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Protein ubiquitination in
T cell development

Ting Zhong †, Kang Lei †, Xiaoxi Lin, Zhiguo Xie, Shuoming Luo,
Zhiguang Zhou, Bin Zhao*‡ and Xia Li*‡

National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology,
Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya
Hospital of Central South University, Changsha, China
As an important form of posttranslational modification, protein ubiquitination

regulates a wide variety of biological processes, including different aspects of T

cell development and differentiation. During T cell development, thymic

seeding progenitor cells (TSPs) in the thymus undergo multistep maturation

programs and checkpoints, which are critical to build a functional and tolerant

immune system. Currently, a tremendous amount of research has focused on

the transcriptional regulation of thymocyte development. However, in the past

few years, compelling evidence has revealed that the ubiquitination system also

plays a crucial role in the regulation of thymocyte developmental programs. In

this review, we summarize recent findings on the molecular mechanisms and

cellular pathways that regulate thymocyte ubiquitination and discuss the roles

of E3 ligases and deubiquitinating enzymes (DUBs) involved in these processes.

Understanding how T cell development is regulated by ubiquitination and

deubiquitination will not only enhance our understanding of cell fate

determination via gene regulatory networks but also provide potential novel

therapeutic strategies for treating autoimmune diseases and cancer.

KEYWORDS

T cel l development, thymocyte, ubiquit inat ion, E3 ubiquit in l igase,
deubiquitinating enzyme
Introduction

Ubiquitin is a highly conserved protein of 76 amino acids and a versatile

posttranslational modifier that is ubiquitously expressed in all eukaryotic cells (1).

Protein ubiquitination plays a crucial role in protein homeostasis, thus regulating a

vast array of biological processes, such as DNA damage and repair, cell cycle progression,

apoptosis and cellular signaling (2, 3). Ubiquitin is added to the protein substrate via a

subsequent enzymatic cascade by E1 ubiquitin-activating enzymes, E2 ubiquitin-

conjugating enzymes and E3 ubiquitin ligases (4). The specificity of ubiquitination is

mainly achieved by E3 ligases, which are responsible for substrate recognition via protein

interacting domains and motifs (5). Ubiquitin has seven lysine residues that can be used
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to assemble polyubiquitin chains: Lys6, Lys11, Lys27, Lys29,

Lys33, Lys48, and Lys63. A substrate can be polyubiquitylated or

monoubiquitylated via polyubiquitin chains, and the impact of

polyubiquitination on the target protein is greatly dependent on

the type of conjugated chain (6). For example, except for Lys63,

all six Lys linkages have been implicated in proteasomal

degradation, with Lys48 and Lys11 being the predominant

type of chains for substrate degradation in cells. Lys63-linked

chains are involved in multiple nonproteolytic functions,

including activation of NF-kB, DNA damage repair, and

regulation of endosomal sorting pathways (7). Ubiquitination

is a dynamic and reversible process, and ubiquitination induced

by ubiquitin ligases can be counteracted by deubiquitinating

enzymes (DUBs) to control the intensity and duration of

ubiquitin signaling (8).

The thymus is the primary site for T cell development,

thymic seeding progenitor cells (TSPs) arrive at the thymus from

the bone marrow and initiate multistep maturation programs

and checkpoints comprising lineage commitment, T cell

receptor (TCR) gene rearrangement, and positive and negative

selection. It is well established that thymocytes mature through

ordered progression, including double-negative (CD4–CD8–,

DN) stage, double-positive (DP) stage and CD4 or CD8

single-positive (SP) stages (9, 10). In the earlier DN1-3 stages,

proliferation and differentiation are mainly driven by Notch

signaling and cytokines such as c-kit and IL-7 (11). Then, cells

successfully assembled pre-T cell receptor (pre-TCR) complexes

will pass b-selection and transition from the DN3 to the DN4

stage. In DP stage, thymocytes undergo positive selection for

self-human leukocyte antigen (HLA) recognition under the
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control of cortical thymic epithelial cells (cTECs) and negative

selection to remove strong self-reactive clones based on the

interaction with medullary thymic epithelial cells (mTECs) and

thymic DCs (tDCs), finally becoming CD4+ SP or CD8+ SP cells

(11). “Mature” SP thymocytes exit the thymus to the peripheral

lymphoid organs (9).

