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Abstract: The early detection of inflammation and infection is important to prevent irreversible lung
damage in cystic fibrosis. Novel and non-invasive monitoring tools would be of high benefit for the
quality of life of patients. Our group previously detected over 100 exhaled mass-to-charge (m/z)
features, using on-line secondary electrospray ionization high-resolution mass spectrometry (SESI-
HRMS), which distinguish children with cystic fibrosis from healthy controls. The aim of this study
was to annotate as many m/z features as possible with putative chemical structures. Compound
identification was performed by applying a rigorous workflow, which included the analysis of on-line
MS2 spectra and a literature comparison. A total of 49 discriminatory exhaled compounds were
putatively identified. A group of compounds including glycolic acid, glyceric acid and xanthine were
elevated in the cystic fibrosis group. A large group of acylcarnitines and aldehydes were found to be
decreased in cystic fibrosis. The proposed compound identification workflow was used to identify
signatures of volatile organic compounds that discriminate children with cystic fibrosis from healthy
controls, which is the first step for future non-invasive and personalized applications.

Keywords: cystic fibrosis; breath analysis; SESI-HRMS; inflammation; infection; children; putative
compound identification

1. Introduction

Chronic lung disease in cystic fibrosis (CF) is characterized by a complex interplay of
inflammation and infection of the lower airways, starting already in early childhood and
leading to progressing lung damage over time [1]. A timely diagnosis of bacterial infection
and exacerbations is key to reducing CF-related consequences [2]. However, the dynamic
processes inside the lungs are hard to monitor with the conventional methods that include
the analysis of sputum or bronchoalveolar lavage fluid (BALF) [3]. Breath analysis might
offer a non-invasive solution to improve the management of CF lung disease in the future.

Exhaled breath contains several hundred volatile organic compounds (VOCs) that
can be related to biological processes, such as metabolism and disease-specific aspects
like inflammation [4]. On-line breath analysis by secondary electrospray high-resolution
mass spectrometry (SESI-HRMS) allows for the detection of a large range of mass-to-charge
(m/z) features in a completely untargeted approach [5]. Previous studies showed that
the method is capable of detecting putative biomarkers for respiratory diseases [6–10], as
well as entire series of related compounds and metabolic pathways [11–13]. Validation
and translation of the exhaled biomarkers into clinical settings represents an on-going
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challenge [14]. The coupling of the SESI source to a high-resolution mass spectrometer
opens the door to exact compound identification of the m/z features of interest [15]. In
general, compound identification is a crucial but complex and limiting step of metabolomic
studies [16]. Chemical structure annotation in on-line breath analysis is challenging, due to
the lack of a separation step and co-fragmentation of compounds within the quadrupole
isolation window, which complicates spectral matching [17]. Methods for compound iden-
tification that have been previously applied in SESI-HRMS studies include the sampling
of exhaled breath condensate (EBC) for analysis using liquid chromatography mass spec-
trometry (LC-MS) and subsequent fragment spectra and/or retention time matching to
standard chemicals [10,13], yielding the highest degree of identification certainty. Another
approach is the collection of on-line MS2 spectra directly from breath and a comparison
to standard fragment spectra [18], or the application of semi-automated identification
workflows [19,20] using software designed for the matching of fragment spectra. Lastly,
some studies additionally use exact mass matching and pathway analysis for putative
identification, which results in less certain annotations [18,21].

Several previous breath analysis studies investigated cystic fibrosis, either focusing
on bacterial colonization with various pathogens [22,23], with a major focus on Pseu-
domonas aeruginosa infection [24–26], or the general characterization of CF lung dis-
ease by the comparison of patients with a healthy population [9,27–32]. Most of the
described studies used GC-MS as a methodology [22,23,26–28,32], whereas a few used
selected ion flow tube mass spectrometry (SIFT-MS) [24,25,31], SESI-HRMS [9,19,30] or
laser spectroscopy [29]. Compounds that were found to distinguish patients with CF
from healthy controls included increased levels of hydrocarbons, which are related to
lipid peroxidation and oxidative stress [27,28], increased carboxylic acids [29], increased
N-methyl-2-methylpropylamine [28] and decreased dimethyl sulfide [27].

