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Background: Achilles tendinopathy (AT) is associated with severe pain and is the cause
of dysfunction and disability that are associated with significant reduction in social and
economic benefits. Several potential risk factors have been proposed to be responsible
for AT development; however, the results of observational epidemiological studies remain
controversial, presumably because the designs of these studies are subject to residual
confounding and reverse causality. Mendelian randomization (MR) can infer the causality
between exposure and disease outcomes using genetic variants as instrumental
variables, and identification of the causal risk factors for AT is beneficial for early
intervention. Thus, we employed the MR strategy to evaluate the causal associations
between previously reported risk factors (anthropometric parameters, lifestyle factors,
blood biomarkers, and systemic diseases) and the risk of AT.

Methods: Univariable MR was performed to screen for potential causal associations
between the putative risk factors and AT. Bidirectional MR was used to infer reverse
causality. Multivariable MR was conducted to investigate the body mass index (BMI)-
independent causal effect of other obesity-related traits, such as the waist-hip ratio, on AT.

Results: Univariable MR analyses with the inverse-variance weighted method indicated
that the genetically predicted BMI was significantly associated with the risk of AT
(P=2.0×10-3), and the odds ratios (95% confidence intervals) is 1.44 (1.14−1.81) per 1-
SD increase in BMI. For the other tested risk factors, no causality with AT was identified
using any of the MR methods. Bidirectional MR suggested that AT was not causally
associated with BMI, and multivariable MR indicated that other anthropometric
parameters included in this study were not likely to causally associate with the risk of
AT after adjusting for BMI.

Conclusions: The causal association between BMI and AT risk suggests that weight control
is a promising strategy for preventing AT and alleviating the corresponding disease burden.
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INTRODUCTION

The Achilles tendon is the largest, most powerful tendon of the
human body, which connects muscles, including gastrocnemius
and soleus, to the heel bone (1). It plays an essential role in
walking, standing, and maintaining body balance (1). Achilles
tendinopathy (AT), also known as Achilles tendinitis, is a
common disease in athletes whose Achilles tendon is subject to
repeated and excessive stress (2, 3). For instance, the annual
incidence rate of AT in competitive runners is approximately 8%
and the lifetime incidence rate of AT is as high as 50% in elite
distance runners (4). However, AT does not occur only in
athletes, and nonathletes with sedentary behaviors constitute
an important proportion of patients affected with AT (5). AT is
associated with severe pain, and Achilles tendon becomes
abnormal and increasingly fragile and fibrotic during AT,
which represents a sign of its degeneration (2). Thus, AT is a
normal cause of dysfunction and disability that significantly
reduces social and economic benefits (6). Despite the issues
associated with AT, the pathological mechanism underlying
this condition remains largely unknown (7). Several factors
have been proposed as contributors to the etiology of AT,
including intrinsic (e.g., adiposity and high cholesterol) and
extrinsic factors (e.g., physical activity-related factors) (8).
However, results from conventional epidemiological studies
remain controversial (9). For instance, one study showed a
dose-response relationship between body mass index (BMI)
and the risk of AT, whereas the case-control design of this
study prevented the inference of causality (9). By contrast, the
relationship between BMI/body weight and AT has been
classified as “limited evidence for no association” in a
systematic review investigating the clinical risk factors of
AT (10).

Mendelian randomization (MR) can infer causality between
exposure and disease outcomes by using genetic variants as
instrumental variables (11). Genetic variants that are strongly
associated with exposure should also be associated with outcome
if causality exists between exposure and outcome (12). MR is
based on the random assignment of genetic variation during
meiosis, which makes MR studies less affected by residual
confounding than conventional observational studies (13).
Furthermore, MR studies are less subject to reverse causality
because the genetic variants are fixed at birth and normally
cannot be modulated by the outcomes (12).
Abbreviations: SNP, single nucleotide polymorphism; GWAS, genome-wide
association studies; MR, Mendelian Randomization; IVW, inverse-variance
weighted; MR-PRESSO, Mendelian Randomization Pleiotropy RESidual Sum
and Outlier; ICD, international classification of diseases; LD, linkage
disequilibrium; TGF-b, transforming growth factor-beta; BMI, body mass index;
WC, waist circumference; HC, hip circumference; WHR, waist-hip ratio; WBFM,
whole body fat mass; WBFFM, whole body fat-free mass; WBF%, whole body fat
percentage; PA, physical activity; SBP, systolic blood pressure; LDL-C, low-density
lipoprotein cholesterol; TG, triglyceride; HDL-C, high-density lipoprotein
cholesterol; T2D, type 2 diabetes; CKD, chronic kidney disease; AT, Achilles
tendinopathy; UKB, UK Biobank; ICBP, International Consortium for Blood
Pressure; GIANT, Genetic Investigation of ANthropometric Traits; DIAGRAM,
DIAbetes Genetics Replication and Meta-analysis; GERA, Genetic Epidemiology
Research on Adult Health and Aging; IVs, Instrumental variable.
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In this study, univariable MR was performed to screen for
potential causal association among ten putative risk factors (e.g.,
BMI) and AT. The causal effect of AT on BMI was studied using
bidirectional MR. Multivariable MR was conducted to investigate
the BMI-independent effect of other obesity-related traits, such
as waist-hip ratio (WHR), on AT. To our knowledge, this is the
first MR study to systematically infer the causality between
clinical risk factors and AT.
METHODS

