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Plastic pollution in a growing problem globally. In addition to the continuous flow of
plastic particles to the environment from direct sources, and through the natural wear and
tear of items, the plastics that are already there have the potential to breakdown further
and therefore provide an immense source of plastic particles. With the continued rise in
levels of plastic production, and consequently increasing levels entering our marine envir-
onments it is imperative that we understand its impacts. There is evidence microplastic
and nanoplastic (MNP) pose a serious threat to all the world’s marine ecosystems and
biota, across all taxa and trophic levels, having individual- to ecosystem-level impacts,
although these impacts are not fully understood. Microplastics (MPs; 0.1–5 mm) have
been consistently found associated with the biota, water and sediments of all coral reefs
studied, but due to limitations in the current techniques, a knowledge gap exists for the
level of nanoplastic (NP; <1 mm). This is of particular concern as it is this size fraction that
is thought to pose the greatest risk due to their ability to translocate into different organs
and across cell membranes. Furthermore, few studies have examined the interactions of
MNP exposure and other anthropogenic stressors such as ocean acidification and rising
temperature. To support the decision-making required to protect these ecosystems, an
advancement in standardised methods for the assessment of both MP and NPs is essen-
tial. This knowledge, and that of predicted levels can then be used to determine potential
impacts more accurately.

Introduction
Since plastics came into mainstream use its production has increased exponentially, increasing
from 2 million tonnes per year in 1950 to 368 million tonnes in 2019 [1]. Plastics are now used
in every aspects of our daily lives. With this increase in plastic production has come an increase
in plastic pollution. This has resulted in a global problem, affected aquatic and terrestrial environ-
ments, from the Arctic to Antarctic [2–4], the highest mountain tops [5], to remote islands [6]
and the deep ocean [7].
The weathering of large plastic items results in them gradually being broken into progressively

smaller fragments. The processes involved in weathering include mechanical abrasion resulting from
natural wear and tear (e.g. car tyres and clothing), hydrolysis, UV photodegradation, biodegradation
and biological ingestion [8–13]. These plastic particles <5 mm are referred to as ‘secondary’ microplas-
tics (MPs) (Figure 1) [14], whilst nanoplastics (NPs) are generally defined as particles of either
<100 nm or <1 mm [15,16]. Another class of these plastic particles are referred to as ‘primary’ micro-
plastic and nanoplastic (MNP), and are manufactured within this size range and include, but are not
limited to, such things as microbeads and fragments used in consumer products and industrial abra-
sives, glitter and preproduction pellets (nurdles) (Figure 1) [17–20]. These may enter the environment
directly through accidental spills or in wastewater effluent [21–24].
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Coastal environments are generally considered to be the areas amongst those most highly impacted by
plastic pollution [25]. Modelling has suggested that in 2016 around 19–23 million tonnes (11% of plastic waste
generated globally that year) entered aquatic ecosystems [26]. Due to the scarcity of data the levels of small
plastic fragments are uncertain but estimates suggest that there are 15–51 trillion particles present in the
oceans, weighing between 93 000 and 236 000 tonnes [27].
The fate of MNPs on entering the marine environment is dependent on its density. Whilst there has been

focus on buoyant plastics aggregating in the five major oceanic gyres it has been estimated that 77% of buoyant
marine plastic debris originating from land is either beached or floating in coastal waters [28] and it is not
necessarily associated with a local source, which is evident by the high levels of plastic debris found in remote
and uninhabited islands [28,29]. Although many studies have looked at the levels and types of MPs associated
with the coral reef ecosystems relatively little is known, and nothing is known of the levels of NPs due to the
limitations of current methods. Differences in sampling protocols and isolation and identification methods dir-
ectly influences the results, consequently, in combination with natural variability (spatial and temporal) it is
not possible to accurately compare studies. There is, therefore, a significant need for standardised methods.
The ingestion of plastics by animals is most commonly associated with macroplastics and larger vertebrates

such as seabirds, cetaceans, sirenians and sea turtles [30–32], and MPs by filter-feeding bivalves. Organisms at
different trophic levels have been found to ingest MNPs directly and indirectly through trophic transfer [33,34].
Zooplankton and phytoplankton have been shown in laboratory studies that they are capable of MNP uptake
[35–38] and therefore MNPs are able to enter the food chain at the very bottom.
The potential impacts of MNPs are not fully understood but range from physical damage and nutritional

