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ABSTRACT
The biological sciences span many spatial and temporal scales in attempts to understand the 
function and evolution of complex systems-level processes, such as embryogenesis. It is generally 
assumed that the most effective description of these processes is in terms of molecular interac
tions. However, recent developments in information theory and causal analysis now allow for the 
quantitative resolution of this question. In some cases, macro-scale models can minimize noise 
and increase the amount of information an experimenter or modeler has about “what does what.” 
This result has numerous implications for evolution, pattern regulation, and biomedical strategies. 
Here, we provide an introduction to these quantitative techniques, and use them to show how 
informative macro-scales are common across biology. Our goal is to give biologists the tools to 
identify the maximally-informative scale at which to model, experiment on, predict, control, and 
understand complex biological systems.
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Introduction

A “big data” approach has become standard in the 
biological sciences over the past decade [1,2]. As tech
niques improve, ever more emphasis is placed on 
understanding, in the most fine-grained possible man
ner, the molecular and genetic pathways of life [3,4]. 
Yet, such an approach often leads to a bewildering 
complexity as models of biological systems grow to 
a significant dimensionality. This poses particular pro
blems for asking “what does what” in terms of cellular 
mechanisms, regulation, or development. How should 
modelers and experimenters proceed to build the best 
possible models of such systems and pathways, parti
cularly when what’s necessary for understanding are 
causal models like interactomes, from which we hope 
to derive actionable policies for prediction and control 
in biomedical settings?

Here we focus on models that describe the rela
tionships within a biological system, particularly 
models used for understanding “what does what.” 
We refer to these as causal models. A biological 
system’s causal model can be revealed through inter
ventions and observing their effects. This can be 
done via the up- or down-regulation of genes [5], 
optogenetic stimulation of neurons [6], transcranial 
magnetic stimulation [7], a randomized drug trial [8], 

a modulation of endogenous bioelectric networks 
[9,10], or a genetic knockout or knock-in [11], 
among many other techniques common across the 
biological sciences. In general, to establish a causal 
model, an interventional approach is needed [12]. 
Such a causal model might be a gene regulatory net
work [13] or protein interactomes [14]. In general, 
biological causal models, such as Bayesian networks, 
can be reconstructed from intervention, observation, 
and time-series data [15].

However, it may be the case that the most complex, 
that is, the most fine-grained and detailed causal model 
possible, can actually harm understanding of what does 
what in some biological system. One reason is that 
extremely complex and fine-grained models may con
tain within them an overwhelming amount of noise. 
Note that we do not here mean “noise” in that the 
model is not an accurate description of reality. 
Instead, fine-grained models, even if highly accurate, 
will often have intrinsic noise in the form of uncer
tainty in state-transitions (such as in a gene regulatory 
network, GRN, wherein many genes might be upregu
lated probabilistically) or uncertainty in binding (such 
as in a protein interactome wherein one protein may 
bind to many others and it cannot be known ahead of 
time which it will bind to). This means there can be 
uncertainty of the effect of an experimenter’s 
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interventions on any part of the model. Sources of 
randomness include how cell molecules are sub
jected to Brownian motion [16], the stochastic nat
ure of ion channels [17], and chaotic dynamics such 
as in the brain [18]. Many biological systems also 
possess significant degeneracy, from genes to neural 
networks [19]. Degeneracy is also a form of uncer
tainty or noise in that, given a particular output, it 
could have come from many different inputs. 
Ultimately, as open systems, the intrinsic interac
tions of organisms and cells are always exposed to 
the noise of the world and so become noisy them
selves. This amount of intrinsic noise in biology, and 
therefore uncertainty, can be understood to be the 
central problem for modeling and understanding 
“what does what” in biological systems. We are 
concerned with this question: How can complex 
models be analyzed and built in a way that mini
mizes noise?