Study Design
MR uses genetic variation, mostly single nucleotide
polymorphisms (SNPs), as instrumental variables (IVs) to
investigate the causality between traits and diseases. Valid
instrumental variables need to fulfill three assumptions (14):
(1) IVs are strongly associated with exposure; (2) IVs only affect
the outcome through the exposure and have no direct association
with the outcome; (3) IVs are independent of the confounders of
the investigating association, i.e., the employed IVs should not
have horizontal pleiotropy, as indicated by Assumptions (2) and
(3). The two-sample design of MR refers to the use of two
different study populations for the exposure and the outcome. In
this study, we evaluated the causal associations of various
potential clinical risk factors with AT by employing summary-
level datasets generated in large genome-wide association studies
(GWAS). The summary statistics of IVs were extracted from
GWAS datasets of both exposure and outcome to perform the
MR analyses. We first performed univariable MR analyses to
screen for causality among ten putative clinical risk factors (e.g.,
BMI) and the risk of AT. Considering that individuals with AT
are like to be physically inactive and have substantial weight gain,
we next tested whether an increased risk of AT causally resulted
in a higher BMI using bidirectional MR. To further investigate
the potential causal relationship between other anthropometric
parameters (e.g., WHR) and the risk of AT, multivariable MR
analyses were conducted, in which BMI was adjusted.

Data Sources
The SNPs for anthropometric measurements including BMI,
waist circumference (WC), hip circumference (HC), WHR,
whole-body fat mass (WBFM), whole-body fat-free mass
(WBFFM), and whole-body fat percentage (WBF%) that
reached a genome-wide significance level (P<5×10–8) were
extracted from the GWAS datasets from the Genetic
Investigation of ANthropometric Traits (GIANT) consortium
and/or the UK Biobank (UKB) (15, 16). The SNPs obtained for
each of these exposures were then clumped using a linkage
disequilibrium (LD) parameter of R2>0.001 when they were
within a physical distance of 10,000 kb. We also excluded
SNPs that were palindromic and had an intermediate allele
frequency, as previously described (17). The Axivity-AX3
triaxial accelerometer was used to measure the physical activity
of the participants in the UKB for seven days, and the IVs
selected for the accelerometer-based physical activity were the
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same as in the literature (18, 19). For smoking, the IVs used in
our study were a genetic proxy of lifetime smoking behavior that
integrates smoking duration, heaviness, and cessation (20),
whereas the GWAS of drinking status was based on the
participants’ self-reported number of drinks per week (21, 22).
The IVs previously showing significant associations with systolic
blood pressure at the genome-wide level in the dataset from the
International Consortium for Blood Pressure (ICBP) were
employed in our study (23). Genetic instruments for lipid
traits, including LDL-C, TG, and HDL-C, were obtained from
a GWAS dataset of 35 biomarkers from the UKB (24, 25). IVs of
type 2 diabetes were obtained from a meta-analysis of datasets
from the DIAbetes Genetics Replication and Meta-analysis
(DIAGRAM), Genetic Epidemiology Research on Adult Health
and Aging (GERA) cohort, and UKB as previously reported (12,
26). Genetically determined chronic kidney disease (CKD) was
proxied using the SNPs from the dataset of the CKDGen
Consortium (27, 28). The F-statistics of the IVs were calculated
in accordance with a published method (29), and all exposures
had mean F-statistics of over 10 (Supplementary Table 1). For
outcome, the summary statistics of AT were from FinnGen R5
release, where AT was defined by the International Classification
of Diseases (ICD)-10 code M76.6 or ICD-9 code 7267A. In our
sensitivity analyses, a GWAS dataset with a study population of
mixed ethnicity from the GERA cohort was employed, in which
the outcome phenotype was Achilles tendon injury, including
AT and Achilles tendon rupture (30). If the IVs for exposure
were not available in the outcome dataset, proxy SNPs with high
LD (R2>0.8) were used.

