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A B S T R A C T   

Alterations in the brain-gut system have been implicated in various disease states, but little is known about how 
early-life adversity (ELA) impacts development and adult health as mediated by brain-gut interactions. We 
hypothesize that ELA disrupts components of the brain-gut system, thereby increasing susceptibility to disor-
dered mood. In a sample of 128 healthy adult participants, a history of ELA and current stress, depression, and 
anxiety were assessed using validated questionnaires. Fecal metabolites were measured using liquid chroma-
tography tandem mass spectrometry-based untargeted metabolomic profiling. Functional brain connectivity was 
evaluated by magnetic resonance imaging. Sparse partial least squares-discriminant analysis, controlling for sex, 
body mass index, age, and diet was used to predict brain-gut alterations as a function of ELA. ELA was correlated 
with four gut-regulated metabolites within the glutamate pathway (5-oxoproline, malate, urate, and glutamate 
gamma methyl ester) and alterations in functional brain connectivity within primarily sensorimotor, salience, 
and central executive networks. Integrated analyses revealed significant associations between these metabolites, 
functional brain connectivity, and scores for perceived stress, anxiety, and depression. This study reveals a novel 
association between a history of ELA, alterations in the brain-gut axis, and increased vulnerability to negative 
mood and stress. Results from the study raise the hypothesis that select gut-regulated metabolites may contribute 
to the adverse effects of critical period stress on neural development via pathways related to glutamatergic 
excitotoxicity and oxidative stress.   

1. Introduction 

Early-life adversity (ELA) is a known disruptor capable of inducing a 
range of developmental changes (Tomalski and Johnson, 2010), and is 
associated with increased vulnerability to a variety of health conditions 
and psychiatric disorders later in life (Shonkoff et al., 2012). Systemic 

changes in response to stress during critical periods include dysregula-
tion of peripheral gene expression (Romens et al., 2015), immune 
function (Carpenter et al., 2010), and hormone levels (Joung et al., 
2014), in addition to perturbations of the microbiome (Foster et al., 
2017), all of which may contribute to and result from direct changes in 
the developing central nervous system (CNS). The involvement of the 
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gut microbiome and its interactions with the brain during this early 
programming period remain incompletely understood. We have previ-
ously proposed that this may occur in a bidirectional manner: while the 
brain may influence alterations of gut physiology and microbiome 
composition and function, the resulting altered functional output from 
the gut microbiome may result in neuroplastic changes in the brain 
(Mayer, 2011; Martin et al., 2018; Osadchiy et al., 2019a). A history of 
ELA has been reported in conditions ranging from obesity (Osadchiy 
et al., 2019b) to irritable bowel syndrome (Bradford et al., 2012; Labus 
et al., 2017) and inflammation (Levine et al., 2015; Gupta et al., 2017a), 
but few studies to date have used a systems approach to investigate 
perturbations in the gut metabolome and the brain in humans exposed to 
ELA. 

A primary pathway by which ELA can influence life-long trajectories 
is by shaping brain development (Tomalski and Johnson, 2010). Previ-
ous studies have shown that a history of ELA is associated with alter-
ations mainly in regions of the emotion regulation and salience 
networks, which in turn can influence epigenetic processes related to 
myelination and neurogenesis (Teicher et al., 2016; Gupta et al., 2017b). 
These neural changes have also been implicated in hyperarousal and 
difficulties with emotion regulation, and later development of negative 
mood states (Etkin et al., 2006; Cisler et al., 2013; Stein et al., 2007). In 
particular, prefrontal cortex and hippocampal volumes were persistently 
reduced in adolescents adopted from international orphanages (Hodel 
et al., 2015), and female adolescents with a history of childhood 
maltreatment displayed altered organization of cortical networks, which 
mediated psychiatric outcomes (Miskovic et al., 2010). Rodent research 
has shown similar findings with increased resolution: for instance, 
maternal separation was associated with accelerated innervation of 
basolateral amygdala axons into the prefrontal cortex, with females 
specifically demonstrating reduced functional connectivity between 
these regions across maturation, and increased anxiety-like behavior 
(Honeycutt et al., 2020). 

