, 
and G2/M phases according to the fluorescence inten-
sity of propidium iodide (PI). With an increasing con-
centration of 2b, the number of cells in G0/G1 phase 
decreased gradually, whereas the number of cells in 
G2/M phase increased gradually; the number of cells 
in S phase did not change significantly. Hence, we con-
cluded that 2b is able to stall cells in G2/M phase.

We grouped the cells and determined the proportion 
of apoptotic cells (Q2 and Q4 areas) according to the 
fluorescence intensity of Annexin V-fluorescein iso-
thiocyanate (FITC; Fig. 3c, d). With an increase in the 
concentration of 2b, the number of cells in Q2 and Q4 
gradually increased. We also observed apoptotic cells 
using laser confocal microscopy (Fig. 3e). The cell mem-
branes of apoptotic cells were dyed red with Annexin 
V-phycoerythrin (PE), and the color of the nuclei was 
darker and brighter than that of normal cells. Thus, 2b 
appeared to cause apoptosis.

Effect on tumor growth and metastasis in vivo
We studied the effect of 2b on primary tumor growth 
and lung metastasis in C57BL/6 mice implanted with 
LLC cells [13, 42]. Figure  4a, b show that the volume 
and weight of the primary tumors decreased in the 
mice receiving 5.0  mg/kg and 2.5  mg/kg 2b and with 
increasing administration concentrations of 2b. Fig-
ure  4c, d shows that the number of lung metastases 
decreased in the mice receiving 5.0 mg/kg and 2.5 mg/
kg 2b compared with the control group. No significant 
differences were observed between NAMI-A (35.0 mg/

Table 1  The constant of Ksv, Kq, Kb and the number of binding 
sites (n) for 2b and hTF

Ksv * 105 
(L mol−1)

Kq * 1013 
(L mol−1 s−1)

Number of 
binding sites 
(n)

Kb * 105 
(L mol−1)

2b 1.09 1.89 1.1 3.97
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kg) and 2b (5.0  mg/kg) in inhibiting primary tumor 
growth and lung metastasis.

Organ weight and body distribution
Platinum agents can decrease organ weights [1]. The 
weights of the liver, kidney and spleen from mice treated 
with cisplatin were significantly lower than those of 

organs from mice in the vehicle group (Additional file 1: 
Figure S11). However, organ weights in the 2b treatment 
groups and the vehicle group were not significantly dif-
ferent. We also determined the distribution of 2b in the 
organs of C57BL/6 mice [43]. Figure  4e shows that the 
ruthenium content in the kidney and tumor was approxi-
mately two to threefold higher than that in the liver and 
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spleen. This suggests that ruthenium was mainly excreted 
from the kidney and that 2b can target tumors in vivo.

Immunofluorescence and immunohistochemistry
Using TUNEL staining, we detected apoptosis induced 
by 2b in tumor tissues [44]. As shown in Fig. 5a, b, the 

number of apoptotic cells (TUNEL-positive cells) in the 
NAMI-A group and vehicle group was not significantly 
different. However, the number of apoptotic tumor 
cells in the 5.0  mg/kg 2b treatment group was sig-
nificantly increased compared with that in the vehicle 
and NAMI-A groups. This suggests that drug-induced 
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apoptosis may be one of the reasons that 2b inhibits the 
growth of LLC tumors.

As CD31 is a marker of vascular endothelial cells, we 
evaluated the neovascularization of tumors according 
to CD31 expression [11–15]. As depicted in Fig.  5c, 
d, 35  mg/kg NAMI-A reduced CD31 expression and 
thus inhibited tumor metastasis. In addition, 5.0 and 
2.5  mg/kg 2b significantly reduced CD31 expression. 
We conclude that 2b may exert its effects through 
the same mechanism as NAMI-A because they both 
inhibit tumor neovascularization to suppress tumor 
metastasis.