Ubiquitin signaling modulates a variety of pathways

involved in the T cell developmental process primarily

through proteolysis-dependent mechanisms, such as Notch,

pre-TCR signaling, Signal transducer and activator of

transcription 3 (STAT3)-mediated signaling, Wnt signaling,

and Nuclear factor kB (NF-kB) pathway (9, 12, 13). Here, we

summarize the interplay between the ubiquitination system and

T cell developmental programs (Figure 1). Specifically, we

highlight the roles of E3 ligases and DUBs involved in these

processes as well as the molecular mechanisms and cellular

pathways that regulate thymocyte ubiquitination (Table 1).
E3 ubiquitin ligases in
T cell development

E3 ligases are crucial components of the Ubiquitin

Proteasome System. Several classes of these enzymes have been

identified, known as the RING, U-box, HECT and RBR classes

(45). As the last component of an enzymatic cascade, E3 ligases

determine substrate specificity. Attaching ubiquitin to a protein

could have profound effects on the protein’s cellular localization,

protein-protein interactions or stability (46). Multiple E3 ligases

have been demonstrated to play a role in T cell development.
FIGURE 1

Overview of E3 ubiquitin ligases and DUBs in different stages of thymocyte development. The red letters in the black dotted box represent E3
ubiquitin ligases, and the blue letters represent DUBs. DN, double-negative; DP, double-positive; SP, single-positive.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.941962
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Zhong et al. 10.3389/fimmu.2022.941962
NOTCH-regulating E3 ligases mainly
regulate the early stage of T cell
development

Notch signaling has been identified as a key signaling

pathway involved in the regulation of T cell development,

especial ly in thymocyte survival , proliferation and

differentiation (9, 47–49). E3 ubiquitin ligases that can catalyze

the ubiquitylation of Notch include Itch, Ligand of Numb-

Protein X (LNX), Deltex (DTX), Mind bomb (Mib) 1, Mib2,

Neuralized (Neur) 1, and Neur2 (15). Itch binds to the N-

terminal of the Notch intracellular domain via its WW domains

and promotes ubiquitination of Notch via K29-linked ubiquitin

chains, thus promoting its lysosomal degradation (50). Itch-/-

mice with an activated Notch1 transgene in their thymocytes
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show a reduction of DP and an increase of DN T cells, with a

more severe autoimmune phenotype (14). Itch and Notch act in

the AKT signaling concurrently in the genesis of autoimmune

disease (14). In addition, Itch regulates Notch signaling via

interacting with some molecules, such as Numb and DTX.

Numb, an adapter protein, was initially identified as a

negative regulator of Notch signaling. Numb binds to Itch

WW domain and promotes ubiquitination and degradation of

Notch1 by Itch (51). DTX, an E3 ligase, has been shown to be an

itch homolog that plays a negative role in regulating

Notch receptor signaling, and can cooperate with Itch to

regulate NOTCH signaling via lysosomal degradation (52). In

addition, downregulation of DTX in hematopoietic progenitors

promotes T cell development in fetal thymic organ culture and

in vivo (53). DTX antagonizes Notch1 signals by inhibiting
TABLE 1 List of E3 ligases and DUBs that modulate T cell development.

Ubiquitinase Substrate Cko/ko mice Phenotype Ref.