A key insight for solving this issue is that many 
systems have multiple levels of valid description and 
interpretation, that is, they have different scales. 
A computer can be described at the scale of its wiring, 
its machine code, or its user interface. An organism can 
be described at the scale of its underlying chemistry, its 
genotype, or its physiological or anatomical phenotype. 
Which of these descriptions provide the best under
standing of “what does what”? The answer to this 
question requires a formal way of modeling the given 
system at different scales, such as a micro- or macro- 
scale. A micro-scale is some “lower level” of a system 
wherein it is modeled in the most fine-grained and 
detailed manner possible. A macro-scale is some coarse- 
grained or dimensionally-reduced “higher level” model 
of the system.

Different models at different scales are common 
across biology. For instance, neuroscience has long 
accommodated work that spans across multiple 
scales. Research at the micro-scale of the brain 
includes everything from examining molecular net
works of cytoskeletal signaling to neurotransmitter 
receptor proteins in neurons. Indeed, in the brain 
there is a rich repertoire of individual variation yet 
global functions remains highly similar [20]. For 
instance, neurons may perform a set of individual 
computations while the larger circuit they are part 
of performs an entirely different computation at the 
higher level [21]. In fact, rat cortical neurons left to 
develop spontaneously in vivo migrate to form 
a clear macro-scale architecture of connectivity, 
indicating that the advantages of multi-scale struc
ture might be built into developmental preferences 
[22]. And even brain imaging devices themselves 

span a significant spatiotemporal range, which 
necessarily leads to differences in models of func
tional connectivity in the brain [23]. Without a clear 
best spatiotemporal scale for understanding brain 
function, the debate rages on as to whether all of 
the higher level system functions are ultimately best 
expressed as molecular dynamics or at the level of 
individual neurons [24–27].

A rich literature exists regarding levels of explana
tion in biology, and whether molecular explanations are 
always to be preferred [28–36]. Some have argued that 
such reduction is not always a universally optimal 
strategy, particularly in biology due to the adaptive self- 
organizing nature of organism and cellular develop
ment, function, and behavior [37–40]. While the great 
majority of the community has settled on the level of 
molecules as the gold standard for biological models, it 
is becoming clear that even when all molecular-level 
fine-grained details and pathways are known, biology 
does not always carve neatly at any obvious joints. For 
example, it now seems very possible that there is no 
underlying shared molecular cellular identity (e.g. as 
being compiled by “cell-atlas” studies [41]. Generally, 
a preference for micro-scale models in biology is often 
just an expression of the assumption that the best 
possible model of any physical system, at least in prin
ciple, is at a level as fine-grained and detailed as possi
ble [42,43].

Until recently, the question of which level of 
explanation is “best” has been a philosophical one, 
debated based on a priori preferences in different 
fields. However, recent advances in information the
ory now make it possible to provide a rigorous, 
objective analysis for identifying the most informa
tive causal model governing a given phenomenon. 
This can allow for identifying the best scale for 
experimental inverventions, prediction and retrodic
tion, or asking “what does what” within a model, 
which are central questions for scientific models and 
understanding. Here, we provide an introduction 
and a primer for the use of these new techniques, 
and show how to identify situations where there are 
informative higher scales available for causal model
ing and experimental intervention. Specifically, we 
offer tools to identify when predictive, efficient, and 
informative higher scales emerge from lower ones. 
We argue that identifying optimal informative mod
els of biological systems should be a standard tool of 
analysis for experimenters and modelers dealing 
with complex multi-level systems. This approach is 
based on the fact that macro-scales can be modeled 
explicitly as coarse-grains, averages, or dimensional 
reductions.
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Defining macro-scale and micro-scale biological 
models

In a sense, all models used in biology are macro-scales, 
since they are not physical models. No experimenter or 
theorist would consider modeling a cell at the scale of 
quarks. Therefore, terms like “micro” and “macro” are 
fundamentally relative to one another in biology. The 
terms refer to different descriptions of the same system 
at different levels of detail: a micro-scale might be the 
full set of all molecular interactions and ion channels 
opening and closing within a network of cells, whereas 
a macro-scale might be some coarse-grain or dimen
sion reduction of the same set of cells, such as the 
dynamics of their membrane potentials. In general, 
macro-scales are multiply-realizable: many different 
combinations of ion channel openings might lead to 
the same membrane potential. It is possible that macro- 
states such as resting potential [44] or pressure [45] can 
serve as convenient and tractable control points of 
decision-making by cells and tissues [46] as opposed 
to molecular pathways. For instance, manipulating the 
bioelectric field of a developing tissue ignores the 
underlying ion channel changes [9,10]. In such a case, 
the micro-scale in a set of cells would be the underlying 
ion channel changes (Figure 1a), which can be 
abstracted into a model that describes the dynamics 
and interactions of the system at that scale (Figure 
1b). The macro-scale would then be the coarse- 
grained and dimensionally-reduced aggregate behavior 
in the form of the membrane potential (Figure 1c), 
which can be manipulated via current injection, and 
can be modeled in some abstract way as a set of inter
actions based on membrane potential (Figure 1d).