Anti‑angiogenesis in vitro
Capillary tube formation assays were used to assess the 
angiogenic activity of 2b [14, 45–47]. HUVECs were 
seeded into a Matrigel-coated 24-well plate and treated 
with 50 μM NAMI-A and 50 μM, 20 μM, or 10 μM 2b 
for 6 h. As shown in Fig. 5e, f, NAMI-A and 2b decreased 
tube formation at 6 h. In addition, 2b inhibited capillary 
tube formation in a dose-dependent manner.

Degradation over time and toxicity studies 
of nanoparticles in vivo
Several clinical and preclinical data have suggested that 
Ru nanoparticles can be degraded over time in the body 
and excreted from the body [48]. The Ru content in the 
blood and organs was measured via ICP-MS at 6 different 
time points after administration of 5 mg/kg 2b. At 30 min 
after administration, the Ru was distributed evenly in 
plasma and blood cells and reached a maximum plasma 
concentration at 2 h after administration, while the con-
tent in blood cells decreased to almost zero (Fig. 5h). As 
shown in Fig. 5i, the Ru content decreased gradually over 
time, indicating that the liver and kidneys continuously 
metabolized the nanoparticles. At 24  h after adminis-
tration, almost all the Ru was eliminated from the body. 
The maximum Ru concentration in tumors was reached 
after 2 h. At 4 h, the Ru was mainly detected in the tumor 
and lung, and most of the Ru in normal organs had been 
excreted.

In the toxicity study, the heart, liver, spleen and kid-
ney weights were significantly reduced in the cisplatin 
group, while the weights of organs in the 2b group did 
not change (Additional file 1: Figure S20A–E). This sug-
gests that the elimination of Ru effectively reduced tox-
icity. To further analyze the toxicity of 2b, we measured 
blood biochemical parameters and found no changes in 
serum alanine aminotransferase (ALT), aspartate ami-
notransferase (AST), blood urea nitrogen (Urea) or cre-
atinine (Crea) levels.

Discussion
The nanoscale self-assembly properties of small molecule 
drugs are important in tumor-targeting therapy [49, 50], 
and drug delivery systems based on TF/TFR are impor-
tant [51]. The dual-targeting nanoscale self-assembled 
ruthenium complex 2b was designed to compensate for 
the shortcomings of low solubility and poor targeting of 
carbolines. In vitro, we compared the cytotoxic effects of 
ligand 2 and complex 2a and 2b on different cancer cell 
types and normal cells using MTT assays. Only 2b was 
able to selectively kill cancer cells. This partially validates 
the hypothesis that chloridion plays an important role in 
tumor-targeting therapy. The introduction of chloridion 
into carbolines yields amphiphilic structures to increase 
selectivity for cells. We determined the self-assembly 
properties and protein binding characteristics of 2b to 
evaluate its targeting characteristics. 2b remained stable 
for 96 h [52]; and the size of 2b is 50–100 nm, which is 
more favorable for targeting tumors than ligand 2 based 
on the EPR effect [50]. In addition, 2b strongly bound 
to TF [27]. Because tumor tissues have more TFRs than 
normal tissues, 2b can target tumor tissues with TF as 
the vector [29, 53].

We studied the antitumor mechanism of 2b in A549 
cells (Fig.  6). MTT assays showed that 2b was able to 
kill lung cancer cells. The cell uptake assay showed that 
ruthenium was mainly concentrated in the nucleus of 
A549 cells, which indicates that the primary site of action 
of 2b is the nucleus and that 2b can bind to DNA in vitro. 
Hence, we evaluated cell cycle and apoptosis and found 
that 2b blocked cell cycle progression in G2/M phase and 
caused apoptosis. To further illustrate this mechanism, 
we detected expression of proteins in A549 cells and 
found substantial changes in cleaved caspase 3, cleaved 
PARP, ATM and CDK1 expression, whereas PDL1 
expression decreased.