E3 ligases

Itch Notch Itch-/-; Lck-Notch1 tg+ -reduces DP and increases DN thymocytes
-reduces apoptosis in the thymus and increases phospho-AKT signaling

(14)

Mib1 Dll1, Dll4 Mib1-/- -impairs Dll1 and Dll4 endocytosis
-reduces DP and increases DN thymocytes

(15)

Fbxw7 c-Myc Lck-Cre; Fbxw7fl/fl -promotes cell cycle exit
-leads to hyperproliferation in thymocytes
-increases DP thymocytes
-enforces GATA3 expression

(16)

Fbxl1 Cdkn1b Fbxl1-/- -resultes in an incomplete DN3-DN4 developmental block (17)

Fbxl12 Cdkn1b Lck-Cre; Fbxl12fl/fl -blocks DN3-DN4 transition (17)

TRIM21 SOCS3 TRIM21-/- -increases number of thymocytes -reduces frequency of DN cells (18)

GRAIL TCR-CD3 GRAIL-/- -upregulates the function of tTregs (19)

VHL HIF-1a Lck-Cre; Vhlfl/fl -increases cell death and caspase activity
-reduces TCR-mediated Ca2+ signaling

(20)

TRAF3 TCPTP Lck-Cre; TRAF3fl/fl -increases number of Treg cells in the thymus (21)

TRAF6 NF-kB essential modifier
(NEMO)

TRAF6-/- -reduces autoimmunity
-reduces Aire expression
-reduces Treg cells

(22)

c-Cbl CD5, TCRz, Zap-70, SLAP, BIM c-Cbl-/- -increases TCR signaling
-increases DP thymocytes
-increased expression of CD3, CD5, and CD69
-enhances positive Selection of CD4+ T Cells

(23, 24)

Cbl-b Foxp3, p85 Cbl-b-/- -regulates tTregs
-reduces mature SP thymocytes

(25)

MARCH1 MHCII MARCH1-/- -reduces tTregs (26)

DUBs

USP4 HUWE1 USP4-/- -induces IR-induced apoptosis in thymus (27)

USP7 Caspase 3 / -regulates the apoptosis of thymocytes via interacting with caspase 3 (28)

USP8 GADS, CHMP5 CD4-cre;USP8fl/fl -diminishes thymocyte proliferation (29–34)

USP9X Themis USP9X-/- -reduces thymic cellularity (35–39)

CYLD LCK CYLD-/- -regulates DP-SP transition (40)

MYSM1 IRF2, IRF8 MYSM1-/- -reduces thymus sizes and CD8+ T-cell numbers (41, 42)

A20 GITR CD4-cre;A20fl/fl -increases CD69 expression within NKT thymocytes (13, 43)

BAP1 H2AK119 Rosa26CreERT2; Bap1fl/fl -causes a block at the DN3 stage (44)
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coactivator recruitment (54) and restores DP thymocyte survival

from the glucocorticoid (GC)-induced apoptosis by repressing

SRG3 promoter activity (55). LNX can also cause proteasome-

dependent degradation of Numb and therefore enhance Notch

signaling (56). Mib1 modulates Notch signaling by

ubiquitinating the Notch receptors (Dll1 and 4), promoting

their endocytosis (57). Reciprocal bone marrow (BM)

transplantation experiments revealed that Notch signaling was

diminished in the DN thymocytes of Mib1 conditional KO

mice (15). Furthermore, knocking down Mib1 in the coculture

system causes a delay in T cell growth and a failure of Dll1

endocytosis (15).
SCF complexes play crucial roles in
thymic b-selection mediated
cell proliferation

The SCF (Skp1-cullin-F-box protein) complex is a well-

described multisubunit RING-finger E3 composed of Skp1,

Cdc53/cullin, and an F box protein (58). Fbxw7 (F-box and

WD-40 domain protein 7)—also known as Fbw7—is an SCF

ubiquitin ligase component reported to play a role in thymocyte

cell cycle progression by controlling the degradation of c-Myc, c-

Jun, cyclin E, and Notch (59). Fbw7 modulates cell cycle

progression by controlling c-Myc protein stability, and loss of

Fbxw7 leads to hyperproliferation of thymocytes (16). Moreover,

the SCF subunits Fbxl1 and Fbxl12, which are transcriptionally

induced by Notch and pre-TCR signaling respectively, function

identically but additively to promote the degradation of Cdkn1b

and proliferation of b-selected thymocytes (17, 60). Deletion of

Fbxl1 or Fbxl12 results in an incomplete DN3-DN4

developmental block and a reduced thymus size (17).
TRIM family proteins have crucial roles
during negative selection

