
Citation: Wang, Y.; Teng, F.;

Wang, M.; Li, S.; Lin, Y.; Cai, H.

Monitoring Spatiotemporal

Distribution of the GDP of Major

Cities in China during the COVID-19

Pandemic. Int. J. Environ. Res. Public

Health 2022, 19, 8048. https://

doi.org/10.3390/ijerph19138048

Academic Editors: Paul B.

Tchounwou and Jamal Jokar

Arsanjani

Received: 25 April 2022

Accepted: 27 June 2022

Published: 30 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Article

Monitoring Spatiotemporal Distribution of the GDP of Major
Cities in China during the COVID-19 Pandemic
Yanjun Wang 1,2,3,* , Fei Teng 1,2,3, Mengjie Wang 1,2,3, Shaochun Li 1,2,3 , Yunhao Lin 1,2,3 and Hengfan Cai 1,2,3

1 Hunan Provincial Key Laboratory of Geo-Information Engineering in Surveying, Mapping and Remote
Sensing, Hunan University of Science and Technology, Xiangtan 411201, China;
tengfei@mail.hnust.edu.cn (F.T.); wangmengjie@mail.hnust.edu.cn (M.W.); lsc_gis@mail.hnust.edu.cn (S.L.);
linyunhao@mail.hnust.edu.cn (Y.L.); chf@mail.hnust.edu.cn (H.C.)

2 National-Local Joint Engineering Laboratory of Geo-Spatial Information Technology, Hunan University of
Science and Technology, Xiangtan 411201, China

3 School of Earth Science and Spatial Information Engineering, Hunan University of Science and Technology,
Xiangtan 411201, China

* Correspondence: wangyanjun@hnust.edu.cn; Tel./Fax: +86-731-5829-0092

Abstract: Monitoring the fine spatiotemporal distribution of urban GDP is a critical research topic for
assessing the impact of the COVID-19 outbreak on economic and social growth. Based on nighttime
light (NTL) images and urban land use data, this study constructs a GDP machine learning and
linear estimation model. Based on the linear model with better effect, the monthly GDP of 34 cities
in China is estimated and the GDP spatialization is realized, and finally the GDP spatiotemporal
correction is processed. This study analyzes the fine spatiotemporal distribution of GDP, reveals the
spatiotemporal change trend of GDP in China’s major cities during the current COVID-19 pandemic,
and explores the differences in the economic impact of the COVID-19 pandemic on China’s major
cities. The result shows: (1) There is a significant linear association between the total value of NTL
and the GDP of subindustries, with R2 models generated by the total value of NTL and the GDP of
secondary and tertiary industries being 0.83 and 0.93. (2) The impact of the COVID-19 pandemic
on the GDP of cities with varied degrees of development and industrial structures obviously varies
across time and space. The GDP of economically developed cities such as Beijing and Shanghai are
more affected by COVID-19, while the GDP of less developed cities such as Xining and Lanzhou
are less affected by COVID-19. The GDP of China’s major cities fell significantly in February. As
the COVID-19 outbreak was gradually brought under control in March, different cities achieved
different levels of GDP recovery. This study establishes a fine spatial and temporal distribution
estimation model of urban GDP by industry; it accurately monitors and assesses the spatial and
temporal distribution characteristics of urban GDP during the COVID-19 pandemic, reveals the
impact mechanism of the COVID-19 pandemic on the economic development of major Chinese cities.
Moreover, economically developed cities should pay more attention to the spread of the COVID-19
pandemic. It should do well in pandemic prevention and control in airports and stations with large
traffic flow. At the same time, after the COVID-19 pandemic is brought under control, they should
speed up the resumption of work and production to achieve economic recovery. This study provides
scientific references for COVID-19 pandemic prevention and control measures, as well as for the
formulation of urban economic development policies.

Keywords: nighttime light images; urban economy; land use data; COVID-19; GDP estimation model

1. Introduction

In December 2019, the COVID-19 outbreak broke out in Wuhan, China [1,2]. The
pandemic occurred during the Spring Festival in China. The COVID-19 pandemic soon
extended from Wuhan to the entire province of Hubei and even the entire country of
China due to the virus’s high infectivity. On 23 January 2020, Wuhan and numerous
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provinces in China announced a public health emergency reaction, stopping social and
economic activities and restricting people movements to prevent the COVID-19 virus from
spreading further. The COVID-19 outbreak has had a significant impact on people’s daily
lives and has slowed the social and economic growth of Chinese cities in a short period of
time. The COVID-19 pandemic situation in China has steadily stabilized, the spread has
been effectively controlled, cities have gradually resumed production and living activities,
and the economy has begun to recover swiftly since the Chinese government took strong
pandemic preventive measures. Because of the COVID-19’s intricacy and recurrence in
terms of temporal and spatial changes, how to take into account economic development
and pandemic prevention and control requires further exploration of the mechanism and
principles of the COVID-19’s impact on economic development, so as to provide scientific
reference for urban pandemic prevention measures and economic policy formulation under
the background of repeated pandemics.

The gross domestic product (GDP) is a key metric for assessing a country’s or region’s
economic performance [3]. The GDP of the impacted areas will fluctuate substantially in
a short period of time as a result of catastrophic disasters. Traditional GDP figures feature
flaws such as a high statistical cost, a long-time scale, and inaccuracy in space. During
severe disasters, it is difficult to meet the demands of precise GDP estimation. NTL images
can effectively reflect human activity intensity, provide more spatial details of human social
activities, and enable time-series monitoring of the temporal and spatial dynamic changes
of human social production and living activities. NTL remote sensing images can monitor
various socioeconomic development indicators from multiple scales [4], such as GDP [5–7],
population [8–10], electricity consumption [11,12], carbon emissions [13–15], housing va-
cancy rate [16,17], and poverty [18–20], and are also commonly used to analyze urban
spatial structure and to quantify urbanization [21,22], as well as to monitor and evaluate
unexpected events such as natural disasters [23–25], pandemics, and wars [26,27]. In addi-
tion, related studies have also used NTL images for PM2.5 concentration estimation [28–30],
air quality assessment [31,32], and high temperature and heat wave risk assessment [33].