impairment to physiological, and have been found to affect all taxa so far examined, as well as across trophic
levels, feeding strategies and niches. The type and degree of the MNPs have found to be influenced by their
physical and chemical characteristics, including: size, morphology (bead, fibre, fragment, film), base polymer (e.
g. polypropylene) and associated chemicals (organic and inorganic), as well as the species that they interact
with. They also present an indirect threat at the organism and ecosystem level as they provide a substrate for
microorganisms, therefore, potentially altering biogeochemical processes, and for the settlement of biota and
therefore pose a risk by acting as a vector for invasive species and potential pathogens.
Here, we assess the current knowledge of the presence and impacts of MNPs in coral reef ecosystems and

identify gaps and future research needs.

Occurrence of microplastics within the coral reef ecosystem
Although many studies have looked at the levels and types of MPs associated with coral reef ecosystems [39,40]
the lack of standardised methods, including the units used for reporting, in combination with spatial and

Figure 1. Beached plastic pollution.

(A) Plastic drink bottles are an example of macroplastics, which through weathering will fragment into meso- micro- and

nanoplastics. (B,C) Microplastics gathered from the last high tide mark. Preproduction pellets (nurdles) and fragments of

polyethylene and polypropylene are often predominant due to their low density.
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temporal variation, makes it difficult to make accurate comparisons between sites and organism. Due to the
highly resistant nature of plastics, they are continuously cycled within the coral reef ecosystem (Figure 2), with
few points at which to be removed permanently from circulation. This, therefore, means that the continued
input will, over time, result in a gradual increase in concentration.

Surface water
MPs in the surface waters (Table 1) of remote coral reef areas are lower than those of coastal reefs close to high
human populations [51,62]. For example, Connors [44] found concentrations in the waters off Mo’orea of
0.74 MP m−2, and Tan [29] of ∼6 × 10−2MP m−2 of surface waters off the remote uninhabited coral reefs of
Nansha Islands in the South China Sea. In contrast, levels of 4.3 MP m−2 have been reported in the surface
waters of near-shore reefs on the Great Barrier Reef, Australia [63]. An exception to this is the surface waters of
the Red Sea [53] which are significantly lower (3.546 × 10−3 ± 8.154 × 10−3MP m−2) which may be a result of
the low inputs of land-based MP pollution, due to low coastal populations, coupled with low rainfall and there-
fore fluvial and stormwater inputs [64]. It should, however, be acknowledged that although potential MNPs
inputs are low, concentrations in both the water column and sediments may increase disproportionately com-
pared with other areas due to the low rate of water exchange and high evaporation rate of this nearly enclosed
marginal sea [65]. Although levels may vary between locations, fibres and fragments are consistently found to
be the most common morphotype, and polyethylene, polypropylene, polyethylene terephthalate and nylon are
the most common polymer types [42,45,57,66,67].
Standard methods are better established for the assessment of surface water MNPs than sediments and biota.

This is likely due to MNPs first being examined in plankton trawls and therefore using an already accepted
method. However, as more studies are carried out, and with the introduction of new methods, there is a risk
that the ability to compare between studies will be compromised. Therefore, official internationally agreed
standard methods are crucial to understanding this global problem.

Figure 2. Cycling of micro- and nanoplastics (MNPs) within the coral reef system.

MNPs may be ingested (black dashed lines) either directly or indirectly via trophic transfer. Ingestion may also result when

particles area adhered to the surface of food items, for example, those adhered to seagrass will be ingested by grazing turtles.

Due to the resistant nature of plastic, it remains undigested and passes through the digestive tract and cycles back into the

system (grey dashed arrows). The complex 3D structure of species such as corals and seagrass cause the transfer of MNPs

from the water column to the sediments (solid black and white arrows).
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Sediments
Plastic particles that enter the oceans can become deposited in sediments, either directly due to their density or as
a result of biofouling, and ingestion/egestion by biota (Figure 2). A wide range of concentrations have been
reported for coral sediments [47,49,51,55–59] (Table 1); however, due to the lack of standardised methods and
units for reporting it is difficult to make direct comparisons. The predominant morphotype and polymer type
vary between studies. Fibres and fragments are the most common types, and a wide range of polymers have been
identified, with polyethylene, polypropylene, polyethylene terephthalate and nylon the most common [68].
Reef sediments act as sinks for MPs and their associated chemical contaminants [69,70]. Sediments >3.5 cm

depth act as permanent sinks as they are unlikely to be resuspended under modal sea conditions. Under
extreme conditions, the sediments act as a source of MPs back to the local area [59]. The distribution of MPs
within the coral reef system is influenced by the presence of habitat-forming species. The complex three-
dimensional structure of these habitat-forming species results in the physical deposition of MNPs from the
water column [69,71–73], and translocation into the sediments (Figure 2). Habitat-forming species may also
influence the translocation of suspended MNPs into the food chain. Particles that have settled on the surface of

Table 1. Examples of microplastic concentrations in coral reef water, sediments and biota.