Notably, there is an astronomically large number of 
possible dimension reductions (scales) at which to 
model or intervene on a biological system. How to 
find the macro-scales that are most informative for 
modeling the system? Notably, a macro-scale may pro
vide a more informative causal model compared to 
explicitly modeling the entire set of underlying chan
nels, even though it is dimensionally-reduced. This is 
because noise might be minimized through the parti
tioning and coarse-graining at the macro-scale. This 
minimization of noise, and subsequent increase in 
information, has been called causal emergence [47].

In the next sections, we explore how to proceed with 
identifying cases of causal emergence formally. In order to 
have tractable models with explicitly formalized higher 
scales, throughout we make use of biological systems 
modeled as networks using open-source data. 
Specifically, we use gene regulatory networks (GRNs). 

First, we overview how to measure the degree of informa
tion such networks, focusing on assessing their amount of 
intrinsic noise and degeneracy. This is done using infor
mation theory. Second, we show how to create a macro- 
scale model from a given micro-scale model via dimen
sion reduction. This is done by grouping nodes in 
a network into “macro-nodes.” Third, we apply these 
formalisms to a small GRN that controls mammalian 
cardiac development in order to identify the most infor
mative model of cardiac development, which we show 
involves a macro-scale. Fourth, we apply these formalisms 
to the largest component of the gene network of 
Saccharomyces cerevisiae. Finally, we argue why we expect 
informative macro-scale models to be common across the 
biological sciences and why the mechanisms of life itself 
often operates at macro-scales.

Information in the models of biological 
networks

As discussed in the previous section, in order to find 
the most informative scale to model a biological 

Figure 1. Comparing micro to macro. (a) A biological micro- 
scale, here a set of ion channels opening and closing, which 
makes up the membrane potential. (b) A causal model, and 
abstraction of the workings of the system at the micro-scale, is 
created by the modeler or experimenter (generally via inter
ventions). This causal model might represent the openings and 
closings of channels, or the interactions of other molecular 
interactions, and may have a very high number of parameters. 
(c) Biological systems often have available macro-scales which 
are some dimension reduction of the micro-scale. An example 
might be the membrane potential of a cell. Often these biolo
gical macro-scales have interventions that manipulate them 
directly, such as current injection to change the variables or 
states can only be manipulated at the macro-scale. (d) A macro- 
scale causal model is an abstraction, wherein each variable or 
element might represent that state of the macro-scale and the 
effects of changes of those states, like how increases the 
membrane potential might lead to further changes in neigh
boring cells.
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network at, one first needs a measure of information. 
Only in this way can the informativeness of different 
scales of a network be compared. Here we describe 
a measure that captures how much information is con
tained in a network of interactions of cells, proteins, or 
genes. Specifically, recent work has quantified the 
amount of information in a network of such interac
tions [48] using a measure called the effective informa
tion (EI) of a network. This measure assesses the 
uncertainty in the connectivity between the nodes of 
a network. The EI can be measured for complex net
works which can include feedback, self-loops, or any 
other directed or undirected network architecture. Note 
here that these formalisms apply only to weighted or 
unweighted networks with directed connections, and 
which can be cyclic or acyclic, a common type of 
model in the biological sciences. Yet even with this 
limitation, the latest in creation of causal networks 
from nonlinear timeseries [49] and other methods 
make these techniques widely applicable to most biolo
gical subfields.