Statistical Analysis
In the univariable MR, we inferred the potential causality
between exposures and outcomes by using various methods
based on different assumptions: inverse-variance weighted
(IVW) method, MR-Egger method, weighted median method,
and Mendelian Randomization Pleiotropy RESidual Sum and
Outlier (MR-PRESSO). In the IVW method, the Wald ratio for
each of the IVs will be meta-analysed to examine the causal
association. The IVW method assumes that all included genetic
variants are effective instrumental variables, which is different
from the MR-Egger method, which remains functional if all IVs
are invalid. Moreover, MR-Egger uses an intercept term to
examine potential pleiotropy. The weighted median method is
intermediate and requires that the valid variable must be at least
50%. MR-PRESSO can detect and exclude potential outliers in
MR analyses, providing results with a pleiotropy correction.
Heterogeneity was examined using the Cochrane Q value. The
effect of each included IV on the causal association was addressed
by the leave-one-out method, which removed each SNP
individually and analyzes the estimate of the remaining SNPs
by using IVW methods. Scatter plots were generated to visualize
the MR results. Power estimation was performed using an online
tool (31). In the bidirectional MR analyses, we relaxed the
thresholds for including SNPs as IVs to P<1× 10-5 because no
SNP reached a genome-wide significant association with AT
(P<5×10–8). This strategy of relaxing the threshold has been
employed in MR studies (32, 33). Multivariable MR with IVW
Frontiers in Endocrinology | www.frontiersin.org 3
analyses was performed to study the causal effect of other
obesity-related traits on AT after adjusting for BMI. Odds
ratios (ORs) and 95% confidence intervals (CIs) were applied
to represent causality estimates of putative clinical risk factors
and AT, and Bonferroni correction was used for statistical
significance judgment in both univariable and multivariable
MR analyses. All analyses were performed using the R
packages TwoSampleMR (17), MendelianRandomization (34),
and MR-PRESSO (35).
RESULTS

Univariable Mendelian Randomization to
Screen for the Causal Associations
Between Putative Clinical Risk Factors
and AT
Ten clinical risk factors reported to be associated with AT in
conventional epidemiological studies were included in the
univariable MR analyses. Analyses using the IVW method
indicated that the genetically predicted BMI was significantly
associated with the risk of AT after Bonferroni correction for
multiple comparison (P<5.0×10-3), and the OR (95% CIs) was
1.44 (1.14-1.81) for AT per 1-SD increase in BMI (Figure 1 and
Figure 2). No significant heterogeneity was found in this analysis
(P=0.15) (Supplementary Table 2), and the leave-one-out
analysis suggested that the results were not driven by a single
SNP (Supplementary Figure 1). Furthermore, the directions of
the association between BMI and AT risk were the same when
using the MR-Egger and weighted median methods (Figure 1).
As evaluated by the intercept term of the MR-Egger method,
horizontal pleiotropy was nonsignificant (P=0.62) in the
causality analysis between BMI and AT (Supplementary
Table 3), which is also consistent with the results of MR-
PRESSO in which no outlier IV was detected. The results of
the power estimation suggested that the statistical power of this
analysis was sufficient (>80%) (Supplementary Table 4). Next,
we performed a sensitivity analysis in which the outcome was
changed to Achilles tendon injury, including AT and Achilles
tendon rupture (30), and the causal effect of BMI was
consistently revealed (Supplementary Table 5). As another
sensitivity analysis, we used a set of less IVs for BMI identified
by Locke et al. (36), and the results also revealed a causal
association between BMI and the risk of AT (Supplementary
Table 5). For the other nine putative clinical risk factors, no
causality with AT was identified using any of the MR methods
(Figure 1 and Supplementary Figure 2).

Bidirectional Mendelian Randomization to
Test the Causal Effect of AT on BMI
Twelve SNPs associated with AT at a relaxed threshold (P<1×10–5)
were selected as IVs for AT in the bidirectional MR. A significant
level of heterogeneity was detected in the analyses
(Supplementary Table 2), and the results of MR with the
multiplicative random-effect IVW method indicated that AT
was not causally associated with BMI (Supplementary Table 5).
June 2022 | Volume 13 | Article 902142
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Similar results were obtained using MR-PRESSO, which excluded
outlier SNPs (Supplementary Table 6). We also performed a
sensitivity analysis using Achilles tendon injury as exposure, which
consistently indicated that this phenotype did not cause an
increase in BMI (Supplementary Table 5).