In addition to neural development, the gut is also sensitive to ELA 
(Dong and Gupta, 2019). A number of early developmental factors have 
been implicated in gut microbiome development, especially factors 
relating to maternal stress, diet, and disease (Zijlmans et al., 2015), 
mode of delivery (Yassour et al., 2016; Backhed et al., 2015), early 
nutrition/breast-feeding (Backhed et al., 2015; Bergstrom et al., 2014), 
and exposure to antibiotics (Yassour et al., 2016). In a youth cohort, 
early life adversity was not only associated with gastrointestinal symp-
toms and later anxiety, but also correlated with microbial diversity, and 
taxonomic abundances predicted prefrontal cortex activity (Callaghan 
et al., 2020). In a sample of pregnant women, early adversity correlated 
positively with Prevotella, and cortisol correlated positively with Rike-
nellaceae and Dialister, and negatively with Bacteroides, suggesting an 
interaction between early adversity, current stress, and gut microbiota 
(Hantsoo et al., 2019). Additionally, gut signaling to the brain can be 
mediated by metabolites produced directly by gut microbes or indirectly 
from host cells responding to microbial cues (Wall et al., 2014). For 
example, transplantation of microbiota from depressed patients into 
germ-free mice promoted anxiety- and depression-related behaviors 
compared to germ-free mice transplanted with a non-depressed micro-
biota; these interactions were mediated by selective modulation of both 
microbial and host genes involved in carbohydrate and amino acid 
metabolism (Zheng et al., 2016). Additionally, microbiome-derived 
short-chain fatty acids ameliorate stress-induced cortisol release in 
humans when delivered directly to the colon (Dalile et al., 2020) and 
ameliorate early chronic stress in rodents when delivered orally (Van de 
Wouw et al., 2018), further underscoring potential relationships be-
tween the brain-gut-microbiome axis and stress (Lyte et al., 2011). 

While findings from animal models support a role for the gut 
microbiome in mediating adverse effects of ELA on neurodevelopment 
(De Palma et al., 2015; Moussaoui et al., 2017), comprehensive inves-
tigation of these interactions in humans is lacking. Despite the 
well-known limitations of cross-sectional and retrospective data, herein 

we test the primary hypothesis that ELA-related alterations in gut mi-
crobial metabolites are associated with alterations in brain connectivity, 
disordered mood, and increased vulnerability to stress in adulthood. 

2. Materials and methods 

2.1. Participants 

The study was comprised of 128 right-handed healthy participants 
(43 males and 85 females), with the absence of significant medical or 
psychiatric conditions, as assessed by a physical exam, detailed medical 
history, and a clinical assessment using the modified Mini-International 
Neuropsychiatric Interview Plus 5.0 (MINI) (Sheehan et al., 1998). 
Participants were excluded for the following: pregnant or lactating, 
substance use, abdominal surgery, tobacco dependence (half a pack or 
more daily), extreme strenuous exercise (>8h of continuous exercise per 
week), current or past psychiatric illness, and major medical or neuro-
logical conditions. Participants taking medications that interfere with 
the CNS or using analgesic drugs regularly (e.g. full dose antidepressants 
including SSRIs, NSRIs, sedatives or anxiolytics, and opioids) were 
excluded. Participants were also excluded for use of antibiotics or pro-
biotic supplements in the past 3 months. Since female sex hormones such 
as estrogen are known to effect brain structure and function, we 
requested females to stop taking hormonal contraceptives for the 
duration of the study. In addition, we assessed only females who were 
premenopausal (i.e., women under than or equal to 45 years who re-
ported regular menses for at least 1 year) and were scanned during the 
follicular phase of the menstrual cycle (i.e., defined as 4–12 days after 
the first day of the last menstrual period), as assessed by self-report. 

All procedures complied with and were approved by the Institutional 
Review Board (16–000187, 15–001591) at the University of California, 
Los Angeles’s Office of Protection for Research Subjects. All participants 
provided written informed consent. 

2.2. Questionnaires 

ELA was measured using the Early Traumatic Inventory-Self Report 
(ETI-SR) (Bremner et al., 2005), a 27-item questionnaire. This ques-
tionnaire assesses the histories of childhood traumatic and adverse life 
events that occurred before the age of 18 years old and covers four 
domains: general trauma (11 items), physical punishment (5 items), 
emotional abuse (5 items), and sexual abuse (6 items). General trau-
matic events comprise a range of stressful and traumatic events that can 
be mostly secondary to chance events. Sample items on this scale include 
death of a parent, discordant relationships or divorce between parents, 
or death or sickness of a sibling or friend. Physical abuse involves 
physical contact, constraint, or confinement, with intent to hurt or 
injure. Sample items on the physical abuse subscale include being 
spanked by hand or being hit by objects. Emotional abuse is verbal 
communication with the intention of humiliating or degrading the 
victim. Sample items on the ETI-SR emotion subscale include the 
following, “Often put down or ridiculed,” or “Often told that one is no 
good.” Sexual abuse is unwanted sexual contact performed solely for the 
gratification of the perpetrator or for the purposes of dominating or 
degrading the victim. Sample items on the sexual abuse scale include 
being forced to pose for suggestive photographs, to perform sexual acts 
for money, or coercive anal sexual acts against one’s will. The ETI-SR 
instrument was chosen due to its psychometric properties, ease of 
administration, time efficiency, and ability to measure ELAs in multiple 
domains (Bremner et al., 2007). For subsequent analyses, participants 
were split into two groups: “High ETI” (ETI-SR total > 4) and “Low ETI” 
(ETI-SR total ≤ 4). This cut off ETI score was selected based on the 
median score of this sample versus the mean ETI score in past papers 
because of the presence of extreme ETI scores in the data. While some 
studies have reported a higher mean ETI, our cut-off falls in line with 
previously reported healthy patient samples tested using the short-form 
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version of the tool (mean = 3.5, sd = 3.339; mean = 2.68, sd = 2.5540). 
Additional questionnaires included the Perceived Stress Scale (PSS) 