Specifically, for some network of N nodes, each node 
vi has an output, Wi

out, which is a vector of out-weights. 
This vector has an entropy, H(Wi

out), which reflects in 
bits the uncertainty [50] of a random walker standing 
on the node vi (as shown in Figure 2a). The average 
H(Wi

out), <H(Wi
out)>, is the amount of information 

lost due to the uncertainty of outputs in the network, 
i.e. the noise (indeterminism).

How this uncertainty is distributed also influences 
the amount of information contained in a network’s 
causal structure. This can be captured by examining the 
average Wout (calculated in Figure 2b). The entropy of 
this vector, H(<Wi

out>), reflects how the total weight of 

the network is distributed. In a network where weight is 
distributed equally, H(<Wi

out>) is maximal at log2(N). 
In cases of complete degeneracy, which is when all 
nodes in the network connect solely to a single node, 
then H(<Wi

out>) = 0.0. Given these two quantities, the 
effective information (EI) of a network is:

Effective Information EIð Þ ¼ Hð<Wi
out > Þ

� <H Wi
outð Þ> 

In cases of (all-to-all connectivity) where random 
walkers (reflecting the interactions or dynamics of the 
network) are moving in a completely unpredictable way, 
this would mean that EI will be 0.0, as well as in cases of 
complete degeneracy (see Figure 2c). Only in cases where 
each node of the network has a unique target, and there
fore the dynamics are deterministic and non-degenerate, 
will EI be maximal. In this sense the EI of a system 
represents a quantification of deep understanding, defined 
in [12], as “knowing not merely how things behaved 
yesterday but also how things will behave under new 
hypothetical circumstances.” That is, in systems with 
high EI counterfactuals (hypothetical queries about one 
state instead of another) and interventions (such as the 
experimenter setting the system into a particular state) 
are more informative in that they contain more informa
tion about the future and past behavior of the system. 
Since it is only when EI is maximal that every difference 
in the system leads to a further unique difference, it also 
quantifies Gregory Bateson’s definition of information as 
“a difference that makes a difference” [51].

Bounded between 0 and log2(N), EI’s two fundamen
tal components are:

Degeneracy ¼ log2 Nð Þ � Hð<Wi
out > Þ

Determinism ¼ log2 Nð Þ � <H Wi
outð Þ> 

Degeneracy is uncertainty about the past, while inde
terminism is uncertainty about the future. Together, 
the determinism and degeneracy fix the EI of the sys
tem, such that EI = Determinism – Degeneracy [48]. 
The determinism of the network is based on the aver
age uncertainty a random walker faces at each node, 
measured by the entropy of each Wi

out. The degeneracy 
is based on the entropy of distribution of weights in the 
network and reflects how much overlap in targeting 
there is in the network (above and beyond the overlap 
due to indeterminism). How changes to network archi
tecture control these properties are shown in Figure 1c, 
as well as how the two jointly make up the EI. 
Additionally, it should be noted that EI can also be 
expressed as the mutual information following 

Figure 2. Measuring information in the causal structure of 
a network. (a) The entropy of a random walker’s next move
ment while standing on node A reflects the noise intrinsic to A’s 
outputs (note that this calculation requires normalizing the 
total weight of each node’s output to sum to 1.0). (b) <Wi

out> 
is the distribution of weight across the network (found by 
averaging across nodes in the network). (c) The EI is 
a function of the determinism minus the degeneracy of the 
network, which allows for the characterization of network 
architecture.
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a maximum entropy perturbation [52], thus it has 
a close connection to the control of an experimenter 
(for instance, the amount of information following the 
randomization of a variable in an experiment).

How to find informative biological macro-scales

The most crucial difference between a macro-scale and 
its micro-scale is the amount of noise in the interac
tions of the system. This difference is captured by the 
differing EI values at the micro-scale vs. macro-scale. 
Our goal is to identify a scale with the maximum EI, 
which optimizes understanding and control by concep
tually grouping some of the elements in a model into 
a “macro node”. That is, sometimes nodes in a network 
can be grouped in such a way that reduces the overall 
noise in the network, either by minimizing the degen
eracy or maximizing the determinism [48]. Here we 
first overview the general formalisms for how to 
group nodes in a network, and then apply these tech
niques to a GRN derived from real data as an example 
of how to find informative biological macro-scales.