This work is a follow up to a breath analysis study that was previously published by
our group [30]. The study compared breath profiles acquired by on-line breath analysis
(SESI-HRMS) of 52 children with CF, with 49 healthy controls (aged five to eighteen). A
major result was the identification of 171 m/z features that differed significantly (adjusted
p-value < 0.05) between the CF and control group. A total of 61 of these were elevated
in patients with CF, whereas the rest were increased in the healthy children. The average
predictive accuracy of the feature set to distinguish CF from healthy was 72.1%. The aim
of this work was to elucidate the molecular structure of as many of these m/z features as
possible, to obtain a deeper understanding of their metabolic connections and potential
roles in inflammatory or pathophysiological processes.

2. Materials and Methods

The data used for this analysis was previously published by our group [30]. The study
compared breath profiles of 52 children with CF to those of 49 healthy controls (aged 5 to
18 years) using on-line breath analysis with SESI-HRMS. A major result of our previous
study was a set of 171 discriminatory m/z features (CF vs. control group). Additionally,
various clinical data were collected. These results, along with the corresponding feature
intensity matrix, were used as input data for this follow-up study aiming at the compound
identification of the differentiating m/z features in the breath samples. The study was
approved by the ethics committee of the canton of Zurich (KEK-ZH ID2017.00909), and
written consent was given by the legal guardians and/or the participants.

2.1. Compound Identification

MS2 spectra were recorded directly from breath, using an on-line secondary elec-
trospray ionization source (SuperSESI, FIT FossilionTech, Madrid, Spain) attached to a
high-resolution mass spectrometer (TripleTOF 5600+, AB Sciex, Concord, ON, Canada).
The methodology of measurements, material and instrumental settings were identical to
the ones used for the initial comparison of CF patients and healthy controls [30]. For MS2

acquisition, the collisionally activated dissociation (CAD) gas was set to 6 (instead of 0 for
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MS1 acquisition), and the collision energy was set to 20 eV with a spread of ± 10 eV. The
precursor isolation window of the instrument used was 0.7 ± 0.1 Da. The proprietary
wiff files containing MS1 and MS2 spectra were converted to mzXML and mgf format
respectively, using MSConvert (ProteoWizard 3.0.2 [33]).

The applied compound identification workflow was adapted from other publications
written by our group [19,20]. An overview of the specific workflow used in this study
is visualized as a flowchart in Figure 1. It is based on on-line MS2 fragment spectra
matching with the SIRIUS software v4.9.9 [34–36], as well as an exact mass comparison
with compounds from the SESI-HRMS literature. Finally, the Kyoto Encyclopedia of Genes
and Genomes (KEGG) [37] and the Human Metabolome Database (HMDB) [38] were
searched to find additional compound hits for chemical families that had more than three
matches from the first two steps. The aim of this integrative and multi-step workflow
was to assign the most plausible putative chemical structures to as many m/z features
as possible.
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Below follows a detailed description of the steps visualized in Figure 1 applied to this
data set:

1. List of significant m/z features differentiating children with CF from healthy controls.
2. The m/z features were clustered in groups, according to their pairwise correlation,

followed by a search of adduct and loss patterns in each group of m/z features based
on differences of exact masses, as described in Kaeslin et al. [19].

3. On-line breath data acquisition was carried out sequentially by:

a. A full MS1 scan (m/z 50–500).
b. MS2 scans of the target masses.

4. The following criteria were considered, in order to decide whether or not to record an
MS2 spectra:

a. Presence and intensity of the target peak (>30 counts per second (cps)).
b. The number of peaks (>30 cps) within the mass isolation window of 0.7 Dalton

that would be co-fragmented.
c. The intensities of the surrounding peaks from b. In relation to the intensity of

the target peak (intensity target peak ≥ intensity of surrounding peaks).
d. m/z features over 300 were excluded, due to the fact that their intensities were

low, and the amount of possible molecular formulae and structures increases
with higher masses, making the correct annotation based on on-line breath MS2

spectra less likely.