NTL have the capacity to show the spatialization of society and economy, as well as
represent a country’s and region’s level of economic development and wealth. A great
number of studies have used NTL images to monitor urban production and life dynamics
during the COVID-19 pandemic since it began. During the COVID-19 pandemic, tougher
lockdowns and pandemic preventive measures were implemented around the country
to control the flow of individuals. High-speed, railway, aviation, and other modes of
transportation had been shut down. The movement of people, cars, and goods had been
severely slowed, and social and economic activity had nearly stalled, so the brightness of
lights at nighttime generally decreased [34,35]. Liu et al. [36] analyzed the impact of the
COVID-19 pandemic on human activities and the environment using VIIRS NTL data and
air quality data. Beyer et al. [37] explored the changes in NTL during the pandemic. The
results show that NTL represents India’s economic activity and can be used to monitor
changes in India’s economic activity during the pandemic. Alahmadi et al. [38] conducted
a detailed spatiotemporal analysis of the impact of the COVID-19 outbreak in Saudi Arabia
on human activities at multiple spatial scales. The results of the study show that human
lifestyles are strongly affected during the pandemic. The application of NTL data is valuable
for studying the dynamic changes in human lifestyles caused by COVID-19. According
to related studies, the brightness of residential areas increased during the COVID-19
pandemic, whereas lights in business centers fell and traffic in public facilities remained
mostly unchanged. Many researchers [39–41] have employed NTL to assess urban recovery
and study the restoration of employment and output following the COVID-19 pandemic.
In Wuhan, China, Shao et al. [39] used NTL images to track job recovery and examine the
influence of COVID-19 on economic activity. During the COVID-19 pandemic, Yin et al. [40]
used NPP-VIIRS NTL images to analyze variations in light brightness and measure the
recovery of urban activity in 17 Chinese administrative regions. Tian et al. [41] using
NTL data and Baidu migration data to analyze the level of urban resumption of work
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after the Chinese New Year in 2020 after the COVID-19 pandemic was affected. However,
few studies have been conducted on the finer spatiotemporal changes in GDP during
the COVID-19 outbreak, making it impossible to meet the monitoring needs of urban
economic recovery.

Many studies have found a substantial association between NTL images and GDP,
which can be used to estimate GDP and monitor it [42–49]. Shi et al. [42] used NPP-VIIRS
data and DMSP/OLS data to estimate GDP from provincial and county scales, showing
that NPP-VIIRS data are superior to DMSP/OLS data in estimating GDP. Zhao et al. [43]
forecasted the change in GDP per 1 km × 1 km grid area between 2014 and 2020, predicting
the economic growth of 23 major Chinese cities. Zhao et al. [45] used NPP-VIIRS data
to map GDP at the pixel level, and further analyzed the spatial characteristics of GDP in
different geomorphic units in South China, and explored the intensity of economic activities
in different geomorphic environments. Liang et al. [46] spatialized Ningbo’s GDP on a town
scale using NTL data and statistics. Wang et al. [47] used NTL, population, settlements, and
agricultural data to estimate Uganda’s subnational GDP and investigate regional variation
in economic activity. Zhu et al. [49] integrated the DMSP/OLS and NPP-VIIRS image
data sets, and established a variety of relationship models between NTL images and GDP.
The results show that NTL images have the potential to accurately and timely simulate
the dynamic changes of GDP. However, in terms of time and space, the accuracy of GDP
estimates during the COVID-19 outbreak remains to be improved.

The time scale of some studies is relatively large, and it is impossible to effectively
monitor the economic fluctuations in cities in a short period of time caused by the sudden
COVID-19 pandemic. This study realizes monthly GDP estimates based on quarterly GDP
statistics, which can effectively monitor changes in urban GDP during the pandemic. In
addition, the NTL brightness of different industrial land has an inconsistent relationship
with GDP. Therefore, in the process of estimating GDP, the NTL brightness of different
industrial land is not comparable. It is necessary to carry out GDP estimation analysis by
industry. Based on the urban land use data, this study builds the GDP estimation models
of the secondary and tertiary industries, and analyzes the relationship between the NTL
brightness and GDP of different industries in a more detailed manner, so as to realize the
GDP estimation by industry. In addition, this study performs spatial-temporal correction
processing of estimated GDP, so that estimated GDP is consistent with statistical GDP on
the quarterly time scale and urban spatial scale. Understanding the temporal and spatial
changes in GDP in various industries is important for long-term economic planning and
development decisions in a country or region.

This study uses NPP-VIIRS data and urban land use data for 34 Chinese urban admin-
istrative regions. First, we performed the removal of outliers and background noise on the
NPP-VIIRS NTL data. Second, the luminance pixel values in the VIIRS image are extracted
using urban land use data. Finally, the spatial and temporal distribution characteristics
of GDP in 500 m × 500 m sub-industries in major Chinese cities during the COVID-19
pandemic were discussed using NPP-VIIRS data and urban land use data. This study
quantitatively analyzes the trend of GDP changes during the COVID-19 and after the
resumption of work and production. It explores the impact mechanism of the COVID-19 on
the economic development of major Chinese cities. In addition, the spatiotemporal dynam-
ics of economic activities in major Chinese cities during the COVID-19 were monitored in
a refined manner, providing certain scientific references for Chinese cities to formulate the
COVID-19 pandemic prevention and control measures and economic development policies.

2. Data and Methods
2.1. Case Study Area

Due to concerns about city representativeness, data integrity, and availability, this
study exclusively uses 34 metropolitan administrative regions in mainland China as re-
search objects, including Beijing, Shanghai, Guangzhou, Shenzhen, and Hangzhou. The
research areas selected in this study are all economically developed cities, which can rep-



Int. J. Environ. Res. Public Health 2022, 19, 8048 4 of 29

resent China’s economic operation to a large extent, mainly provincial capitals and cities
with very high GDP in the region. The GDP of these cities ranks among the top in their
respective provinces. As shown in Figure 1:

Figure 1. Study area in mainland China, including 34 cities.

2.2. Data Sources

The experimental data in this study include the 2018 and 2020 NPP-VIIRS cloud-free
annual composite materials, and the NPP-VIIRS cloud-free monthly composite materials
from January to June 2020. Annual GDP (100 million yuan) of the secondary and tertiary
industries in 2018, quarterly GDP data of the secondary and tertiary industries in the first
and second quarters of 2020, and urban land use data (Table 1).

Table 1. List of the datasets and sources used in this study.

Datasets Format Resolution Acquisition Date Sources

NPP-VIIRS NTL data Grid 500 m November 2020 The Earth Observation Group

GDP of the secondary
and tertiary industries Table prefecture-level city November 2020

The statistical yearbooks and the
annual national economic and social

development statistical bulletin

Urban land use data Vector (SHP file) / November 2020 EULUC-China dataset

The Earth Observation Group (EOG) (https://eogdata.mines.edu/nighttime_light/
monthly/v10/) (accessed on 23 November 2021) at the Colorado School of Mines produced
NPP-VIIRS NTL images, which are cloudless moon composites and annual composites
collected by a diurnal band (DNB) sensor. DNB cloudless moon composites and annual
composites eliminate the effects of stray light, fire, and other transient light and remove
the effects of clouds, emitted moonlight, etc. However, light from aurora, flames, ships,
and other temporal lights are still present in the monthly composition, preprocessing of the
images, such as the removal of outliers and background noise, is required for the images.
The NPP-VIIRS NTL images used in this study are more radiometrically accurate than the
Defense Meteorological Satellite Program/Operational Line Scan System (DMSP/OLS)

https://eogdata.mines.edu/nighttime_light/monthly/v10/
https://eogdata.mines.edu/nighttime_light/monthly/v10/
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and provides on-board calibration to ensure data accuracy and stability [41]. Meanwhile,
NPP-VIIRS NTL images have a greater spatial and radiometric resolution than DMSP-OLS
for detecting NTL. NPP-VIIRS NTL imagery actually eliminates three key issues that plague
traditional satellite programs oversaturation, bloom, and lack of on-board calibration [50].