The identification of a macro-scale entails the repla
cement of some set of nodes in the network, a subgraph 
S, with some single node that acts as a summary statis
tic for that subgraph’s behavior. This individual node is 
referred to as a macro-node, μ. Each node within the 
subgraph has some Wi

out, a vector that defines its out
puts. In order for μ to appropriately capture the sub
graph’s behavior it must be constructed from the set of 
each Wi,S

out. Note that in general if macro-scales are 
constructed correctly random walkers should behave 
identically on both the micro- and macro-scale [48], 
or within some degree of approximation, meaning the 
micro-scale dynamics are preserved at the macro-scale. 
Different macro-scales can preserve dynamics in differ
ent ways, meaning that the choice will always be sys
tem-dependent. For instance, macro-scales can be 
constructed as coarse-grains directly in the sense of 
averages, or as a more complicated weighted-average, 
but all macro-scales are dimension reductions in that 
they contain fewer nodes at the macro-scale (a smaller 
state space). For the system in Figure 3, all that is 
necessary is the simplest possible type of macro-node, 
which is a coarse-grain where the output of μ, Wμ

out is 
the average of the set of each Wi,S

out. At the end of this 
process some individual nodes A, B, C, etc., which are 
some subgraph of the network, are replaced by 
a macro-node, μ. However, for the system in Figure 4 
we make use of a kind of macro-node based off of the 
stationary dynamics of the network, which have pre
viously been shown to minimize dynamical differences 
in networks with stationary dynamics [48].

The replacing of a subgraph with a macro-node 
always reduces the dimension of the network by redu
cing the number of nodes. Causal emergence is defined 
as when a network’s macro-scale (after grouping) has 
more EI than its micro-scale (before grouping). This 
gain in EI at the macro-scale represents the amount of 
informational benefit from moving up in scale, which is 
a direct consequence of how much the given dimension 
reduction has minimized the noise. Here we search 
across the set of possible groupings in order to maxi
mally improve the EI of the system.

Figure 3. GRN coarse-graining. (a) The GRN as a Boolean net
work. Note Isl1 has further projections into the larger cardiac 
regulatory network, but since these are not represented, it is 
instead given a self-loop as is traditional in Boolean analysis for 
nodes without outputs. (b) The expanded state-space wherein 
each node is a binary string of exogen_canWnt_II, Foxc1_2, Fgf8, 
CanWnt, Isl1. (c) Using a greedy algorithm that groups different 
sets of nodes together the possible partitions can be explored 
in a search for only those groupings that improve the EI. (d) 
Once the appropriate groupings are identified the network can 
be represented in its dimensionally-reduced format. Here the 
macro-nodes μ1 and μ2 are constructed in the simplest way 
possible, as a coarse-grain.

Figure 4. Macro-scale of Saccharomyces cerevisiae GRN. (Left) 
The largest component of the Saccharomyces cerevisiae gene 
regulatory state-space, derived from the Boolean network GRN 
representation. (Right) The same network but grouped into 
a macro-scale, found via the greedy algorithm outlined in 
[48]. There is a ~ 66% reduction in total states and an increase 
in the network’s EI. Green nodes represent macro-nodes in the 
new network.
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As an example of how to find macro-nodes that 
minimize noise and degeneracy, we demonstrate the 
technique in a gene regulatory network of early cardiac 
development in mice [53]. A subset of the model is 
shown in Figure 3a, focusing around Wnt signaling 
(canWnt). The beginning of Wnt activation determines 
the mesodermal and cardiac cell lineage. Our subsec
tion also includes regulatory factors Isl1 and Fgf8, 
which are critical for the heart looping stage of cardi
ogenesis, and are expressed within the pharyngeal 
endoderm. The exogenous signal canWnt II tradition
ally re-activates canWnt signaling at the cardiac cres
cent state.