5. On-line MS2 spectra of the peaks passing the quality control were recorded.
6. The recorded MS2 spectra were analyzed with the SIRIUS software [34], using the

following settings:

a. Molecular formula search: instrument: Q-TOF mass deviation: 20 ppm database
search: KEGG and HMDB ionization: [M + H] + elemental restrictions: C, H, O,
N: 0–infinity; S: 0–2

b. Structure elucidation: database search: KEGG and HMDB adducts: [M + H]+,
[M + H2O + H]+, [M − H2O + H]+, [M + NH4]+, [M − H]−, [M + H2O − H]−,
[M − H2O − H]−

7. From step 6, MS2 spectra received potential putative structure candidates as suggested
by SIRIUS. The remaining 9 did not receive a structure suggestion.

8. In parallel, all significant m/z features were matched to compounds previously pub-
lished by SESI-HRMS using exact mass comparison below a threshold of 10 parts per
million (ppm).

9. The compound suggestions from the MS2 spectra analysis (step 6/7) and the lit-
erature comparison (step 8) were integrated to receive the most plausible final
compound suggestion:

a. m/z features that only had compound hit(s) from MS2 analysis by SIRIUS:
the putative compound suggestion with the best CSI:FingerID score [35] and
protonated or deprotonated ionization, the most common ionization form in
SESI [13,39], was selected. Where a different ion species had a CSI:FingerID with
a magnitude of at least 30 units better than the [M + H] +/[M − H]− ionization,
the corresponding putative compound suggestion was selected instead, due to
the higher probability score according to the structure prediction by SIRIUS.

b. m/z features that had only a compound hit from literature: the proposed
compound from the literature was selected.

c. m/z features that had hits from both the MS2 analysis and the literature: com-
parison of all possible compound suggestions from SIRIUS with that from the
literature. Selection of the most plausible putative compound.

10. Additional matches to chemical groups that were represented by more than three
compounds were searched by exact mass comparison with database entries in KEGG
and HMDB.
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11. Known compounds with high molecular weights (m/z > 300) and high intensities that
were automatically excluded in step 4, were identified by exact mass comparison with
a list of common mass spectrometry contaminants by Keller et al. [40] and further
confirmed by on-line MS2 fragment spectra analysis.

12. A list of compounds that could be assigned with putative structures. The final
compounds were assigned with an identification (ID) level according to Schymanski
et al. [41] (ID 1 = highest certainty, ID 5 = lowest certainty). Putative compound
suggestions from on-line MS2 analysis = ID 3, from exact mass and chemical group
matching = ID 4. For compounds from the literature, the ID level was adapted to the
identification certainty in the literature.

2.2. Data Analysis

All data analyses and visualizations were carried out in R version 4.1.1 (R Foundation
for Statistical Computing, Vienna, Austria). Statistical and predictive analyses had already
been performed in our previous work [30]. In addition, in order to evaluate the relationships
between the metabolites, we calculated Pearson correlation coefficients for all pairs of
compounds. To visualize the similarity between the identified metabolites, we used the
ComplexHeatmap package in R [42] to perform hierarchical clustering analysis and plot the
correlation matrix with dendrograms using Pearson correlation coefficients as the pairwise
distance metric (distance between metabolites x and y: d = 1 − cor(x, y), where cor(x, y) is
the Pearson correlation coefficient between x and y). Additionally, network modeling was
used for further visualization of the relatedness among the compounds using the qgraph
package [43].

3. Results
3.1. Compound Identification Workflow

As a first step, putative compound structures were suggested for the 171 significant
m/z features based on the described compound ID workflow (Figure 1).