The urban socio-economic statistics include the annual GDP of the secondary and
tertiary industries in 2018 (100 million yuan) and the quarterly GDP of the secondary and
tertiary industries in the first and second quarters of 2020. The 2018 GDP statistics come
from the 2018 statistical yearbooks of each city and the annual national economic and social
development statistical bulletin of each city; the 2020 GDP statistics come from the quarterly
national economic and social development statistical bulletins of each city and the 2020
China Cities Statistical Yearbook. Urban land use data are from the China Map (EULUC),
shared by Gong et al. [51]. The data divide urban land into five categories: residential,
commercial, industrial, transportation, and public management and services, of which
industrial land is used for the secondary industry, and commercial land, transportation,
and public management and service land is used for the tertiary industry.

2.3. Methods

Based on NTL images, urban land use data and GDP of secondary and tertiary in-
dustries, this study designed and constructed a GDP spatialization method to analyze
the spatiotemporal variation characteristics of GDP in major Chinese cities during the
pandemic. The specific research process is shown in Figure 2.

Figure 2. Flowchart of the analysis of the impact of the pandemic on GDP in this study.

2.3.1. Preprocessing with NPP-VIIRS NTL Data

The DNB cloudless moon composite and the NPP-VIIRS annual composite NTL
data are preprocessed in this study. The preprocessing mainly includes the following
steps: cropping the data, transforming the projected coordinate system to the Albers
projected coordinate system, and resampling to 500 m spatial resolution. The annual NTL
data go through several steps of processing to remove cloud cover, lunar contamination,
background noise, outliers, and fires and stray light, which are not related to electricity [52].
Although the monthly NTL data removes the influence of cloud cover, some preprocessing
is required before use. This study uses the 2020 annual product as standard data to
correct the monthly composites for January–June 2020. This study sets the negative value
of monthly data to 0 to remove the influence of background noise. Beijing, Shanghai,
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Guangzhou and Shenzhen are the most developed cities in China, therefore, the DN values
of other regions should theoretically not exceed the DN values of these cities. The highest
DN value of these cities was used as a threshold to detect outliers in other cities in the study
area, and if the DN value of some pixels was greater than the threshold, the DN value of
the annual product was selected for a second comparison to remove possible causes due
to fires, ships, outliers caused by stray light. Afterward, the final corrected NPP-VIIRS
monthly imagery is generated, with all NTL pixels below a threshold in every city in the
study area.

2.3.2. NTL Extraction by Urban Subindustry

Based on urban land use data, this study extracts NTL data. First, urban land use data
are reclassified by industry, classify industrial property into secondary industry land and
second classify commercial land, transportation land, and public management and service
land into tertiary industry land. To finely categorize secondary and tertiary industrial land,
a pixel scale of 500 m resolution is established in this research. However, some pixels may
be mixed with secondary and tertiary industrial land at the same time. This study classifies
these pixels as the industry with the largest area in the pixels and finally extracts the total
value of NTL according to the industrial land.

2.3.3. Constructing a GDP Estimation Model by Industry

Many regression models have been employed to describe the quantitative link between
socioeconomic data and NPP-VIIRS NTL images, including linear regression, exponential
regression, and logarithmic regression. For example, Wu et al. [53] used a logarithmic
model to investigate the relationship between NTL and GDP and then decomposed GDP
into agricultural and nonagricultural production. Singhal et al. [54] used OLS regression
with regional gross domestic product (GDDP) and NTL to estimate the relationship between
NTL and the socioeconomic status of various regions in India. They found that NTL can
represent approximately 87 percent of the variability in GDP and estimated the relationship
between NTL and the socioeconomic status of various regions in India. Ma et al. [55]
found that NPP-VIIRS data can quantitatively estimate human activities and socioeconomic
dynamics at the fine scale. At the county level, NTL and GDP are more likely to follow
a linear or log-linear model, whereas at the district and subregional levels, conditional
quantile regression models are more appropriate. This study uses five models to build
a GDP-estimating model based on NTL images in order to get the simulated GDP closer to
the statistical data. These models include the linear regression model, random forest, SVM,
Gaussian process regression, and regression tree.

There is a significant linear association between GDP and the total value of NTL,
according to existing studies. This study also establishes the relationship between the total
value of NTL and urban GDP in 2018 (Figure 3), which proves that the total value of NTL
has a linear relationship with urban GDP. As a result, based on the GDP of secondary
and tertiary industries and the total value of NTL in 34 major cities in mainland China
in 2018, this research constructs a GDP linear regression model. This research chooses
a linear regression model with no constant term for GDP spatiotemporal adjustment, taking
into account the problem of downscaled GDP estimation accuracy. The following is the
model formula:

GDPx = ax × SDNx (x = s, t) (1)

where s and t represent the secondary industry and tertiary industry, respectively; GDPs
and GDPt are the annual GDP of the city’s secondary and tertiary industries in 2018 (unit:
100 million yuan); SDNs and SDNt are the total annual NTL values of the city’s secondary
and tertiary industries in 2018 (unit: nW/cm2/sr); and as and at are the coefficients of the
linear regression equations of the secondary and tertiary industry GDP, respectively.
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Figure 3. Scatter plot of the total NTL value and city GDP.

In the absence of a clear relationship model between GDP and NTL, machine learning
regression methods can analyze and extract information from existing sample datasets, seek
complex correlations between GDP and NTL, and perform precision testing. In this study,
the GDP of the secondary and tertiary industries and the total value of NTL in 34 major
cities in mainland China in 2018 are used as sample datasets, four machine learning
regression models of random forest, SVM, Gaussian process regression and regression tree
of GDP of the secondary and tertiary industries were constructed respectively. The four
machine learning regression models are trained with repeated samples in this research,
and the model accuracy is tested using the five-fold cross-validation approach. The model
parameters of the four machine learning regression models are finally determined based on
the model accuracy. The minimum leaf size is an important parameter in regression trees
and random forest models, while the kernel function is an important parameter in SVM
and Gaussian process regression models (Tables 2 and 3).