Multivariable Mendelian Randomization to
Examine the BMI-Adjusted Causal
Association of Other Anthropometric
Traits With AT
To evaluate the causal effect of other obesity-related traits on AT,
we first performed univariable MR. The results suggested that
only WBF% was causally associated with the risk of AT at the
nominal significance level (P=0.01) (Figure 3), which did not
survive the Bonferroni correction (Pthreshold=0.05/6). Because
obesity-related traits are highly related to BMI, we also
performed multivariable MR analysis, and the results indicated
Frontiers in Endocrinology | www.frontiersin.org 4
that none of these traits were causally associated with the risk of
AT after adjusting for BMI (Figure 3).
DISCUSSION

In this study, we tested the potential causal association between
ten putative AT risk factors and the risk of AT by using a two-
sample MR design and identified the causality between high BMI
and increased risk of AT. Bidirectional MR revealed that an
elevated risk of AT was not causally associated with increased
BMI. Furthermore, multivariable MR analysis indicated that
other anthropometric parameters, such as WHR, were not
likely to be associated with the risk of AT.

Obesity is a global epidemic, and our results suggest that weight
control is effective and necessary for the prevention and control of
AT. Compared with intrinsic factors such as age and sex,
FIGURE 1 | Associations of genetically predicted risk factors with risk of AT as examined by three MR methods. MR, Mendelian Randomization; IVW, inverse-
variance weighted; BMI, body mass index; PA, physical activity; SBP, systolic blood pressure; LDL-C, low-density lipoprotein cholesterol; TG, triglyceride; HDL-C,
high-density lipoprotein cholesterol; T2D, type 2 diabetes; CKD, chronic kidney disease; AT, Achilles tendinopathy; OR, Odds ratios; CI, confidence intervals.
June 2022 | Volume 13 | Article 902142
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overweight and obesity are more easily to control and therefore
can serve as promising targets for AT if they casually lead to an
increased risk of AT development and/or progression. However,
conventional epidemiological studies have presented inconclusive
evidence of an association between BMI and AT risk (9). One
study indicated that in addition to overuse, individuals who were
overweight and less physically active were also prone to
tendinopathy (37). In a study population in the United States,
the BMI of patients with Achilles pathology was significantly
higher than that of patients without Achilles pathology,
independent of age (38). A report from Norway showed that
military conscripts with higher BMIs were more likely to have
musculoskeletal injuries such as AT (39). Moreover, overweight or
obesity increased the risk of AT by 2.6 to 6.6 times (9), and a
significant association between obesity and AT was observed in
both male and female participants (40). Other studies have found
that the incidence of AT is not necessarily associated with BMI. In
a study population of male officer cadets, BMI was not
significantly different among subjects with and without Achilles
tendon overuse injury (41). Furthermore, a systematic review
indicated no association between BMI/body weight and AT,
although the evidence from the literature was limited (10). To
our knowledge, the current investigation is the first study to infer
causality between BMI and AT, and both the main analysis and
sensitivity analyses consistently support the hypothesis that BMI is
causally associated with AT, with an OR (95% CIs) of 1.44 (1.14-
1.81), but the reverse is not true (Figure 1 and Supplementary
Table 5). Notably, the magnitude of estimates fromMR analyses is
normally larger than that of observational studies because the BMI
proxied by genetic instruments in MR studies is a measurement of
lifelong exposure, and the BMI measured in conventional
epidemiological studies usually reflects short-term exposure (42).
Frontiers in Endocrinology | www.frontiersin.org 5
Moreover, the results of the MR study should be interpreted
carefully because it is appropriate to interpret such results as
statistical test results for causal relationships but not the expected
effects of clinical interventions at a particular time point (43). For
other anthropometric parameters, conventional epidemiological
studies have suggested an increased prevalence of AT in
participants with a central fat distribution (44). However, our
MR analyses suggested that WHR, as a measure of body fat
distribution, did not increase the risk of AT (Figure 3).