The adduct and loss relationships are listed in Table S1 (step 1). As a result of the peak
quality check of the compound ID workflow (step 4), on-line MS2 spectra from 23 m/z
features were recorded (step 5). A total of 15 received potential structure suggestions from
the MS2 spectrum analysis with the SIRIUS software (step 6). Additionally, there were
23 compound matches based on exact m/z comparison with the SESI literature (step 8).
The results from steps six and eight were then compared and integrated, to receive the
most plausible putative compound suggestion (step 9). For nine m/z features, the most
likely structure suggestion from the MS2 spectrum analysis was determined (step 9a). Only
16 m/z features had one suggestion from the literature (step 9b). Eight m/z features received
compound suggestions from the MS2 analysis and the literature (step 9c). In seven cases, the
compound suggestion from the literature was found among the possible suggestions from
the MS2 spectra analysis, indicating that the on-line MS2 spectra supported the proposed
compounds from the literature. In the other two cases, the most plausible suggestion
from the MS2 spectra was chosen, due to a higher identification level than the one in the
literature. Both acylcarnitines and aldehydes were frequently found among the putative
compound suggestions. Ten additional acylcarnitines and one aldehyde (further supporting
the suggestion from the MS2 analysis) were found in the KEGG and HMDB databases,
based on exact mass comparison (step 10). As a last step, three significant m/z features
with high molecular weights (m/z > 300) known to correspond to polysiloxanes, were
added to the list of putatively identified compounds (step 11). In total, 45 m/z features
were putatively identified, consisting of 34 metabolites elevated in the healthy group
(Table 1) and 11 elevated in the CF group (Table 2). The column “identified based on”
in Tables 1 and 2 specifies how each individual putative compound was annotated. The
type of identification (e.g., on-line MS2 analysis or literature) as well as the assigned ID
levels reflecting the certainty of identification, are also indicated in the tables for each
putative compound.
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Table 1. Compounds that were putatively identified and elevated in the healthy control group.
Adj. = adjusted, Lit. = literature, ID = identification. Reproduced with permission of the © ERS
2022 [30].

No. Mode m/z Adj.
p-Value Class Compound Formula Ionization ID Level ID Source

1

Po
si

ti
ve

160.0965 0.014

A
cy

lc
ar

ni
ti

ne
s

Dehydrocarnitine C7H13NO3 [M + H]+ ID4 [18]

2 162.1123 0.025 Carnitine C7H15NO3 [M + H]+ ID1 [18], MS2

3 204.123 0.020 Acetylcarnitine C9H17NO4 [M + H]+ ID1 [18]

4 216.1235 0.025 Acryloylcarnitine
Propenoylcarnitine C10H17NO4 [M + H]+ ID4 [18],

HMDB

5 218.1388 0.035 Propionylcarnitine C10H19NO4 [M + H]+ ID1 [18]

6 230.1392 0.020 Butenylcarnitine C11H19NO4 [M + H]+ ID4 HMDB

7 232.154 0.020 Butyrylcarnitine C11H21NO4 [M + H]+ ID4 [18]

8 234.1335 0.022 Hydroxypropionylcarnitine C10H19NO5 [M + H]+ ID4 HMDB

9 234.1697 0.025 Tiglylcarnitine C12H21NO [M + H]+ ID4 HMDB

10 246.17 0.035 2-Methylbutyrylcarnitine C12H23NO4 [M + H]+ ID4 HMDB

11 260.222 0.030 Octanoylcarnitine C15H30NO4 [M − CO + H]+ ID4 [20]

12 262.1648 0.049 Hydroxyisovaleroyl carnitine C12H23NO5 [M + H]+ ID4 HMDB

13 286.201 0.018 Octenoylcarnitine C15H27NO4 [M + H]+ ID4 HMDB

14 304.2115 0.035 3-Hydroxyoctanoyl carnitine C15H29NO5 [M + H]+ ID4 HMDB

15 318.221 0.044 3 -Hydroxynonanoyl carnitine C16H31NO5 [M + H]+ ID4 HMDB

16 332.2448 0.048 3-Hydroxydecanoyl carnitine C17H33NO5 [M + H]+ ID4 HMDB

17 144.138 0.005

A
ld

eh
yd

es

Octenal C8H14O [M + NH4]+ ID4 HMDB, MS2

18 172.1693 0.035 2-Decenal C10H18O [M + NH4]+ ID1 [12]

19 132.101 0.022 4-Hydroxy-2-hexenal C6H10O2 [M + NH4]+ ID4 [12]

20 146.1175 0.018 4-Hydroxy-2-heptenal C7H12O2 [M + NH4]+ ID4 [12]