We use an optimum regression model to predict GDP based on these regression studies,
assessing the ability to forecast GDP using goodness of fit and root mean square error.

Table 2. RMSE of different parameters of machine learning regression model of secondary industry GDP.

Machine Learning Model Parameter Type Parameter Value RMSE

Regression tree Minimum leaf size
4 2046.30

12 2061.40
36 2817.90

Support vector machine Kernel function

Linear kernel function 2009.80
Quadratic kernel function 1713.60

Cubic kernel function 2282.00
Gaussian kernel function 1855.50

Gaussian process regression Kernel function

Matern 5/2 kernel function 1787.60
Square exponential kernel function 1822.00

Exponential Kernel Function 1937.40
Rational Quadratic Kernel Function 1822.00

Random forest Minimum leaf size
4 2050.70
8 2045.80

12 2207.00
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Table 3. RMSE of different parameters of machine learning regression model of tertiary industry GDP.

Machine Learning Model Parameter Type Parameter Value RMSE

Regression tree Minimum leaf size
4 3524.40

12 4780.40
36 6168.30

Support vector machine Kernel function

Linear kernel function 2365.00
Quadratic kernel function 2483.50

Cubic kernel function 5472.10
Gaussian kernel function 3775.60

Gaussian process regression Kernel function

Matern 5/2 kernel function 2748.00
Square exponential kernel function 2560.00

Exponential Kernel Function 2464.10
Rational Quadratic Kernel Function 2738.50

Random forest Minimum leaf size
4 3554.40
8 4477.10

12 4809.30

2.3.4. GDP Spatialization: Correction of Estimated GDP

Due to errors in the fitted model, to ensure the consistency between the estimated total
GDP and the statistical total GDP, use the following formula to correct the monthly urban
estimated GDP. This study takes the corrected monthly GDP as the real monthly GDP.

GDPbx = ax × SDNcx (x = s, t) (2)

GDPux = ax × SDNvx (3)

mi =
GDPf x

GDPbx
(4)

GDPgx = mi × GDPux (5)

Among them, x, ax are the same as Formula (1), SDNcs and SDNct are the quarterly
total value of NTL of the secondary and tertiary industries, respectively (unit: nW/cm2/sr).
GDPbs and GDPbt are the estimated quarterly GDP of the secondary and tertiary industries,
respectively (unit: 100 million yuan). SDNvs and SDNvt are the monthly total value of
NTL of the secondary and tertiary industries, respectively. GDPus and GDPut are the
estimated monthly GDP of the secondary and tertiary industries, respectively. GDPf s and
GDPf t are the real value of the GDP of the secondary and tertiary industries in the quarter,
respectively. mi is the correction factor for the estimated GDP of city i on the quarterly time
scale. GDPgs and GDPgt are the real value of monthly GDP of the secondary and tertiary
industries, respectively.

To ensure that the estimated total GDP is consistent with the statistical total GDP at
the city scale. The formula for correcting the estimated GDP at the spatial scale is as follows.
This study takes the corrected pixel GDP as the real pixel GDP.

GDPhx = ax × DNjx (x = s, t) (6)

ni =
GDPgx

GDPux
(7)

GDPkx = ni × GDPhx (8)

where x and ax are the same as in Formula (1), DNjs and DNjt are the NTL value of the
secondary and tertiary industries pixel, respectively (unit: nW/cm2/sr). GDPhs and GDPht
are the estimated GDP of the secondary and tertiary industries pixel, respectively (unit:
100 million yuan). GDPgx is the same as in Formula (5). GDPux is the same as in Formula (3).
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ni is the correction factor for the estimated GDP at the pixel spatial scale of city i. GDPks
and GDPkt are the real GDP of the secondary and tertiary industries pixel, respectively.

3. Results
3.1. Changes in NTL Levels during COVID-19

The impact of the COVID-19 outbreak on different industries in people’s production
was different. To analyze the monthly NTL changes during the COVID-19 outbreak, we
used urban land use data to partition industries. The NTL brightness changes of the
secondary and tertiary industries can be obtained from Figure 4c–h. Figure 4a depicts
the secondary industry’s midnight lighting changes. In January and February, most cities
had fewer NTL than in December of the previous year. The brightness of NTL in Wuhan
in February was higher than that in January. This may be due to the severe pandemic
situation in February and the strong light of hospitals and medical equipment, which led
to the high brightness of lights at night in February. In March, localities gradually began to
resume work and production, and the brightness of NTL gradually increased. On April 8,
the embargo on Wuhan was lifted, and social and commercial activities resumed. From
April through June, the order was restored, and the brightness of NTL improved.
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Figure 4. (a,b) are the NTL brightness changes of the secondary and tertiary industries from December
2019 to June 2020, respectively; (c–h) are the NTL images from January to June 2020.

The NTL change of the tertiary industry are shown in Figure 4b. The brightness of
lights in northern cities such as Harbin and Shenyang has gradually decreased since January
2020. In Beijing, the brightness of lights dropped sharply in February, the brightness of
lights rebounded in March, and the lights gradually decreased from April to June. Southern
cities such as Shanghai, Suzhou, Nanjing, etc. have relatively stable lighting from March to
June. Guangzhou, Shenzhen, Quanzhou and other cities have large fluctuations in NTL
brightness from January to June.

3.2. Regression Results

The regression results of the model are shown in Tables 4 and 5 below. GDP and
the brightness of NTL have a clear linear relationship. The linear regression accuracy
of GDP in the secondary and tertiary industries is the best, with R2 values of 0.83 and
0.93, respectively, which are significantly better than the four machine learning regression
models, indicating that there is a strong correlation between GDP and the total value of
NTL brightness, and GDP can be estimated using the total NTL brightness value to reflect
social and economic activities. Existing studies have shown that the number of sample
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points is a key issue affecting the performance of machine learning, and increasing the
sample size can improve the accuracy of model estimation [56]. The linear regression
equation of GDP of the secondary and tertiary industries is as follows:

GDPs = 0.11 × SDNs (9)

GDPt = 0.23 × SDNt (10)

Table 4. The regression accuracy of the GDP model of the secondary industry.

Model R2 RMSE MAE

linear regression 0.83 1525.61 1351.90
random forest 0.49 2045.80 1596.80

SVM 0.63 1713.60 1468.50
Gaussian process regression 0.61 1787.60 1478.60

regression tree 0.49 2046.30 1782.50

Table 5. The regression accuracy of the GDP model of the tertiary industry.