Location Size Abundance Reference

Reef water

Great Barrier Reef, Australia 100–500 mm 2 MP per 11 m3 [41]

Great Barrier Reef, Australia 0.355–5 mm 0.04–0.48 MP m−3 [42]

Australian waters 0.4–82.6 mm 4.26 × 10−2± 7.4 × 10−3 MP km−2 (0–4.89 × 10−2 MP m−2) [43]

Mo’orea, French Polynesia 0.05–5 mm 0.74 MP m−2 [44]

Faafu Atoll, Maldives 330 mm–5 mm 0.26 particles m−3(0.02–0.48 MP m−3) [45]

Faafu Atoll, Maldives 200 mm–5 mm 0.12 ± 0.09 particles m−3 (0.03–0.65 MP m−3) [46]

Xisha Islands, South China Sea 7–4856 mm 200–45 200 MP m−3 [47]

Nansha Islands, South China Sea 1.6–5000 mm 0.469 ± 0.219 MP m−3 (0.148–0.842 MP m−3) [48]

50 mm–5 mm 4933 ± 1369 MP m−3 (1400–8100 MP m−3) [49]

48 mm–5 mm 1733 MP m−3 (1250–3200 MP m−3) [50]

20 mm–5 mm 0.0556 ± 0.0355 MP m−3 (0.0112–0.149 MP m−3) [29]

Gulf of Mannar, India 0.8–5 mm 60 000–126 000 MP m−3 [51]

Albuquerque Atoll, Caribbean Sea 1–5 mm 0.059 MP m−3 [52]

Red Sea 0.26–30 mm 3.546 × 10−3 ± 8.154 × 10−3 MP km−2 [53]

Sediment

Vavvaru Island, Maldives >1 mm 35.8 ± 42.5 MP m−2; 1029 ± 1134 MP m−2 in accumulation zones [54]

Four Coral Islands, Hong Kong 0.3–5 mm 194.5 ± 49.9 MP kg−1 (171.7 ± 57.6 to 223 ± 51.4 MP kg−1) [55]

Xisha Is. Nansha is, Weizhou Is.
and Sanya Lu Hui Tou, South China Sea

0.3–5 mm 60 ± 3 to 610 ± 11 MP kg−1; 40 ± 4 to 100 ± 2 MP kg−1; 60 ± 2 to 90 ±
5 MP kg−1, and; 50 ± 3 to 350 ± 7 MP kg−1, respectively

[56]

Gulf of Mannar, India 0.8–5 mm 50–103.8 MP kg−1 [51]

2–5 mm 55 ± 2a1 to 259 ± 88 MP kg−1 [57]

Lhaviyani Atoll, Maldives 63 mm–4 mm 277.90 ± 24.98 MP kg−1 (55–1127.5 MP kg−1) [58]

Kepulauan Seribu, Indonesia 125 mm–5 mm 59.47 ± 78.49 MP kg−1 [59]

Biota

Taxa Size Abundance

Western Australia Turtle <1 mm 0–343 MP per individual (10.83 ± 36.72 MP per individual) [60]

Rhode Island, U.S.A. Coral 0.4–5 mm 112 MP per polyp [61]

Xisha Island, South China Sea Coral 24–4729 mm 1–44 MP per individual [47]

Nansha Islands, South China Sea Fish <500 mm 1–14 MP per individual [50]
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seagrasses and macroalgae can be ingested by herbivores [74], and then either transferred back into the sedi-
ments via faeces, or transferred up the food chain (Figure 2).

Association and impact on coral reef biota
The ingestion of MNPs have been identified in a broad range of coral reef biota, across taxonomic groups and
trophic levels, and may be ingested directly or indirectly through prey (Figure 2) [33,34,75,76]. Here, we will
discuss some key reef taxa and the known or potential effects of MNP exposure.
Scleractinian corals have been shown to interact directly with MNPs, and respond to chemosensory cues [77].