21 160.133 0.039 4-Hydroxy-2-octenal C8H14O2 [M + NH4]+ ID4 [12]

22 188.1645 0.002 4-Hydroxy-2-decenal C10H18O2 [M + NH4]+ ID1 [12]

23 230.2117 0.046 4-Hydroxy-2-tridecenal C13H24O2 [M + NH4]+ ID4 [12]

24 244.227 0.047 4-Hydroxy-2-tetradecenal C14H26O2 [M + NH4]+ ID4 [12]

25 144.1022 0.050 4-Hydroxy-2,6-heptadienal C7H10O2 [M + NH4]+ ID4 [12]

26 211.1688 0.047 4-Hydroxy-2,6-tridecadienal C13H22O2 [M + H]+ ID1 [12]

27 60.0808 0.012 Trimethylamine C3H9N [M + H]+ ID3 MS2

31 340.2482 0.015 Evocarpine C23H33NO [M + H]+ ID4 [44]

28 146.0813 0.047

A
ci

ds

4-Acetamidobutyric acid C6H11NO3 [M + H]+ ID3 MS2

29 162.0757 0.032 2-Aminoadipic acid C6H11NO4 [M + H]+ ID3 [20], MS2

30 188.128 0.047 8-Amino-7-oxononanoic acid C9H17NO3 [M + H]+ ID3 MS2

32

N
eg

at
iv

e 115.0763 0.022 Hexanoic acid C6H12O2 [M − H]− ID4 [45]

33 171.1028 0.014 9-Oxononanoic acid C9H16O3 [M − H]− ID1 [13], MS2

34 199.134 0.050 11-Oxoundecanoic acid C11H20O3 [M − H]− ID1 [13], MS2

3.2. Putative Chemical Structures

The relatedness between the 45 putatively identified compounds was visualized in the
correlation matrix heatmap (Figure 2), with the dendrogram from the hierarchical clustering
analysis. The dendrogram revealed several clusters of compounds. From the two main tree
branches differentiating between metabolites elevated in the CF group (the left main branch
of the top dendrogram in Figure 2) and the metabolites elevated in the healthy group
(the right main branch of the top dendrogram), the next largest cluster when following
the dendrogram split from top to bottom was found in the healthy group. This cluster
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mainly contained acylcarnitines and aldehydes. The putative compound identification
workflow revealed acylcarnitines and aldehydes as the two largest groups of chemically
related compounds, with 16 and 10 representatives, respectively. Figure 3 shows illustrative
box plots of a selection of acylcarnitines (Figure 3A–D) as well as a correlation network plot
of all the 16 acylcarnitines, visualizing the relationships between them. All 34 putatively
identified compounds that were elevated in the healthy group are listed in Table 1.
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Figure 3. Exemplary box plots of 4 acylcarnitines (red = CF patients, blue = healthy controls),
*: false discovery rate (FDR) adjusted p < 0.05 taken from our previous study [30]) and correlation
network plot of all 16 acylcarnitines elevated in the healthy group. (A) Carnitine (m/z + 162.1123),
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(B) Acetylcarnitine (m/z + 204.123), (C) Propionylcarnitine (m/z + 218.1388, (D) Butyrylcarnitine
(m/z + 232.154), (E) Correlation network plot of the 16 acylcarnitines. Edges indicate correlations
between compounds, calculated using Pearson’s correlation coefficients. Red color indicates positive
correlation ranging, from lighter color and thinner edges (lower correlation, minimal value = 0.78)
to darker color and thicker edges (higher correlation, maximum value = 0.97). Only significant
correlations (p < 0.05 after Bonferroni correction [46,47]) are displayed.