Model R2 RMSE MAE

linear regression 0.93 2290.22 1814.07
random forest 0.48 4477.10 2967.30

SVM 0.86 2365.00 1866.70
Gaussian process regression 0.84 2464.10 2042.90

regression tree 0.68 3524.40 2736.60

3.3. Monthly GDP Revision Results

This study employed a high-precision linear model to estimate the city’s monthly GDP
by industry based on monthly NTL images and corrects the estimated GDP so that the
estimated GDP and the statistical GDP are consistent on the quarterly scale. From January
to June 2020, the subindustry GDP of 34 cities was obtained (Figure 5). According to the
findings, the GDP of the secondary and tertiary industries was obviously affected by the
pandemic, but as the pandemic was gradually brought under control, urban economic
activities recovered rapidly. Wuhan is the Chinese city most badly hit by the COVID-19
outbreak. Wuhan began a lockdown on January 23, and the Chinese Lunar New Year was
on January 25, making the production slowdown in Wuhan in the last week of January
more severe. Wuhan eventually resumed some output in February. However, in March, the
level of production recovery in Wuhan declined [37]. Ultimately, Wuhan’s GDP was lower
in January and March than in February. With the improvement of the pandemic situation,
the GDP of Wuhan’s secondary and tertiary industries increased significantly in the second
quarter compared to the first quarter.

The estimated results of the GDP of the secondary industry from January to June are
shown in Table 6. The results indicate that the secondary industry in most cities saw a large
drop in GDP in February, when the COVID-19 outbreak was at its peak, with the average
GDP falling by 6.99% month over month. Among them, the cities with more serious GDP
decline are mainly located in northern China. Cities in southern China have had fewer GDP
losses, and some have even experienced GDP growth, which are primarily located in the
Yangtze River Delta urban agglomeration and western China. COVID-19 was progressively
brought under control in March, and the rate of drop in the secondary industry’s GDP
declined month over month, with the average GDP down 0.74%, which was showing that
the secondary industry is still recovering. Wuhan abolished the lockdown state on 8 April
2020, which showed that China effectively controlled COVID-19. In April, the GDP of the
secondary industry increased swiftly and significantly in most cities, with the average GDP
increasing by 54.68% month over month, indicating that the GDP of the secondary sectors
in these 34 cities has quickly returned to pre-COVID-19 levels. A small number of new
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cases in some cities may influence GDP due to China’s strict pandemic prevention and
control mechanism, which resulted in a month-on-month fall in secondary industry GDP
in May and June. However, in the second quarter of 2020, the overall GDP of the secondary
industry in 34 cities was in a stage of rapid recovery.
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Figure 5. (a) The GDP changes of the secondary industry from January to June 2020; (b) The GDP
changes of the tertiary industry from January to June 2020.

Table 6. GDP of cities in the secondary industry from January to June 2020 (unit: 100 million yuan).

City January February March April May June

Beijing 328.519 252.296 328.785 538.527 514.489 442.184
Tianjin 310.713 242.050 300.157 308.185 279.694 265.041

Shijiazhuang 151.529 107.554 144.617 139.763 134.092 129.844
Taiyuan 95.924 85.918 101.468 125.439 124.236 119.725
Hohhot 71.473 47.764 46.193 79.629 75.235 75.867

Shenyang 133.875 105.768 100.157 198.409 177.301 205.590
Dalian 210.849 179.560 183.391 221.707 220.555 249.738
Harbin 85.805 65.157 36.638 89.182 89.265 99.053

Shanghai 587.167 552.303 605.760 866.967 835.095 809.518
Nanjing 341.013 330.931 356.866 458.671 410.264 373.665
Suzhou 81.937 85.128 84.626 171.619 166.169 145.792

Hangzhou 277.139 303.876 306.985 454.799 453.580 334.621
Hefei 163.288 193.453 183.149 358.922 319.372 269.516

Fuzhou 280.159 257.276 224.605 312.540 266.403 324.357
Quanzhou 387.476 368.939 271.625 522.071 403.431 624.618
Nanchang 171.990 163.773 181.588 208.826 224.124 235.190

Jinan 219.834 186.922 234.095 301.265 285.363 265.572
Qingdao 280.999 254.732 274.699 373.460 365.968 334.632

Zhengzhou 298.170 266.269 306.462 429.773 406.135 392.442
Wuhan 257.374 306.491 278.529 539.276 554.797 516.317

Changsha 324.197 269.065 323.278 440.177 422.853 354.050
Guangzhou 457.148 424.145 332.577 549.752 473.872 600.576
Shenzhen 700.770 680.374 548.657 858.941 790.391 974.468

Foshan 434.744 417.421 297.695 409.812 383.091 501.167
NanNing 82.201 72.715 35.254 93.356 101.091 121.242
Haikou 14.214 13.464 12.512 19.940 19.477 20.763

Chongqing 599.193 587.965 540.533 927.121 939.389 813.640
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Table 6. Cont.

City January February March April May June

Chengdu 337.189 351.793 413.058 491.982 482.254 488.824
Guiyang 101.739 92.854 92.228 132.601 138.658 110.390
Kunming 133.453 120.336 123.932 218.374 206.885 173.012

Xi’an 192.592 196.177 225.071 309.860 311.690 284.480
Lanzhou 60.781 62.763 60.987 88.548 90.053 92.549
Xining 31.566 29.450 26.754 34.157 37.325 34.548

Yinchuan 51.172 59.513 52.595 69.991 71.553 73.796

Table 7 shows the tertiary industry’s estimated GDP from January to June. The results
indicate that in February, when the COVID-19 pandemic was at its peak, the tertiary
sector in most cities had a considerable drop in GDP. On a month-to-month basis, the
average GDP declined by 7.22%. Cities with more serious GDP declines include Beijing,
Tianjin, Shenyang, Hohhot, and Wuhan. Among them, Shijiazhuang’s GDP fell the most
in February, at 35.22%. However, the GDP of some cities increased slightly in February,
such as Hefei, Chengdu, Hangzhou, and other southern Chinese cities and western cities
Yinchuan and Xi’an. With the gradual easing of the pandemic in March, the GDP of
most cities showed a slow month-on-month growth trend in March, with an average
GDP growth of 0.13% month-on-month. Among them, Shijiazhuang experienced a 40.62%
month-on-month increase in GDP in March after experiencing a sharp drop in GDP in
February. But most cities have not recovered to January’s GDP levels. The return of labor
and production across the country went off without a hitch in April, with the average GDP
increasing by 23.21% month over month. The cities with larger increases are mainly Wuhan,
Nanning, Fuzhou, and Harbin, with their GDP increasing by more than 50% month-on-
month. Among them, Wuhan has the largest increase, with its GDP increasing by 97.37%
month-on-month, indicating that social and economic activities in most cities have returned
to stability. The GDP in May and June were nearly identical. In May and June, the GDP
of most cities varied somewhat compared to April. In general, the tertiary industries in
34 cities recovered rapidly in the second quarter.

Table 7. GDP of cities in the tertiary industry from January to June 2020 (unit: 100 million yuan).