Since gene regulation is often assumed to be essen
tially ON/OFF, it is common for GRNs to be repre
sented as Boolean networks, as in Figure 3a. In order to 
examine the causal structure the Boolean network is 
expanded to its full state-space (Figure 3b). This expan
sion of the state-space creates a network of possible 
state-transitions, wherein the transition probabilities 
from each state are equivalent to a random walker on 
that node in the network, meaning that the uncertainty 
a random walker faces on a particular node is equiva
lent to the noise in the probability of change in gene 
expressions. At the micro-scale this state-space of the 
GRN has 2.78 bits of EI. A search is then conducted via 
an algorithm, the choice of which may vary depending 
on the architecture of the system. Note that one could 
use an array of different kinds of clustering or parti
tioning to identify viable candidates for macro-nodes, 
from dimensionality techniques like uniform manifold 
approximation method [54] to t-SNE [55]. So far 
a number of algorithms have already been compared 
for the purpose of finding macro-nodes in networks, 
such as one based on gradient descent, another on 
a greedy algorithm, and a third on spectral analysis 
[56]. Here, the spectral analysis algorithm is used, 
since it was deemed superior in terms of computational 
time and found the greatest increases of EI at the 
macro-scale compared to other algorithms so far. The 
choice of an algorithm is necessary since the space of 
possible macro-scales (all dimension reductions) is 
astronomically large.

In general, any algorithm seeking to identify causal 
emergence must look for groupings which increase the 
EI (since random groupings are highly likely to be poor 
candidates for macro-nodes). Only the macro-nodes 
that do improved the EI, as in Figure 3c, are kept in 
the macro-scale representation of the network. In this 
case the size of the state-space reduces from 32 states to 
only 18 states, and the EI increases to 2.9 bits, showing 
that over 40% of the network participates in the macro- 
scale and forms macro-nodes. Since the GRN state- 

space is deterministic, all of this informational gain 
comes from decreasing the degeneracy (from 2.21 bits 
of degeneracy at the micro-scale to 1.26 bits of degen
eracy at the macro-scale), indicating that initial states 
can be predicted (or more accurately, retrodicted) 
easier from output or steady states.

What does this macro-scale representation tell an 
experimentalist or modeler? First, it provides 
a dimensionally-reduced and noise-minimized model 
of the causal structure. That is, the analysis replaces 
the state space of the micro-scale with a dimensionally- 
reduced state space of the macro-scale. This makes it 
easier to understand how the system temporally pro
gresses in terms of its dynamics and “what causes 
what.” To see the advantages of this, consider a more 
traditional attractor analysis over the states of the sys
tem, such as examining which steady states follow an 
initial state. Usually, this is accomplished by running 
a model of the system forward in time given different 
initial states. Often, in a Boolean network all initial 
states lead to the same final resting or steady state. In 
this partial GRN all states eventually lead to the state 
{00001}, which is Isl1 being upregulated, except the 
state {00000}, which leads only to itself. Both states 
are the attractors of the system in that over its long- 
term dynamics it will always go to either one. Yet, in 
this attractor analysis information is lost in terms of 
what causes what, since only information about the two 
outputs is retained. While this tells the experimenter or 
modeler which end results to expect given an initial 
state, the order and nature of how those steady states 
are arrived at is left out of the analysis, and therefore 
their possible manipulations as well.

Additionally, what nodes get grouped into a macro- 
nodes tells us what interventional targets are meaning
ful within the system. Consider that of the two macro- 
nodes in the system {μ1, μ2}, each requires the activa
tion of exogenous canWnt II. However, their set of 
underlying nodes are differentiated solely by the con
current activation of Foxc1_2, which is not upregulated 
in μ1 and is upregulated in μ2. This tells us that it is 
solely Foxc1_2, rather than any other element in the 
network, that determines which causal path the net
work takes as long as exogenous canWnt II is activated. 
The macro-nodes capture which differences are actually 
relevant to the intrinsic workings of the system itself.