For in  vivo study, we selected C57BL/C mice bearing 
LLC tumors to evaluate the antitumor and antipulmo-
nary metastasis activity of the nanodrugs. Previously, we 
determined the effect of 2b on PDL1 expression in A549 
cells. PDL1 is an immunosuppressive protein located 
on the cell membrane. Some small molecule drugs can 
inhibit PDL1 expression, thus exposing tumor cells and 
reducing immune escape of tumor cells [54]. Consider-
ing the role of PDL1, we selected C57BL/C mice bearing 
LLC tumors to evaluate its biological activity. The results 
showed that 5 mg/kg and 2.5 mg/kg 2b inhibited primary 
tumor growth and lung metastasis. Although 2b inhibited 
PDL1 expression in vitro, no changes in PDL1 expression 
in tumor tissues were detected (Additional file 1: Figure 
S12), which may be the result of changes in the genome 
of tumor cells and may be influenced by biological fac-
tors. This needs to be studied further.
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Assessment of the in  vivo distribution of ruthenium 
showed that the Ru content in tumors accounted for 
33.4% of the total content, indicating that 2b had good 
tumor targeting ability. The results of TUNEL staining 
of tumor tissue revealed obvious apoptosis in tumor 
tissue in the 5  mg/kg 2b treatment group, which was 
consistent with the in  vitro experimental results. This 
suggests that 2b may inhibit tumor growth by induc-
ing apoptosis in tumor cells in  vivo. Previous studies 
have shown that NAMI-A can reduce CD31 expres-
sion by inhibiting endothelial cell functions, thereby 
inhibiting tumor metastasis [11]. Immunohistochemi-
cal analysis of CD31 showed that CD31 expression was 
significantly lower in the 5.0  mg/kg and 2.5  mg/kg 2b 
treatment groups than in the control group. In addi-
tion, capillary tube formation assays showed that 2b 
inhibited endothelial cells from forming a capillary-
like network on Matrigel in vitro. This indicates that 2b 
might inhibit lung metastasis of tumor cells by inhibit-
ing angiogenesis.

Conclusions
The novel small molecule nanodrug candidate 2b with 
dual targeting acts through the EPR effect and TF/TFR 
interaction in A549 cancer cells and LLC tumors in C57/
BL6 mice. The advantages of the nanodrug are threefold, 
as follows. (1) The EPR effect and TF/TFR interaction 
with nanoparticles improve tumor targetability in  vivo. 
The Ru content in tumors accounted for 33.4% of the 
total content (Fig.  4e). (2) Using ruthenium nanoparti-
cles as a dual targeting drug delivery system significantly 
decreases the effective dose. The effective dose of 2b 
in  vivo was one-seventh that of NAMI-A and KP1019 
(Fig. 4b). In addition, (3) the nanodrug reduces the tox-
icity of drugs. As shown in Additional file 1: Figure S20, 
the body weight of ICR mice implanted with S180 tumors 
did not change in the 2b groups, but that in the cisplatin 
groups decreased. Furthermore, no significant changes 
in serum ALT, AST, Crea and Urea levels in comparison 
to the saline group on day 7 after 2b administration were 
found, indicating that 2b was not toxic to the mouse liver 
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or kidneys. This study provides us with a new idea for 
combining passive and active targeting that is specific to 
ruthenium complexes.

Methods
Materials and reagents
Please refer to Additional file 1 for the materials and rea-
gents used. All methods are recorded in Additional file 1 
except the indicated experiments.

Statistical analyses
Data are presented as the mean ± SD. Statistical signifi-
cance was evaluated by one-way ANOVA using Prism 7.0 
software. Significance was set at *P < 0.05; extreme signifi-
cance was set at **P < 0.01.

Nanoscale self‑assembly properties
To predict its nanostructure, we defined 2b as an amphi-
philic molecule in molecular dynamics simulations using 
Materials Studio: Carboline—nonpolar group; carboxyl 
group and chloride—polar (and charged) groups. As 
described in reference [55], in a cubic box of 20 * 20 * 20 Å, 
the model of 2b was randomly distributed with a density 
of 0.5 g cm−3. A 15 000 ps simulation was performed on 
this system at 298 K using the NVT ensemble.