City January February March April May June

Beijing 2367.754 1817.671 2354.476 2584.872 2490.378 2145.250
Tianjin 722.565 575.359 700.067 787.246 742.572 684.822

Shijiazhuang 336.212 217.805 306.283 339.765 317.545 311.790
Taiyuan 196.608 168.140 197.291 203.345 194.496 186.218
Hohhot 189.893 129.809 132.338 157.692 151.641 155.147

Shenyang 353.049 273.985 275.366 346.481 286.427 327.792
Dalian 318.594 269.683 270.123 289.495 283.095 306.210
Harbin 302.047 246.217 149.735 271.351 270.477 289.773

Shanghai 2070.493 1937.647 2087.950 2397.010 2327.966 2245.014
Nanjing 727.067 691.540 724.683 775.974 721.896 610.010
Suzhou 259.949 270.747 269.874 394.872 383.913 343.275

Hangzhou 773.856 848.161 806.983 974.780 983.898 714.323
Hefei 386.731 461.340 441.769 575.763 510.727 437.070

Fuzhou 354.684 326.779 300.236 531.166 412.721 560.293
Quanzhou 359.066 331.175 244.708 354.079 288.811 428.180
Nanchang 228.263 199.931 223.356 218.921 237.522 261.108

Jinan 457.557 396.389 495.754 542.224 505.620 461.405
Qingdao 585.384 518.117 559.659 625.754 596.817 548.499

Zhengzhou 550.006 485.570 545.194 598.898 565.040 547.252
Wuhan 350.967 426.459 383.604 757.130 769.842 725.938
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Table 7. Cont.

City January February March April May June

Changsha 551.710 475.417 598.513 610.398 598.763 488.879
Guangzhou 1530.678 1406.655 1031.017 1389.637 1154.981 1501.081
Shenzhen 1424.471 1375.376 1050.733 1363.824 1290.498 1563.739

Foshan 374.897 363.976 235.457 352.143 337.624 453.403
NanNing 320.768 284.459 140.514 237.048 273.081 324.881
Haikou 100.118 100.505 94.027 89.371 94.369 106.080

Chongqing 1083.689 983.356 905.555 1118.751 1118.541 982.078
Chengdu 715.998 871.289 1064.433 988.493 933.891 944.927
Guiyang 193.298 162.712 164.170 194.028 209.047 166.365
Kunming 384.192 332.400 357.148 406.592 390.874 318.864

Xi’an 433.729 448.939 566.942 497.422 506.801 445.387
Lanzhou 153.852 146.299 147.399 165.252 165.673 166.675
Xining 80.308 75.929 71.474 82.913 86.295 78.442

Yinchuan 74.166 88.945 79.079 85.486 88.218 90.076

3.4. GDP Spatialization Results

This research used the corrected NPP-VIIRS NTL data and the spatial correction
method to produce the spatialized findings of the monthly GDP of the secondary and
tertiary industries in 34 Chinese cities from January to June 2020 based on the GDP esti-
mation model in Section 2.3.4. The results show that there are obvious differences in the
spatiotemporal distribution of GDP in different cities, but there are also certain similarities.

This study only displays the results of the spatial distribution of GDP from February
to April because the economic development patterns of cities will not change considerably
in a short period of time (Figures 6 and 7). The findings reveal that there are huge spatial
differences in GDP within each city, as well as large spatial differences between cities. Cities
such as Beijing, Shanghai, Guangzhou, Shenzhen, Chongqing, Chengdu and Suzhou have
developed economies with relatively high GDP. In these cities, the GDP of many urban
construction land is at a high level, and at the same time, these urban construction land
has obvious agglomeration. In addition, cities such as Hangzhou, Nanjing, Wuhan, and
Tianjin have relatively developed economies, and there are also a small amount of urban
construction land with high GDP levels. However, cities such as Yinchuan, Haikou, and
Xining have slow economic development, low urbanization rate, and generally low GDP of
urban construction land. The economic impact of the COVID-19 pandemic on cities with
different levels of economic development and industrial structures will also vary.

This study undertakes an overlay analysis of monthly GDP spatial distribution data in
34 Chinese cities from January to June 2020. The results of the spatial change trend of GDP
in the sum of the secondary and tertiary industries from January to June 2020 (Figures 8–13).
The findings reveal that there are not only large differences in the spatiotemporal changes
of GDP between cities, but also significant differences in the spatiotemporal changes of
GDP within each city. Cities such as Beijing, Shanghai, Guangzhou, Shenzhen, Hangzhou,
Suzhou, and Nanjing are economically developed and have higher GDP. Many urban
constructions land in these cities has a high GDP, and there was apparent agglomeration of
construction land in these cities. In addition, the economies of Wuhan, Changsha, Tianjin,
Chongqing, Chengdu, and other cities are comparatively developed, with a small number
of high-level GDP cities. While cities such as Haikou, Lanzhou, Xining, and Yinchuan are
experiencing moderate economic growth and low urbanization rates, the GDP of urban
building land is generally low. The economic impact of the COVID-19 pandemic on cities
with different economic development levels and industrial structures will also vary.



Int. J. Environ. Res. Public Health 2022, 19, 8048 15 of 29

Figure 6. Cont.
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Figure 6. The spatialization of GDP of 34 cities in the secondary industry from February to April 2020.

Figure 7. Cont.
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Figure 7. The spatialization of GDP of 34 cities in the tertiary industry from February to April 2020.
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Figure 8. The spatial distribution of the total GDP of the secondary and tertiary industries in January
2020. (a) The spatial distribution of the total GDP in 34 Chinese cities; (b) Beijing; (c) Shanghai;
(d) Shenzhen; (e) Guangzhou; (f) Wuhan.

Figure 9. The spatial distribution of the total GDP of the secondary and tertiary industries in February
2020. (a) The spatial distribution of the total GDP in 34 Chinese cities; (b) Beijing; (c) Shanghai;
(d) Shenzhen; (e) Guangzhou; (f) Wuhan.
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Figure 10. The spatial distribution of the total GDP of the secondary and tertiary industries in March
2020. (a) The spatial distribution of the total GDP in 34 Chinese cities; (b) Beijing; (c) Shanghai;
(d) Shenzhen; (e) Guangzhou; (f) Wuhan.

Figure 11. The spatial distribution of the total GDP of the secondary and tertiary industries in April
2020. (a) The spatial distribution of the total GDP in 34 Chinese cities; (b) Beijing; (c) Shanghai;
(d) Shenzhen; (e) Guangzhou; (f) Wuhan.
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Figure 12. The spatial distribution of the total GDP of the secondary and tertiary industries in May
2020. (a) The spatial distribution of the total GDP in 34 Chinese cities; (b) Beijing; (c) Shanghai;
(d) Shenzhen; (e) Guangzhou; (f) Wuhan.