The 11 putatively identified compounds elevated in the CF group are listed in Table 2.
When examining the cluster of the CF metabolites (Figure 2) the next split from top to
bottom in the corresponding dendrogram showed that polysiloxanes form a cluster (left
branch) which is different from several positively and negatively ionized organic com-
pounds (right branch). Box plots of glycolic acid, glyceric acid and xanthine from the latter
group are presented in Figure 4A–C. The positively ionized m/z features diethanolamine
(Figure 4D), previously reported as a bacterial metabolite of Staphylococcus aureus in an
in vitro study by our group [19]. The three m/z features that were annotated as polysilox-
anes corresponded to forms of a single polysiloxane (dodecamethylcyclohexasiloxane) and
were, as expected, highly correlated to each other, forming a distinct cluster. Two of them
are visualized as box plots in Figure 4E,F.
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Figure 4. Box plots of a selection of compounds elevated in the CF group. Red = CF patients,
blue = healthy controls (*: p < 0.05, **: p < 0.01, ***: p < 0.001 with FDR adjusted p-values taken from our
previous work [30]). (A) Glycolic acid (m/z − 75.0085), (B) glyceric acid (m/z − 105.018), (C) xanthine
(m/z − 151.0247), (D) Diethanolamine (m/z + 106.0858), (E) polysiloxane [M + H] + (m/z + 445.12),
(F) polysiloxane [M-CH4 + H]+ (m/z + 429.088).
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Table 2. Compounds that were putatively identified and elevated in the CF group. Adj. = adjusted,
Lit. = literature, ID = identification Reproduced with permission of the © ERS 2022 [30].

No. Mode m/z Adj.
p-Value Class Compound Formula Ionization ID Level ID Source

1a

N
eg

at
iv

e

75.0085 <0.001

A
ci

ds

Glycolic acid C2H4O3 [M − H]− ID3 MS2

1b 121.0143 <0.001 Glycolic acid C2H4O3 [M + CH2O2 − H]− ID4 Adduct/loss

2 105.0188 0.002 Glyceric acid C3H6O4 [M − H]− ID3 [44], MS2

3 151.0247 <0.001 Xanthine C5H4N4O2 [M − H]− ID1 [10], MS2

4 137.009 0.012 5-Diazouracil C4H2N4O2 [M − H]− ID3 MS2

5

Po
si

ti
ve

106.0858 0.043 Diethanolamine. C4H11NO2 [M + H]+ ID3 [19], MS2

6 163.0965 0.018 7-Oxohepatnoic acid C7H12O3 [M + H2O + H]+ ID3 MS2

7 225.0428 0.009 Sideretin C10H8O6 [M + H]+ ID3 MS2

8 429.088 0.002

Pl
as

ti
ci

ze
rs Polysiloxane [C2H6SiO]6 [M − CH4 + H]+ ID2 [40], MS2

9 445.12 0.001 Polysiloxane [C2H6SiO]6 [M + H]+ ID2 [40], MS2

10 462.1462 0.027 Polysiloxane [C2H6SiO]6 [M + NH4]+ ID2 [40], MS2

4. Discussion

In this study, 45 compounds discriminating children with CF from healthy controls
were putatively identified. To our knowledge, this is the largest number of compounds that
have been identified in a single breath analysis study investigating children with CF.

Ten out of 45 compounds were elevated in the CF group, almost half of which were
negatively ionized. Glycolic acid was detected in the deprotonated form, as well as with
a formic acid adduct originating from the electrospray fluid. Glycolic and glyceric acid
are structurally similar, and only differ by a hydroxyl group (Figure 4A,B). Glycolic acid
is metabolized to oxalate, and increased levels of both are found in primary endogenous
hyperoxaluria [48]. In CF, there is an increased incidence of secondary, absorptive hy-
peroxaluria and a higher risk of nephrolithiasis [49]. Since an increased glycolic acid
concentration is related to primary and not secondary hyperoxaluria [48], its concentration
should not be majorly affected in CF, and was therefore rarely studied. One study found
increased levels of glycolic acid in urine, together with a positive correlation to oxalic acid
levels in patients with CF in a targeted analysis [50], whereas an untargeted metabolomics
study found no significant difference [51]. Glycerate is a metabolite of glyceraldehyde and
feeds into glycolysis [52]. Elevated glycerate levels in infants with CF were found as a
minor result without pathway connection, in an untargeted metabolomic study [51].