As RING-type E3 ligases, tripartite motif (TRIM) proteins

have been demonstrated to regulate the innate immune response

(61, 62). However, recent studies suggest that TRIM21 alters T

cell development in the thymus (63). TRIM21−/− mice had an

increased number of thymocytes and a reduced frequency of DN

cells (18). TRIM21 targets suppressor of cytokine signaling-3

(SOCS3) for proteasomal degradation, thus impairing STAT3

activation in TECs (64). STAT3-mediated signaling has been

shown to promote quintessential growth of mTECs (but not

cTECs) (12, 65). Double-positive (DP) cells are selected by

cTECs to become CD4 or CD8 SP cells (66), while SP

thymocytes are further negatively selected in the medulla (67).

We can surmise that TRIM21 plays a crucial role during negative

selection in the thymus.
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GRAIL and VHL regulate T cell
development during negative selection

Gene related to anergy in lymphocytes (GRAIL) is a RING-

type E3 ligase required for the initiation of CD4+ T cell anergy in

vivo. Previous studies considered GRAIL expression patterns in

murine CD4+ T cells as a defined anergic phenotype and a

negative regulator of the immune response (68, 69). Notably,

GRAIL expression is upregulated in tTregs, and its

overexpression in DO11.10 T cells convert these cells to a

regulatory phenotype (19). Nurieva et al. reported that GRAIL

regulates Treg cell function by mediating TCR-CD3 degradation

(70). Works are needed to delineate the mechanism(s) of how

GRAIL mediates its suppressor activity in the thymus. The von

Hippel-Lindau (VHL) is a RING-type E3 ligase that targets

hypoxia-inducible factor-1a (HIF-1a) for proteasomal

degradation (20). Vhl-deficient mice had a severe reduction in

thymus sizes and thymic cellularity due to enhanced caspase 8

activity in the apoptotic pathway, as a result of HIF-1a
accumulation (20).
TRAF family proteins regulate T cell
development during negative selection

Tumor necrosis factor receptor (TNFR)-associated factor 3

(TRAF3) is a member of the TRAF family of cytoplasmic

adaptor proteins and plays a role in modulating IL-2 signaling

in T cells. T cell conditional TRAF3 knockout mice resulted in

an increased number of Treg cells in the thymus (21) due to

more efficient conversion of CD25+ Foxp3– Treg precursors to

CD25+ Foxp3+ mature Treg cells (71). TRAF6 is another adaptor

E3 ligase that is involved in central tolerance by regulating the

development of thymic stroma. TRAF6−/− fetal thymic stroma

tissue fails to mediate negative selection (22). Furthermore,

specific deletion of TRAF6 in TECs hinders the growth of

mTECs (72). Several studies have suggested that TRAF6

regulates the establishment of thymic microenvironments

through manipulating RelB (73), RANK (74) and CD40

(75) expression.
Cbl family proteins regulate multiple
stages of T cell developmental processes

The Casitas B-lineage lymphoma (Cbl) family of proteins are

RING-finger domain containing E3 ubiquitin ligases (76, 77). In

mammals, two highly homologous adaptor proteins of the Cbl

family, c-Cbl and Cbl-b, are involved in the negative regulation of

the immune system (78, 79). Both c-Cbl and Cbl-b contain a highly

conserved amino-terminal tyrosine-kinase binding (TKB) domain,

a less conserved carboxyl-terminal proline-rich region (PRR) and a
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RING finger. Through their protein-protein interaction domains, c-

Cbl and Cbl-b form multiple complexes together with several

signaling molecules to regulate intracellular signaling events (80).