Figure 13. The spatial distribution of the total GDP of the secondary and tertiary industries in June
2020. (a) The spatial distribution of the total GDP in 34 Chinese cities; (b) Beijing; (c) Shanghai;
(d) Shenzhen; (e) Guangzhou; (f) Wuhan.
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This study investigates the loss and recovery of the monthly GDP of the city’s sec-
ondary and tertiary industries during the COVID-19 outbreak using the abovementioned
GDP spatialization results and superimposes the GDP spatialization results, using the GDP
of the next month minus the GDP of the previous month. In summary, the results of changes
in the total urban GDP in January–February, February–March, March–April, April–May,
and May–June were obtained (Figures 14–18), where the sum of GDP represents the sum
of the GDP of the secondary and tertiary industries. The findings suggest that during the
outbreak, the GDP of most cities plummeted dramatically. The COVID-19 pandemic has
had variable degrees of impact on the economic development of several cities in China
since Wuhan announced the city’s shutdown on 23 January 2020. The outbreak has had
the greatest impact in eastern China, affecting the GDP of Beijing, Shanghai, Guangzhou,
Shenzhen, and Wuhan, where the impact of the COVID-19 pandemic was the most visible.
In these cities, the GDP of construction land was decreasing. The COVID-19 pandemic
has had a greater impact on the economic development of urban construction land with
a high GDP level. At the same time, the COVID-19 outbreak has had a significant impact
on the economic development of cities such as Chengdu, Chongqing, Hangzhou, Suzhou,
and Changsha, with an overall GDP decline. Although the rate of decline was less severe
than in established cities such as Shanghai and Guangzhou, the degree of decline in GDP
per unit construction land in some cities was also very large. The COVID-19 outbreak has
had little impact on the economic development of cities such as Haikou, Lanzhou, and
Xining. Although there are also many cities whose GDP per unit construction land was
in a downward trend, there were also some cities such as Yinchuan and Xi’an that had
a positive growth trend in their GDP per unit construction land.

Figure 14. The spatialized result of the sum of GDP in February minus the sum of GDP in January.
(a) The changes in GDP of 34 cities in China from January to February; (b) Beijing; (c) Shanghai;
(d) Shenzhen; (e) Guangzhou; (f) Wuhan.
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Figure 15. The spatialized result of the sum of GDP in March minus the sum of GDP in February.
(a) The changes in GDP of 34 cities in China from February to March; (b) Beijing; (c) Shanghai;
(d) Shenzhen; (e) Guangzhou; (f) Wuhan.

Figure 16. The spatialized result of the sum of GDP in April minus the sum of GDP in March. (a) The
changes in GDP of 34 cities in China from March to April; (b) Beijing; (c) Shanghai; (d) Shenzhen;
(e) Guangzhou; (f) Wuhan.
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Figure 17. The spatialized result of the sum of GDP in May minus the sum of GDP in April. (a) The
changes in GDP of 34 cities in China from April to May; (b) Beijing; (c) Shanghai; (d) Shenzhen;
(e) Guangzhou; (f) Wuhan.

Figure 18. The spatialized result of the sum of GDP in June minus the sum of GDP in May. (a) The
changes in GDP of 34 cities in China from May to June; (b) Beijing; (c) Shanghai; (d) Shenzhen;
(e) Guangzhou; (f) Wuhan.
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The GDP of major Chinese cities fell in February 2020 compared to January, but the
negative trend in most places had dramatically improved as China’s COVID-19 pandemic
was gradually brought under control. Some cities began to restart work in early March, and
by the end of the month, the work resumption index in most cities was above 70% [37]. In
March, the economy showed signs of improvement, with the GDP of most major Chinese
cities trending upward. In March 2020, cities including Beijing, Shanghai, Shijiazhuang,
Changsha, and Tianjin had a noticeable GDP recovery. The GDP per unit construction land
in most cities had increased, and the GDP per unit construction land in cities with high GDP
growth had increased even more, indicating that these urban building lands had obvious
agglomeration. Although some cities, such as Guangzhou, Shenzhen, Wuhan, Harbin, and
Quanzhou, have positive GDP per unit of construction land growth, the majority of GDP
per unit of construction land growth was negative. The overall level of GDP in March
remained in a declining trend, and the economic recovery was slow. Most of these cities’
GDP per unit of building land did not reach a positive growth level until April.

In April, the GDP per unit of construction land in Beijing was in both an increasing
trend and a declining trend, but the overall level was still in the GDP growth trend. The
GDP growth of unit construction land in Shanghai with a high level of GDP was more
significant, and only a small number of cities had a negative growth rate of GDP per unit
construction land. The pandemic conditions in several cities resurfaced in May. Most of the
urban unit construction land GDP in Beijing, Shanghai, Guangzhou, Shenzhen, Suzhou,
Nanjing and other cities was in a state of negative growth. The majority of cities, including
Wuhan, Hangzhou, Nanchang, and Nanning, had negative GDP per unit of building land
growth, while overall GDP growth was positive. The western region was less affected by
the repeated pandemics, and the overall GDP of cities such as Xi’an, Lanzhou, Xining, and
Yinchuan is in a positive growth trend. The number of COVID-19 cases climbed in June in
Beijing, Shanghai, Guangzhou, Shijiazhuang, Chengdu, and other cities. As a result of the
recurring pandemic, the GDP of each city has shown different trends. Most of the cities
such as Beijing, Shanghai, Suzhou, Tianjin, and Chongqing had positive growth in GDP per
unit of construction land, while some GDP per unit of construction land was in a state of
negative growth, but the overall level of GDP was in a negative growth level. In most cities,
such as Guangzhou, Shenzhen, Fuzhou, and Quanzhou, the GDP per unit of construction
land was increasing, and the overall GDP was rising as well; in some cities, such as Wuhan
and Hangzhou, the GDP per unit of construction land was decreasing, but the overall level
of GDP was increasing.

4. Discussion
4.1. Fine Estimation of Urban GDP under the Influence of the COVID-19 Pandemic

In the context of the COVID-19 outbreak, this study used NTL remote sensing data
and urban land use data to explore the spatialization of subindustry GDP in China’s
main cities during the COVID-19 outbreak and obtained the spatial distribution results
of monthly GDP at 500 m spatial resolution in cities from January to June 2020. On the
basis of this result, the impact of the COVID-19 outbreak on the GDP of major Chinese
cities is analyzed in detail. This study realized a time-space refined exploration of the
GDP trends of major Chinese cities during the COVID-19 outbreak. It can also reveal the
mechanism and temporal and spatial laws of the impact of the COVID-19 pandemic on the
economic development of major Chinese cities, and provide a certain scientific reference for
formulating measures to deal with the COVID-19 pandemic and urban economic recovery.