Tendons are mechanically sensitive tissues that respond to
mechanical loads of varying magnitudes, frequencies, and
durations (45). However, if the tendon is overloaded, its
muscle strength and elasticity may become unbalanced,
irritating the tendon and causing tendinopathy (2).
Considering that eight times the body weight can be placed on
the tendon during running, a slight increase in body weight
results in a significant increase in tendon loading (46). Thus,
overweight is likely to cause tendon loading beyond the threshold
for normal physiological function of the tendon and promote its
degeneration (44). Indeed, tendon structural alterations can be
revealed by ultrasound in overweight subjects (44). Adipose
tissue in obese individuals produces bioactive peptides, such as
adipokines, which modulate the function of tendon cells (e.g.,
tenocytes) and alter the tendon structure by inducing nitric oxide
synthase and regulating the production of metalloproteinases
that contribute to the increased level of degradation products
(47–49). Moreover, excessive generation of proteoglycans by
tenocytes contributes to water retention and tendon swelling
(50). Obesity is also a known contributor to the development of
insulin resistance, which promotes subclinical glucose
intolerance and accumulation of glycotoxins that can cross-link
with the collagen fibers of the tendon (51). In addition,
individuals with obesity and impaired insulin sensitivity have
higher levels of prostaglandin E2, indicating a state of chronic
low-grade inflammation, which may interfere with tendon
healing (44). More specifically, increased migration of immune
cells into adipose tissue has been found in obese subjects, leading
to a reduced level of circulating transforming growth factor-beta
(TGF-b), a profibrotic factor, which makes it difficult to heal the
Achilles tendon (52, 53). If the Achilles tendon fails to heal
continuously, prolonged fibrogenesis occurs, thereby inducing
the deposition of the extracellular matrix and impairing tendon
function (44).

In addition to obesity, epidemiological evidence suggests the
presence of other potential clinical risk factors for AT. For
example, an elevated risk of AT has been found in the United
States military personnel with moderate alcohol use (54). Acute
ruptures of the Achilles tendon are also associated with
hypertension, whose complications may contribute to the
reduced vascularity and the healing potential of the body (40).
Systemic factors (e.g., circulating lipids) may reduce the ability of
the tendon to handle loads and thus lead to AT (55). Indeed,
patients with Achilles tendon rupture have higher concentrations
of cholesterol (56), and biopsies from patients with AT exhibit
increased levels of the esterified fraction of cholesterol (57). In
addition, a higher incidence of diabetes has been reported in
FIGURE 2 | Scatter plot showing the causal effect of BMI on AT. MR,
Mendelian Randomization; BMI, body mass index; AT, Achilles tendinopathy.
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individuals with Achilles tendon ruptures, suggesting its
involvement in the pathogenesis of AT (58). Renal dysfunction
has also been proposed as an independent risk factor for AT in
patients who have received a heart transplant (59). However,
none of the potential clinical risk factors reported in
conventional epidemiological studies were causally associated
with AT in our MR analyses (Figure 1). Interestingly, although
AT is generally described as “overuse injury”, a systemic review
indicates that both the level and performance of physical activity
are not associated with AT, presumably because sudden load
changes are more important to the pathogenesis of AT than the
total amount of load that has been used as an indicator of
Frontiers in Endocrinology | www.frontiersin.org 6
physical activity in the majority of the studies (10). This
hypothesis is supported by our MR analyses that did not reveal
any causality between genetically determined physical activity
and the risk of AT.

This study has several strengths. First, the MR design reduced
biases introduced by residual confounding and reverse causality,
which may lead to false-positive results in conventional
observational studies. Second, the two-sample MR analysis
using summary statistics from independent, large GWAS for
exposures and outcomes separately improved the statistical
power to examine their causal association. Third, the use of
multiple SNPs as IVs for each of the putative clinical risk factors
FIGURE 3 | Associations of genetically predicted obesity-related traits with risk of AT as examined by univariable and multivariable MR with the IVW method. MR,
Mendelian Randomization; IVW, inverse-variance weighted; WC, waist circumference; HC, hip circumference; WHR, waist-hip ratio; WBFM, whole body fat mass;
WBFFM, whole body fat-free mass; WBF%, whole body fat percentage; AT, Achilles tendinopathy; OR, Odds ratios; CI, confidence intervals.
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of AT enabled us to analyze potential directional pleiotropy.
Furthermore, we employed numerous methods, such as MR-
Egger, multivariable MR, and MR-PRESSO, for sensitivity
analyses to detect and adjust for pleiotropy. Fourth, the bias
introduced by population stratification was reduced in our
analyses because the majority of the participants in the original
GWAS were European. This study also has several limitations.
First, compared with other diseases (e.g., cardiovascular diseases)
studied in MR, the number of AT cases used in the production of
the GWAS summary statistics was relatively small, leading to a
reduced statistical power to reveal the causal association with the
exposures included in this study. Second, although we employed
multiple MR methods to deal with the potential directional
pleiotropy, as a theoretical weakness of the MR studies, the
remaining pleiotropy could not be completely ruled out.

CONCLUSION

This comprehensive MR study has revealed a causal association
between BMI and the risk of AT, suggesting that weight control
is a promising strategy for preventing AT and alleviating the
corresponding disease burden.
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