Macro-nodes always have either more deterministic 
or less degenerate connectivity, or both. They may also 
possess different properties than their underlying 
micro-nodes, such as memory or path-dependency 
[48]. Notably, since dimension reduction in general 
has no guarantee of increasing the determinism or 
minimizing the degeneracy, this indicates that modelers 
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and experimentalists should in general be biased 
toward reduction, which fits with the historical success 
of reductionist approaches in science. However, in 
some circumstances reduction (fine-graining) may 
actually lose information by increasing noise or degen
eracy. Measuring EI directly enables a principled way to 
assess this on a case-by-case basis in systems that can 
be modeled with networks.

While herein we focus solely on GRNs or protein 
interactomes, i.e. things that can be described as dis
crete Boolean networks with finite state spaces, the 
techniques we discuss are not limited to these sorts of 
biological systems. It should be noted that there are 
a number of existent algorithms or methods to dimen
sionally-reduce biological data from other sources. 
These include methods like quasi-steady state reduction 
(QSSR) for modeling biochemical pathways [57], such 
as enzymatic reactions [58]. Since continuous versions 
of EI exist [59], such techniques can be used to identify 
macroscales and then causal emergence in systems 
beyond just GRNs or other discrete models, although 
we do not consider them here.

Why do biological networks have macro-scales?

We expect causal emergence to be common in biology, 
and at times higher levels in biology may represent 
significant dimension reductions. To see these ideas in 
action, consider the largest component of the gene 
network of Saccharomyces cerevisiae (shown in Figure 
4), which is taken from the Cell Collective Database 
[60]. While a significantly larger directed network than 
the previously-analyzed cardiac development, it is still 
amenable to these techniques. Notably, in the search 
across different coarse-grainings of the state-space of 
the gene network of this common model organism 
undergoes a major dimension reduction when nodes 
are grouped to maximize EI, from 1764 nodes (each 
representing a state of the GRN) to merely 596. That is, 
the majority of the nodes in the network actually form 
macro-nodes. It is necessary to note here that random 
networks show no or extremely minimal causal emer
gence [48], that is, in purely randomly grown networks 
the vast majority of nodes do not form macro-nodes. It 
should also be noted that if the given GRN or inter
actome is incomplete or has incorrect connectivity, this 
analysis will be warped by the noise in the model’s 
construction, leading to an overestimation of causal 
emergence. This can be resolved in several ways, such 
as estimating how much noise is intrinsic to the model 
vs stems from the methodology, and such estimations 
have been applied to causal emergence in protein inter
actomes [61].

So what might be the reasons and benefits for 
a biological network, such as the gene network of 
Saccharomyces cerevisiae, to have the majority of its 
nodes participate in an informative higher scale? 
Below we offer three such reasons why we expect 
these sort of informative macro-scales to be common 
in biology, and why evolved systems have strong theo
retical benefits to be multi-scale in their operation.

First, biology often must work with components in 
a noisy environment. Due to things like Brownian 
motion or the open nature of living organisms, it may 
be impossible to ever have deterministic relationships 
at a micro-scale. In a sense evolution deals with 
a constant source of noise, noise similar to that defined 
in information theory wherein sending a signal always 
has some degree of error [50]. Therefore, in order to 
make sure that causes lead to reliable or deterministic 
effects, biology necessarily needs to operate at the level 
of macro-scales. Indeed, error-correction is known to 
be important for the development and functioning of 
entire organisms themselves [62].

Second, emergent macro-scales have a high robust
ness due to their resistance to underlying component 
failure. The removal of a micro-node in a network will 
generally not affect it the same way as a macro-node. 
For example, a specific inhibitor that targets some 
particular micro-node in a biological causal structure, 
like an individual gene in Figure 3, would have minimal 
effect if its target was merely one part of a larger 
macro-node. This fits with evidence that evolution 
actively selects for robustness to node failures in biolo
gical causal structures like protein interactomes [14]. In 
such systems the impact of component failure is 
reduced due to the innate error-correction of macro- 
scale causation. Moreover, for a multiscale system to 
exhibit functional plasticity in changing circumstances 
(e.g. cells building to a specific morphological endpoint 
from diverse starting conditions in regulative develop
ment, body-wide remodeling, or regeneration [63,64]), 
its architecture must be such as to enable efficient 
modular control over its own space of possible actions.