The first evidence indicating that Cbl proteins are associated with

thymic selection came from experiments showing that thymocytes

from c-Cbl-/- mice have increased signaling through the TCR and

CD4+ CD8+ DP thymocytes exhibited increased expression of CD3,

CD5, and CD69 in the c-Cbl knockout (KO)model (23). Moreover,

c-Cbl selectively inhibits thymic-positive selection of CD4 but not

CD8 T cells (23). This suggests that the positive selection of

thymocytes bearing MHC class II-restricted TCRs is negatively

regulated by c-Cbl. Mechanistically, c-Cbl modulates CD4+ T-cell

development by promoting TCR-z lysosomal degradation. In this

model, a transient trimolecular complex of TCRz-Zap-70-Cbl is
formed, and ubiquitin is then shifted from the Cbl-E2 complex to

TCRz (79, 81). In addition to Zap-70, Src-like adaptor protein

(SLAP) might also act as a bridge to bond TCRz and Cbl. In

support of this, SLAP-/- mice were shown to have a similar

phenotype to c-Cbl-/- mice (82–84). In addition to positive

selection, c-Cbl also regulates thymocyte negative selection,

probably by ubiquitinating and proteasomal degrading the pro-

apoptotic molecule B-cell lymphoma 2-interacting mediator of cell

death (BIM) (85). Furthermore, deactivation of c-Cbl reverses T cell

developmental detention in SLP-76-deficient mice, in which T cell

development is impeded at the DN3 stage (24). In conclusion, the c-

Cbl prote in modula tes mul t ip le s tages of T ce l l

developmental processes.

Analyses of Cbl-b KO mice resulted in no similar findings

(86). Given that the expression level of Cbl-b in thymocytes is

much lower than that of c-Cbl, it would not be surprising.

However, Zhao Y et al. reported that Cbl-b, together with Stub1,

regulates thymic-derived CD4+ CD25+ regulatory T cells

(tTregs) development by targeting Foxp3 for ubiquitination

and degradation in the proteasome (25). Moreover, Raberger J

et al. reported that the CD4/CD8 developmental profile was

noticeably altered and mature SP thymocytes were absent in

Vav1-/- or ITK-/- thymocytes (87), and the signaling defects in

Vav1-/- or ITK-/- thymocytes can be rescued upon deletion of

Cbl-b (87). These results indicate that Cbl-b alters

thymus development.
MARCH family E3 ligases modulate the
development of tTregs

Membrane-associated RING-CH1 (MARCH1) is an E3

ubiquitin ligase that regulates MHCII ubiquitination (26).

Thymocytes and TECs scarcely express MARCH1, while DCs

in the thymus express comparatively high levels of MARCH1

(26). MARCH1 deficiency results in an elevated level of MHCII,

which leads to a considerable decline in the number of thymic

Treg (tTreg) cells but not conventional CD4+ T cells in mice

(26). Another E3 ligase, MARCH8, is responsible for MHC II
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ubiquitination specifically in thymic epithelial cells. In

MARCH8-/- mice, TECs express elevated levels of MHC II, but

the development of conventional CD4+ T cells or tTreg cells

remains unchanged. It is possible that tTreg development does

not require MHC II ubiquitination in TECs (88).
DUBs in T cell development

In addition to E3 ligases, the ubiquitin system is also

regulated by DUBs. Ubiquitin chains can be removed from the

substrate by DUBs, which are essential for the dynamic

regulation of the protein ubiquitination process (89, 90).

Several DUBs have been identified as regulators in the T cell

developmental program.
USP family proteases regulate multiple
stages of T cell developmental processes

Ubiquitin-specific proteases (USPs) are the largest subfamily

of DUBs and contain more than 100 members (91). Ubiquitin-

specific peptidase 4 (USP4) has been shown to inhibit p53

signaling through interacting with and stabilizing ARF-binding

protein 1 (ARF-BP1, also known as HUWE1), an E3 ligase for

p53 (24). USP4 knockout mice are viable and fertile but exhibit

enhanced ionizing radiation (IR)-induced thymocyte apoptosis

(27). In addition, USP4, a DUB with dual hydrolyzing activity

for K48- and K63-conjugated polyubiquitin chains, interacts

with the Nemo like kinase (Nlk) and T-cell factor (TCF) 4, two

known components of theWnt pathway that are essential for cell

development (92). USP7 (also known as HAUSP), which is

highly expressed in the thymus, also regulates the apoptosis of

thymocytes during negative selection via caspase-dependent

signaling (28). Likewise, the processing of HAUSP does not

occur in caspase 3-deficient thymocytes (28). Ubiquitin-specific

protease USP8 is a deubiquitinase involved in the endosomal

sorting complex required for transport (ESCRT) system (93). A

recent study reported that USP8 is involved in thymocyte

maturation and proliferation processes by modulating the

Foxo1-IL-7Ra axis (29). Moreover, the amino-terminal

SH3BM of USP8 binds with higher affinity to the TCR

adaptor GADS in a caspase-dependent manner (30–32).