The purine base xanthine was found to be elevated in the exhaled breath of children
with CF. Esther et al., reported increased levels of xanthine in the bronchoalveolar lavage
fluid (BALF) of preschool children with CF to be associated with airway inflammation and
structural lung disease, and a potential contributor to oxidative stress [53]. Conversely,
another study found decreased levels of xanthine in CF airway epithelial cells compared
with healthy cells [54]. Glycolic acid and xanthine were highly correlated (see Figure 2),
although they do not seem to have an immediate metabolic relation.

Another putatively identified compound that was increased in patients with CF was
diethanolamine (Figure 4D). This compound was previously putatively identified by our
group as a volatile bacterial metabolite uniquely emitted by Staphylococcus aureus, in a
study of the detection of emitted VOCs from cultures of common pathogens in CF [19].
Diethanolamine was not reported as a bacterial metabolite in other studies. Of the 52 in-
cluded CF patients, 37 had a positive sputum culture for Staphylococcus aureus at the time
point of the breath analysis measurement. However, no significance could be found within
the group of CF patients. Diethanolamine was correlated with glyceric acid, which cannot
be linked to immediate biologic connections either. A reason for this might be that we do
not know what degree of correlation reflects a biologically significant relation.
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Dodecamethylcyclohexasiloxane, a volatile polysiloxane [55], was significantly in-
creased in the CF group in three different ionization forms. Polysiloxanes are plasticizers,
and are commonly used as additives in medical products [56], but they are also known
as common mass spectrometry contaminants [40]. We hypothesize that the polysiloxane
is elevated in children with CF due to the life-long and daily inhalation of medications
through devices made from plastic, since previous exposure is known to be an important
factor that can influence the exhaled concentration of exogenous compounds [57].

Out of 45 compounds, 34 were elevated in healthy children. Two large groups of
chemically related compounds were found among them. The first one consisted of 16 acyl-
carnitines, which were either previously identified by SESI-HRMS or found by exact
matching to HMDB. Additionally, carnitine itself was further confirmed by the recorded
on-line MS2 spectrum. Figure 3A–D shows box plots of carnitine, acetylcarnitine, pro-
pionylcarnitine and butyrylcarnitine. These results are consistent with previous studies
that also found decreased levels of acylcarnitines in CF [58–60]. O’Connor et al., reported
decreased levels of acylcarnitines that correlated with inflammation and the amount of
bacteria in patients with CF, as a major finding of their recent untargeted metabolomic
study in BALF samples [58]. Acylcarnitines are important for cellular energy production,
mainly for the β-oxidation of fatty acids, as they are used as intermediates to transport
acyl groups into the mitochondria [61]. Lower concentrations of acylcarnitines in CF could
therefore be potentially related to an abnormal β-oxidation of fatty acids [59]. Elevated
levels of acylcarnitines have also been linked to the induction of inflammatory signaling
pathways in type two diabetes, but the exact molecular targets are yet to be identified [62],
and are required in order to draw potential mechanistic parallels with the pathophysiology
of CF. Figure 3E visualizes the correlation network plot of the 16 acylcarnitines. Most of
them have several connections to other acylcarnitines, which strengthens their annotations.

The second group of decreased metabolites in the healthy group contained 10 alde-
hydes. These were mostly identified by exact mass matching with compounds from the
SESI-HRMS literature. Aldehydes are known as markers of oxidative stress from lipid
peroxidation [63]. Oxidative stress is known to be elevated in CF [64], which implies that
aldehyde levels should also be elevated. Some studies investigated the levels of malondi-
aldehyde (MDA) and/or 4-hydroxy-2-nonenal (4-HNE), neither of which were detected
in our study in CF. Antus et al., found increased concentrations of MDA in EBC, sputum
and blood plasma of CF patients [65]. Another study found elevated levels of MDA but
unaltered levels of 4-HNE in the serum of CF patients [66]. Aldehydes are also environmen-
tal contaminants originating from air pollution, food and other exogenous sources, which
influence the amount of exposure to aldehydes [67]. Since factors such as air pollution
can have a negative effect on CF [68], patients might be more sensitized and careful in
their lifestyle choices. Interestingly, another as yet unpublished study by our group also
found lower levels of various aldehydes in children with asthma, compared with healthy
controls [20].