NTL images have been shown in numerous studies to successfully reflect the intensity
of human activity as well as the spatial features of economic activities. This study studied
the GDP distribution of subindustries using urban land use data as the spatial constraint
data, realized the accurate extraction of NTL image information of sub-industries, estab-
lished the relationship model between NTL images and sub-industry GDP. The monthly
GDP of sub-industry of major cities in China was corrected by time, and the result of
monthly GDP of sub-industry and the spatialization of GDP was obtained. Compared
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with the existing research results [57,58], the study avoided the use of linear models at the
provincial or county-level administrative division scale and spatializes GDP according to
the total brightness or local average brightness of NTL and the corresponding socioeco-
nomic variables. By including urban land use data as an additional data source in this
study, the results of the spatiotemporal distribution of GDP can be more accurately ob-
tained, the spatiotemporal characteristics of the COVID-19 pandemic on China’s urban
economic development can be more precisely revealed, and the dynamics of economic
activities during the pandemic can be more accurately displayed with respect to decisions
for long-term economic development.

4.2. Differences in GDP Affected by the Pandemic Caused by Different Urban Modal Characteristics

The COVID-19 pandemic not only seriously endangers human life and health, but
also has a profound impact on economic development. The GDP of various cities across the
country has declined to varying degrees. On a national scale, the most economically affected
cities are developed cities such as Shanghai, Beijing, Guangzhou, Shenzhen, and cities in
eastern provinces are more affected than cities in the western provinces. The large flow of
people to economically developed cities made the COVID-19 pandemic spread rapidly and
widely. They also had higher levels of lockdown, severely constrained economic activity,
resulting in a greater decline in GDP than the less developed cities. During the severe
period of the COVID-19 pandemic, the Chinese government implemented many measures
to restrict economic production activities in order to effectively control the COVID-19
pandemic. The stagnation of economic production activities caused a serious decline in the
GDP of Chinese cities. With the gradual control of the COVID-19 pandemic in China, the
economy has begun to recover, and the overall GDP of Chinese cities has achieved rapid
growth. Due to the complexity of the temporal and spatial distribution of the COVID-19
pandemic, different cities in China have adopted different pandemic prevention measures.
Therefore, the impact of the COVID-19 pandemic on the GDP of Chinese cities also has
temporal and spatial differences. Especially after China’s COVID-19 pandemic is basically
controlled, it is manifested in obvious differences in the trend of GDP changes in different
cities. After the COVID-19 pandemic was brought under control, economically developed
cities resumed work and production more quickly, and the economy recovered quickly.
Some Chinese cities have repeated COVID-19 outbreaks to varying degrees. Due to the
strict anti-pandemic policies adopted by Chinese cities, the economic recovery of cities with
repeated COVID-19 outbreaks has been slow or even stopped. As a result, after China’s
COVID-19 outbreak was basically controlled, individual cities experienced a decline in
GDP. Therefore, in the process of economic recovery, the prevention and control of the
COVID-19 pandemic cannot be relaxed, and attention should be paid to urban prosperous
areas and areas with large crowds such as stations and airports, so as to avoid the flow
of people while the economy is recovering, causing serious COVID-19 pandemics and
repeated impact on economic activities. This study makes recommendations for urban
pandemic prevention and control and resumption of work and production, and monitors
socio-economic dynamics.

4.3. Error Analysis of Urban GDP Estimation

While the revised NPP-VIIRS NTL data substantially improve the accuracy of GDP
estimations, the results of spatializing GDP still had some uncertainty. Although this
study used a preprocessing method to decrease the background noise in the original NPP-
VIIRS data, the corrected NPP-VIIRS data will necessarily have some noise, which will
affect the GDP accuracy of estimates. This research employed urban land use data as the
spatial constraint range for GDP by industry, and executed GDP spatial processing using
the corrected NPP-VIIRS data’s pixel values. Due to the diverse distribution of urban
industries, a single NPP-VIIRS data pixel may contain multiple industries. Although this
can better depict the production activities of the major industries on a single pixel in this
study, it is easy to neglect the economic development of other industries, which may lead
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to overestimation or underestimating of GDP by industry. In the future, we will explore
methods to efficiently remove background noise and obtaining high-quality NPP-VIIRS
data, as well as introduce multi-source data and enhance the correction method for NTL
data, all of which will improve GDP prediction accuracy. In the follow-up research, we will
focus on how to better deal with the situation that a single NTL pixel exists in different
industries, so that the trend of GDP changes and the dynamics of economic activities are
more accurately reflected.

5. Conclusions

The COVID-19 pandemic in 2020, which occurred around the Chinese New Year,
resulted in significant shifts in human economic activity and NTL. In this context, this
study used NPP-VIIRS data and urban land use data from 34 urban administrative regions
in China to explore the spatialization of sub-industry GDP in China’s major cities during
the COVID-19 outbreak. GDP is a crucial indicator that reflects the dynamics of economic
activity. The NPP-VIIRS DNB cloud-free moon composite data and annual composite data
are used in this study, and they are corrected to remove outliers and background noise.
Based on the corrected NPP-VIIRS data and urban land use data, we established a linear
relationship model between NTL images and sub-industry GDP, compared the accuracy
of the relationship established by machine learning methods, selected the best regression
model for time correction and spatialization of monthly GDP by industry for major cities in
China. The spatial distribution results of monthly GDP in cities with a spatial resolution of
500 m from January to June 2020 were obtained. Finally, this study analyzed the impact
of COVID-19 on the GDP of sub-industry in Chinese cities, and discussed the intensity of
economic activities in different cities during COVID-19.

The following results can be drawn: (1) The relationship of linear model between NTL
images and sub-industry GDP had a high degree of precision. The R2 of the NTL images
and the linear estimation models of the secondary and tertiary industries are 0.83 and 0.93,
respectively, showing that the linear relationship model can well reflect the relationship
between the two. (2) The COVID-19 pandemic was at its peak in February 2020, and the
GDP of major Chinese cities fell to various degrees. The economy of Chinese cities steadily
recovered after the COVID-19 outbreak was brought under control, and the GDP of each city
increased significantly, demonstrating that the COVID-19 pandemic has had a significant
impact on economic development. (3) There are temporal and spatial differences in the
degree of impact of the COVID-19 pandemic on cities with different development levels
and industrial structures. There are still some drawbacks and limitations in this study. First,
the corrected NPP-VIIRS data still has some noise, and second, it ignores the multi-industry
distribution of a single NTL pixel, which reduces the accuracy of GDP spatialization results.

This study examined the temporal and spatial trends of GDP in major Chinese cities
during the COVID-19 outbreak using urban land use data and NTL images, and to some
extent, revealed the influence mechanism of the COVID-19 outbreak on China’s urban
economic development and hence provided some reference value.
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