The level of interaction exhibits species-specificity and may be influenced by polyp and prey size, as well as
feeding strategy [41,71,78–81]. Plastic particles of varying size, morphotype and polymer type have been observed
to attach to tentacles and mesenterial filaments, and become trapped in the mucus layer, and may be ingested
[33,41,61,71,77,79,82–85]. Laboratory experiments have demonstrated that MNP feeding rates vary between indi-
vidual colonies with some showing a rate similar to the ingestion of plankton [41,86]. Whilst others discriminate
between prey and plastic particles with increased handling times [81]. In all cases, the majority of plastic particles
were egested within 24–48 h [33,77,82]. Where the MNPs were preconditioned with a biofilm the rate of uptake
and retention time were affected [71]. This is thought due to corals often relying on chemoreception to capture
prey, and therefore a natural biofilm will trigger a feeding response but also reduce the coral’s ability to discrimin-
ate against inert particles, resulting in longer retention times [71]. Overall, the lack of avoidance and increased
handling time of plastic particles relative to prey items results in the impairment of feeding efficiency, and ultim-
ately reduce fitness [87].
Plastic particles have been found embedded within the skeletal matrix of both experimental and colonies col-

lected from the wild [79,88–92]. Two mechanisms by which the particles become trapped within the skeleton
have been suggested. The first results from the growth of polyps over the particles. This has been observed in
acroporid and poritid species, and occurred predominantly in areas where surface cleaning mechanisms were
ineffective and where passive removal of surface sediments were restricted due to tissues or skeletal morph-
ology, colony orientation and water movement [79]. The second mechanism is thought to occur when
non-egested MNP particles pass through the endoderm and calicoblastic layers and become incorporated
within the skeletal matrix as aragonite is laid down.
Responses seen in corals include increased mucus production, reduced feeding rates and increased particle

handling [79]. Overall, these responses are energetically costly to the corals, and may lead to reduced energy
budget and have subsequent effects on health and fecundity.
The level of knowledge around the effect of MNPs on corals remains unclear, and further research is required.

Many negative impacts have been identified and include host–symbiont relationship, photosynthetic efficiency,
tissue necrosis, calcification rates, energy demand, reproductive success and overall fitness [41,79,80,82,83,86,
87,89,92–99]. Perturbation of photophysiology, bleaching and tissue necrosis have been observed in laboratory-
based studies in response to exposure to MNPs [79,85,89,96] and may demonstrate coral species-specificity. The
exact mechanisms involved remain unknown but in addition to causing the release of zooxanthellae the dietary
exposure of MNPs has been observed to supress the uptake of new cells, and were associated with the transloca-
tion of MNPs into the endodermal cells of the mesenterial filaments [33,88].
Larger plastic debris has been implicated in disease transmission and physical trauma resulting in susceptibil-

ity [100,101]. It is plausible that MPs also pose a threat, either through pathogen transmission, tissue damage
or alteration of the coral microbiome [102,103], resulting in reduced fitness and susceptibility to disease. This
includes the skeletal microbiome which is thought to play a critical role in the health of the colony [102,104].
The biofilms that form on MPs, referred to as the ‘plastisphere’, differ significantly from those in the water
column and associated with natural particles, and may cause dysbiosis of the coral microbiome resulting in
susceptibility to disease, or may harbour potential pathogens which have been seen to preferentially colonise
plastics [102,105–113]. Contaminants associated with the plastics [51,114–117] have also been found to enter
the tissues [51,118] after ingestion or overgrowth with potential direct toxicological effects [119] including
affecting the microbiome. As the levels have been found to correlate with the environmental MP levels [46]
and exposure is predicted to increase significantly over the coming decades [26] it is imperative that the knowl-
edge gap is filled.
It remains unclear what key characteristics of MNPs are responsible for eliciting an impact on corals, but size,

morphology, base polymer, associated chemicals (inherent and acquired) and microbes are all thought to play a
role, and may also have a co-effect. There is some evidence that other anthropogenic stressors have a synergistic
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effect with MNPs in Anthozoa. For example, thermally bleached anemones and corals ingested more MNPs rela-
tive to prey, and experience greater internal exposure to MNPs due to longer retention times [120,121]. This is of
particular concern given that coral reef ecosystems are facing increases in frequency and intensity of bleaching
events due to ocean warming in conjunction with the predicted increase in MNP exposure.
Studies examining the ingestion and effects of MNPs on other anthozoa had similar results to those seen