Another study identified USP8 as a deubiquitinase for

CHMP5, a component of the ESCRT complex, and uncovered

the role of the CHMP5-USP8 complex in regulating thymic

positive selection (33, 34). Ubiquitin-specific protease

9X (USP9X) is a member of the peptidase C19 family

and encodes a protein similar in structure to ubiquitin-

specific proteases. Deletion of Usp9X resulted in an overall

reduction in thymic cellularity (35). Mechanistically, USP9X

interacts with and stabilizes Themis, an important TCR

signaling protein (36), by removing ubiquitin K48-linked
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chains on Themis upon TCR stimulation, thus affecting thymic

positive selection (37–39).
CYLD regulates T cell development
during negative selection

Cylindromatosis (CYLD) is a lysine 63-deubiquitinating

enzyme that positively regulates TCR signaling by promoting

the recruitment of Lck to its substrate, Zap70, in thymocytes

(40). CYLD-deficient mice displayed significantly fewer mature

CD4+ and CD8+ single-positive thymocytes (40). Previous

studies identified CYLD as a switch in T cell development

during the transition from double-positive to single-positive

thymocytes (40). Furthermore, S. Reissig et al. demonstrated

impaired negative selection in the thymus of CYLDex7/8 mice,

which overexpresses the naturally occurring CYLD splice variant

short CYLD (sCYLD), whereas full-length CYLD (FL-CYLD) is

absent (94, 95).
MYSM1, A20 and BAP1 modulate multiple
stages of T cell developmental processes

Other types of DUBs involved in T cell development include

Myb-like SWIRM and MPN domain containing 1 (MYSM1),

A20 and BRCA1-associated protein-1 (BAP1). Conditional

ablation of histone H2A deubiquitinase MYSM1 at late stages

of thymic development in a mouse model showed a severe

reduction in thymus sizes and CD8+ T-cell numbers,

indicating the critical role of MYSM1 in the positive selection

of CD8+ T cells (41, 42). A20, also known as TNF-a-induced
protein 3 (TNFAIP3), regulates tTreg development and

maturation by restraining the activation of NF-kB signaling

(13, 96). T lineage cell conditional A20 knockout mice showed

that tTreg cell compartments are quantitatively enlarged (13). In

addition, A20 specifically limits TCR-dependent activation of

NKT cells in the thymus (43). BAP1 is a member of the ubiquitin

C-terminal hydrolase (UCH) subfamily of DUBs and has been

shown to be involved in b-selection mediated cell expansion

(44). BAP1 deletion in adult mice led to serious thymic atrophy

and loss of cellularity due to defects in cell proliferation (97).

Likewise, BAP1 deficiency caused a block at the DN3 stage

before the pre-TCR checkpoint by facilitating the ubiquitination

of histone H2A at Lys119 (H2AK119) (97).
Conclusion

During the past few years, several lines of evidence have

shown that T cell development is regulated at multiple levels; in
Frontiers in Immunology 06
addition to transcriptional control, posttranslational

regulation also plays a crucial role in those processes

(9, 98, 99). An increasing number of studies using transgenic

mouse models have demonstrated that E3 ubiquitin ligases

and DUBs are involved in specific stages of thymocyte

maturation by modulating the activity or stability of key

proteins during cellular signal transduction cascades (98, 99).

Technological advancements in single-cell proteomics, CRISPR/

Cas9 mutagenesis and mass cytometry will continue adding

valuable findings to this area of research. Future work on the

molecular mechanisms of ubiquitination and deubiquitination

in T cells will not only enhance our understanding of cell fate

determination via gene regulatory networks but also provide

potential novel therapeutic strategies for treating autoimmune

diseases and cancer.
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