Third, natural selection requires variability within 
a population. This has led to the proposal that the 
degeneracy observed in biological systems is critical 
for evolution to proceed [65]. This is because degener
acy provides a pool of variability for evolution to act 
on. However, at the same time, organisms need to be 
predictably consistent in their phenotypes, behavior, 
and structure to survive. As discussed, they need to 
have deterministic outcomes from noisy inputs. 
Therefore, having functions operate at macro-scales, 
whether those macro-scales arise from degeneracy or 
indeterminism, allows for both deterministic operation 
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while preserving a pool of variability at the micro-scale. 
This may preserve population diversity while maintain
ing certainty over outcomes.

Concluding perspectives

We have shown how information theory offers tools for 
objective analysis of the value of macro-scale models of 
biological systems, focusing on biological networks 
such as GRNs. Specifically, we made use of the effective 
information (EI) to assess the informativeness of 
a causal model, and then showed how EI can increase 
at macro-scales in both a GRN that plays an important 
role in mammalian cardiac development and also the 
largest component of the GRN of Saccharomyces 
cerevisiae.

While the formal tools outlined herein have 
undergone significant development since their first 
proposal [47,52] their applications in biological sys
tems are just beginning. Although some have been 
skeptical about the use of information-based concepts 
in biology and whether it plays a key role in biolo
gical organization [66], recent advances have defini
tively shown how these can be rigorously applied; 
and indeed, software is now available to assist devel
opmental biologists in calculating important informa
tion-theory metrics of genetic, physiological, and 
other data [67,68].

The techniques we’ve demonstrated apply not only 
to gene-regulatory and physiological circuits in devel
opment and regeneration [44,69], but also to impor
tant phenomena such as cancer [70]. However, note 
that the origin of data must be taken into account, as 
well as what a model network represents, in order for 
the analysis advanced here to be appropriately inter
preted. In the case of inaccurate data, for instance, 
noise in the collection process may increase the 
apparent noise in the networks themselves, leading 
to an overestimation of causal emergence. Yet ulti
mately which subgraphs are good candidates for 
macro-nodes is a local phenomenon to those sub
graphs, and EI scales with the growth of a network 
in a very patterned way [48]. So even in cases where 
the model used is incomplete or parts of it unknown, 
unless the unknowns directly change the connectivity 
of candidate subgraphs, which subgraphs are good 
candidates or group into macro-nodes with high EI 
should not be affected. However, in general, we 
recommend these procedures for well-studied biolo
gical networks or for large datasets wherein noise is 
averaged out. Applying these formalisms in continu
ous systems beyond discrete networks is a future area 
of research.

Given the advantages that multi-scale structures pos
sess, which include error-correction, increased robust
ness, plasticity, and evolvability/learnability, we expect 
causal emergence to be common across nature. The 
increased informativeness of such higher scales are 
due to biology’s near-universal indeterminism and 
degeneracy and the ability of higher-level relationships 
to create certainty out of this uncertainty. If we are 
correct there should therefore be cross-species evidence 
that evolution selects specifically for multi-scale struc
ture due to these advantages. This can be investigated 
by observing the evolutionary history of gene regula
tory networks or protein interactomes, which is 
a significant direction for future research [61].

A further critical step will be the identification of 
high-information intervention targets in model systems 
and organisms. This is likely to first occur in simula
tions, including multi-scale models of development 
[71,72], regeneration [73–75], cancer [76,77], and phy
siology [78–80]. Ideally, this can provide proof that 
macro-scale interventions can not only control systems, 
but actually lead to more reliable downstream effects 
than their micro-scale alternatives, and therefore that 
biologists should adapt their scale of modeling and 
intervention to the system under investigation rather 
than taking a one-size-fits-all approach.

Many types of models in biology, from protein networks 
to physiological ones, can now benefit from a quantitative 
analysis of their causal structure, revealing the “drivers” of 
specific system-wide states and thus suggesting new strate
gies for rational interventions. Moving beyond traditional 
definitions of information [81] to analyzes of causation in 
networks across scales [82, Mayner, 83] can help drive new 
experimental work and applications in regenerative medi
cine, developmental biology, evolutionary cell biology, 
neuroscience, and synthetic bioengineering.
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