in scleractinia [44,103,122] but there needs to be more research done before we fully understand the
impacts, including using environmentally relevant MNP types and concentrations and exposure periods.
Being able to achieve this is reliant upon the development of internationally agreed standard methods
which are able to accurately determine the levels and characteristics (e.g. size and morphology) of MNPs in
the environment.
The ingestion of MNPs by higher trophic level taxa may be both direct and indirect. The mechanisms

involved and impacts through the food chain are becoming increasingly studied. Teleosts have been a group
that have received a lot of attention due to their importance as food. The majority of these studies have looked
at ingestion by adult fish, and the presence of plastics within the gastrointestinal tract with relation to human
health risk [123]. Coral reef fish are not exempt from the ingestion of MNPs [42,50,124]. The impacts on the
fish themselves is not fully understood, and appears to be influenced by a range of factors [125], including the
MNPs themselves, fish species and the life stage at exposure [126]. Impacts range from no observable effect
[127,128], to affecting growth and body condition due to reducing nutritional intake [129], and even resulting
in behavioural change such as feeding activity and boldness in the presence of others [130,131]. Both of which
can significantly affect survival.
Echinoderms play an important role in the coral reef ecosystem, from the control of macroalgae to the

maintenance of sediment health by those species that burrow into or feed directly on them and egestion of
undigested material back into the water column. They are exposed to MNPs both through their diet and res-
piration. The majority of work to date has been on sea cucumbers. Individuals collected from the wild and
experimental conspecifics were shown to ingest MNPs as they fed on sediments [132–134], with some studies
showing translocation from the gut to the coelomic fluid. Ingestion rates were also found to correlate to water
temperature [133] and therefore rising sea surface temperatures may result in increased dietary exposure.
There is also some evidence of internalisation of MNPs directly from the water column [134]. The concentra-
tion of MNPs within pseudofaeces are found to be higher than those in the surrounding sediments, suggest-
ing that preferential selection occurs [75,135,136]. To date, few studies have examined the impacts of MNPs
on sea cucumbers, and results are variable. Laboratory exposure experiments of juvenile and adult sea cucum-
bers to environmentally relevant levels of MNPs were found to impact gastric function and physiological
change including to the immune system and metabolism, as well as physical damage to the respiratory trees.
In addition to the uptake of MNPs, plastic-associated chemicals (e.g. phthalates) and heavy metals [137–139]
adsorbed onto MNPs from the environment are found to transfer into the tissues of the sea cucumbers. The
impacts of this, and their role in the effects of MNPs have not yet been elucidated. Sea cucumbers are also
suggested to play a key role in maintaining the bioavailabiliy of MPs [136] within the system through the
resuspension of MNPs from the sediments in pseudofaeces, preventing them from entering deeper sediments
that act as a sink for MNPs [69]. Sea urchins have also recently become a focus for the impacts of MNPs.
Experimental evidence has demonstrated MNP uptake directly from water through the madreporite [140],
and indirectly via their diet [12]. In adult urchins, MNPs are seen to translocate between tissues and organs,
and elicit an immune response [140], with growth and development impaired in early life stages [141–143].
Further work is required to fill the knowledge gap of uptake and impacts of MNPs on all coral reef
Echinodermata classes.
Molluscs fill multiple niches within the coral reef ecosystem, from grazers of algae and seagrasses, to providing

nursery and refuge for juvenile and adult fish. Until relatively recently it has been considered that it has only been
the filter-feeding species that are subject to MNP exposure due to their ability to filter large volumes of water. It
may, therefore, be considered that reef species will be similarly affected as non-reef species. However, a growing
number of studies have identified that species with different feeding strategies are also exposed to MNPs through
their diet. Examples of species from other ecosystems have identified ingestion by both bivalves and gastropods
[144], and particles may translocate from the guts to other organs [145]. The coral reef sea hare, Dolabella auricu-
laria, has been found to be exposed to MNPs via their diet due to the particles becoming entrained and adhered to
the surface of the seagrass they graze on [74]. Taxa such as Tridacna which play various ecological roles in the coral
reef ecosystem [146] may be subject direct impacts of MNPs and also via their impact on the symbiont–host
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relationship [79,80,85,89,93,96]. The impacts so far identified range from physiological to behavioural [147–149],
therefore, having a potential impact at both the individual and ecosystem level. Further work is required to under-
stand the impacts on coral reef molluscan species.
Porifera are widely distributed through the coral reef ecosystem and filter large volumes of water, removing a

wide size range of particles. It remains unclear whether selective uptake occurs due to variability and accuracy
of the methods used to determine MNPs in different species of coral reef sponge, representing different
functional growth forms [150–152]. Due to the important role sponges play in the reef system, from nutrient
recycling to providing habitats, more work is required to fill this knowledge gap, and to understand whether
sponge health and system function is impacted.
Megafauna are more commonly associated the ingestion of meso- and macroplastics (5–25 mm and