To explore the nanoscale self-assembly properties of 2b 
and its ligand 2 in solution and in solid state, a DLS particle 
size analyzer, TEM and SEM were applied. The nanopar-
ticles were prepared via the self-assembly method [43, 49, 
56]. Briefly, the compounds were dissolved in dimethyl sul-
foxide (DMSO) (Sigma-Aldrich) and diluted in saline (0.9% 
NaCl) for 30 min under ultrasonic conditions.

Aqueous 2 and 2b (0.01 mg/mL, pH 7.0) were dripped 
onto a formvar-coated copper grid. After thorough 
drying in air, the copper grid was kept in the dryer for 
48 h. Then, the shape and size of the nanoparticles were 
observed with TEM and SEM. The details of this experi-
ment are described in Additional file 1.

The particle size and surface zeta potential of the par-
ticles were measured using a particle size analyzer. The 
compounds were dissolved in ultrapure water with 1% 
DMSO. The concentration of the compounds in solu-
tion was 0.01 mg/mL, and the pH of the solution was pH 
2.0, pH 5.5 or pH 7.4. The details of this experiment are 
described in Additional file 1.

In vivo experiments
Male C57BL/6 mice were purchased from Beijing Vital River 
Laboratory Animal Technology Co., Ltd. The study was 
approved by the Institutional Animal Care and Use Com-
mittee of Capital Medical University, and the ethics number 
is AEEI-2018-174. The animals were cared for humanely 
throughout the animal studies. Male C57BL/6 mice were 

8 weeks old at the beginning of the in vivo tumor metasta-
sis assay. LLC cells were subcutaneously injected to form 
solid tumors. The subcutaneous tumors were implanted by 
injecting 0.2  mL of normal saline (NS) containing 1 × 106 
viable tumor cells under the skin into the right armpit of 
the mouse. When the tumor size reached approximately 
5 mm in diameter (days 7–10 after implantation), the mice 
were randomly divided into the following treatment groups: 
2b (intraperitoneal dose: 1.0, 2.5 or 5.0 mg/kg/day, 9 con-
secutive days, 30 mice), NAMI-A (intraperitoneal dose: 
35.0 mg/kg/day, 9 consecutive days, 10 mice), and vehicle: 
20% 2-hydroxypropyl-β-cyclodextrin (intraperitoneal dose: 
10 mL/kg/day, 9 consecutive days, 10 mice). The drugs were 
administered by intraperitoneal injection, and mice were 
weighed daily. 24  h after the last injection, the mice were 
weighed and killed with ether anesthesia, and the organs 
and tumor were immediately obtained.

Degradation over time and toxicity studies 
of nanoparticles in vivo
Nanoparticle degradation assays were carried out with 
C57BL/6 mice implanted with LLC cell-derived tumors. 
Three mice in each group were sacrificed after 0.5 h, 1 h, 
2 h, 8 h and 24 h. 2b was injected into the tail vein at a single 
dose of 5 mg/kg. Blood and organs were harvested imme-
diately after the animals were sacrificed at the given time 
points. Blood was taken from the eye, added to tubes con-
taining EDTA and centrifuged (2500 rpm for 5 min) to sep-
arate plasma and blood cells [57]. The heart, liver, spleen, 
kidneys, colon, lung, thymus and brain were collected and 
stored at − 80 °C until microwave digestion and analysis for 
the Ru content. The collected data were compared to those 
of a pharmacokinetic study of KP1019 {indazolium trans-
[tetrachloridobis(1H-indazole)ruthenate(III)]}, which is a 
Ru(III) complex undergoing clinical trials [48].

In the toxicity study, 6 ICR mice implanted with S180 
cell-derived tumors in each group were sacrificed on 
seven consecutive days. The drugs were administered via 
intraperitoneal injection at 1.0, 2.5 or 5.0 mg/kg/day, and 
the dose of cisplatin was 5 mg/kg. Blood was taken from 
the eye, added to tubes without anticoagulant and centri-
fuged (3000 rpm for 10 min at 4 °C) to obtain the serum. 
Serum Crea, Urea, ALT and AST levels were measured 
with a chemistry analyzer and the appropriate reagents 
(BS-600, Mindray, P.R. China). The heart, liver, spleen, 
kidneys, and brain were weighed.
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