Three omega fatty acids were found among the significant m/z features. Two of them,
9-oxononanoic acid and 11-oxoundecanoic acid were elevated in the healthy group and
correlated with each other, whereas 7-oxoheptanoic acid was surprisingly increased in
the CF group. However, the putatively identified 7-oxoheptanoic acid contained an H2O
adduct and the deprotonated form was not detected, which makes its identity less certain,
since all previously reported omega fatty acids were only detected in the deprotonated
form [13]. The omega oxidation of fatty acids was also reported to be decreased in patients
with COPD, compared with healthy controls [10].

The applied compound identification workflow was adapted from previous stud-
ies [19,20] and designed to assign putative compound suggestions based on on-line
fragment spectra analysis and literature comparison. However, the use of on-line MS2

spectra and literature matching for structure annotation has some limitations. (1) The
recording of on-line MS2 spectra often leads to co-fragmentation of several precursors
within the mass isolation window of 0.7 ± 0.1 Da, which complicates the correct an-
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notation based on fragment spectra analysis [17]. (2) We did not record fragmentation
spectra by LC-MS or GC-MS to confirm the putative compound structure. (3) The m/z
features were compared with those in the SESI literature. Where there was a match, the
compound from the literature was selected without further confirmation, except in some
cases where the compound suggestion was further confirmed by the on-line fragment
spectrum. (4) Structure prediction based on the CSI:FingerID score can result in some
wrong annotations, due to the large amount of chemical structures in databases [35]. The
selection of the most likely putative structure selection from SIRIUS was based on fixed
criteria, to reduce bias. (5) Many of the significant m/z features were of high masses
(>300), which is a strength of SESI. However, such high masses represent a challenge for
structure elucidation. The latter is also a reason why only 11 compounds elevated in the
CF group could be putatively identified, compared with 34 in the healthy group. Apart
from an imbalance in the total amount of 171 m/z features (61 elevated in the CF group
and 111 elevated in the healthy group), 29 of the m/z features elevated in CF had m/z
ratios over 300, compared with 19 in the healthy group, and were therefore automatically
excluded from the recording of MS2 spectra.

Previous breath analysis studies comparing patients with CF with a control group
were either targeted studies [27], studies that analyzed the predictive power of breath
profiles without compound identification [32], or studies that identified a small set of
discriminatory VOCs [28,29]. In this work, we were able to detect an overall larger number
of differentiating m/z features, and identify a bigger subset of exhaled metabolites than
previous studies, which is advantageous to understanding more about the connections
between the potential biomarkers and the pathophysiology of CF. Another difference is
that this study used on-line SESI-HRMS, which yields immediate results without sample
preparation. However, the predictive accuracy of 72.1% from this data set was lower than
the one in Robroeks et al., which reported an accuracy for distinguishing CF patients
from healthy controls by GC-MS of 100% by including 22 VOCs and of 92% by only using
10 exhaled VOCs [28]. A reason for the lower accuracy might be that we investigated a
younger and healthier population of CF patients, which was reflected in forced expiratory
volume in one second (FEV1) and body mass index (BMI) values comparable to the healthy
group [30]. This might also be a reason why we could not find any significant associations
between the FEV1, reflecting disease severity, and the significant m/z features [30].

In conclusion, children with cystic fibrosis exhale a distinct signature of VOCs that
discriminates them from healthy controls, as measured by on-line breath analysis with SESI-
HRMS. An effort was made to define a standardized compound identification workflow
based on on-line MS2 spectrum analysis and literature matching. It was successfully
applied to putatively identify 45 out of 171 exhaled compounds, some of which confirmed
previous results reported in the literature and are potentially related to pathophysiology.
The results also indicated that it is important to take external factors such as the inhalation
of medication into account. This study was the first step towards applying on-line breath
analysis as a tool to monitor CF lung disease non-invasively, by confirming that the exhaled
breath of CF patients is distinct from that of healthy controls, and might directly reflect
pathophysiological and/or inflammatory changes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/metabo12100980/s1, Table S1 lists all 171 significant m/z features,
including details from the compound identification workflow.
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