>25 mm, respectively [153,154]. They are, however, exposed to MNPs either through direct ingestion or
through trophic transfer. Turtles are one of the most studied taxa, with MNPs having been found in all seven
species [31,60,155–157], occupying different trophic levels and reinforcing the assertion that ingestion occurs
via multiple pathways, including contaminated water, sediments and prey/forage items. It remains unclear the
impact MNPs have on turtles. In adults they are not thought to cause blockage of the gastrointestinal tract,
gross physical damage or false satiety, resulting in nutrient deficiencies [31,158,159], although this may occur
in juveniles [60]. These effects on juveniles may, therefore, have significant impacts at the population-scale.
Other reef megafauna such as sharks and manta rays are also vulnerable to the impacts of MNPs, with

exposure via trophic transfer or directly in their diet (Figure 2). For example, egested material from manta rays
has been found to contain high levels of MNPs, and predictions of ingest rates from surface water trawls in the
same area as these animals was between ∼25 and 63 pieces of plastic h−1. Predictions of the ingestion rates by
whale sharks in the same area, were more than twice this rate [160]. Other visitors of the coral reef ecosystems
such as dolphins and whales have also been found to ingest MPs [161–164]. The impacts are similarly
unknown and requires further study.
A major and critical components of the coral reef ecosystem that is frequently overlooked is that of the

microbes. Consequently, the impacts of plastics on the ecology of coral reef microbes are not well understood
[102]. Plastic particles provide a new substrate on which diverse microbial and metazoan communities, some-
times referred to as the ‘plastisphere’, rapidly colonise marine plastic [113]. Where plastisphere communities
differ from the those on natural surfaces, there is a potential that the presence of plastics may disrupt the
microbially driven processes that occur. These may including, for example, disruption of biogeochemical pro-
cesses [165–167], the dysbiosis of an organism’s microbiome [102,103] or altered pathogen exposure
[105,107,168,169]. The plastisphere may also play host to the early life stages of non-indigenous species (NIS)
[170]. The resilience of the plastic, therefore, supports the range expansion and introduction of NIS into new
regions, which could pose a significant threat to coral reefs.

Conclusion
Our knowledge of the distribution and impacts of MPs is still not fully understood, with even less known
about NPs. While this area of research is still in its relative infancy, results to date have shown their ubi-
quity in different ecosystem compartments and suggest that MNPs pose a significant risk to a wide range
of coral reef organisms, across all taxa, trophic levels and feeding strategies. The factors determining the
adverse effects include MNP size, polymer, morphology, associated chemical and microbial contaminants,
and may be species-specific. There is, therefore, significant research required to fully elucidate their presence
in these highly diverse ecosystems. Before we can accurately [171] determine the impacts MNPs are having
we need to first determine their exposure. To be able to do this technical limitations need to be overcome
to allow the more accurate assessment of MNPs in environmental samples, and internationally agreed
standard methods are required to enable accurate comparisons between studies. By improving our knowl-
edge of the levels, types of MNPs, and their associated contaminants it will allow the more accurate assess-
ment of impacts, through the use of ecologically relevant concentrations, morphotypes, polymers and
associated contaminants (microbial and chemical) in controlled experiments. Considering the importance of
coral reefs to marine ecosystems, it is important that the impacts of MNPs is done in conjunction with the
other anthropogenic stressors they are under, which are also predicted to increase in severity over the
coming decades [26,172], to determine potential synergies these stressors may have. This information is
important to predict species and areas under greatest threat, and help us better allocate resources for the
management and protection of coral reefs.
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Summary
• MPs are found in all coral reef compartments; water, sediment and biota.

• MPs and NPs have been found to have an effect at the organism- to ecosystem-scale.

• A knowledge gap exists around the impacts of plastics particles, including under future
climate conditions.

• Coral reef communities facilitate both the bioavailability of plastic particles and sequestration
into the sediments.

• Standardised methods are needed to enable the improved assessment of MNP pollution.
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