and the Hospital Anxiety and Depression Scale (HADS). The PSS is a 10- 
item scale used to measure stressful demands in a given situation, 
indicating that demands exceed ability to cope (Cohen et al., 1983). The 
questions are based on subjects reporting the frequency of their feelings 
within the past month to each question, which are scored on a scale of 
0 (never) to 4 (very often). The HADS is a 14-item scale used to measure 
symptoms of anxiety and depression (Zigmond and Snaith, 1983). The 
questions are scored on a scale of 0–3, corresponding to how much the 
individual identifies with the question for the past week. 

Diet was assessed through a self-reported UCLA Diet Checklist, is a 
questionnaire developed by our institution, intended to represent the 
diet that best reflects what patients consume on a regular basis. The 
specific diets incorporated into this checklist include the following op-
tions: i) Standard American (characterized by high consumption of 
processed, frozen, and packaged foods, pasta and breads, and red meat; 
vegetables and fruits are not consumed in large quantities), ii) Modified 
American (high consumption of whole grains including some processed, 
frozen, and packaged foods; red meat is consumed in limited quantities; 
vegetables and fruit are consumed in moderate to large quantities), iii) 
Mediterranean (high consumption of fruits, vegetables, beans, nuts, and 
seeds; olive oil is the key monounsaturated fat source; dairy products, 
fish, and poultry are consumed in low to moderate amounts and little red 
meat is eaten), and iv) all other diets that do not fit into the above 
categories. If they marked “other” they were asked to describe the 
components of their individual diet with regards to consumption of 
meat, dairy, eggs, fruits, vegetables, and grains. If a participant selected 
“other”, their comments regarding intake of food components were 
individually reviewed, as was that participant’s previous 24-h food 
intake. Our institution’s Diet Checklist was then internally validated 
against the standardized DHQ-III. For data analysis we had 3 diet cate-
gories: We combined standard American and modified American diet as 
one category. Mediterranean, vegan, vegetarian, and gluten-free were 
combined into a single category, and all other diets were combined as 
“other.” For the analyses, the three categories (America, Mediterranean/ 
Plant based, Other) were used. 

2.3. Gut microbiome 

2.3.1. Collection and storage 
These have been previously described in great detail in recently 

published papers (Dong et al., 2020a, 2020bbib_Dong_et_al_2020a-
bib_Dong_et_al_2020b; Osadchiy et al., 2020). Participants were given 
“at home collection kits” which consisted of a standard laboratory 
supplies such as collection hat over the commode and a urine cup to 
pack the fresh stool. The participants were given specific instructions 
regarding time of stool collection (e.g., time of day and within 2–3 days 
before the MRI scan). In addition, 2–3 consecutive diet diaries were 
collected from the time of enrollment to the time of the MRI scan and 
stool collection (1 weekday and 1 weekend). Participants were asked to 
collect the stool before the first meal of the day. If participants were on 
antidiarrheal or laxatives, they were asked to refrain from use for 2–3 
days before the sample collection. Participants were asked to store their 
fresh stool immediately in the freezer immediately upon collection and 
to bring in the stool to the laboratory on the day of the MRI (note day 
and time of stool collection and storage). Any deviation from the stool 
sample collection or storage were documented in order to account for in 
the analyses. Fecal samples were stored at − 80 ◦C, then ground into a 
coarse powder by mortar and pestle under liquid nitrogen and aliquoted 
for DNA extraction and metabolomic profiling. 

2.3.2. Fecal microbial profiling 
DNA extraction with bead beating was performed using the QIAGEN 

Powersoil DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA) with 
bead beating following the manufacturers protocol. The V4 

hypervariable region of the 16S rRNA gene was then amplified using the 
515F and 806R primers to generate a sequencing library according to a 
published protocol (Tong et al., 2014). The PCR products were purified 
with a commercial kit. The library underwent 2 × 250 sequencing on an 
Illumina HiSeq 2500 to a mean depth of 250,000 merged sequences per 
sample. QIIME 2 2021.2.0 was used to perform quality filtering, merge 
paired end reads, and cluster sequences into 97% operational taxonomic 
units (OTUs) (Caporaso et al., 2010). OTUs were classified taxonomi-
cally using the SILVA (128 release) database at the level of domain, 
phylum, family, genus, and species, depending on the depth of reliable 
classifier assignments. 

Microbial alpha diversity was assessed on datasets rarefied to equal 
sequencing depth (34,222) using the Chao1 index of richness and the 
Shannon index of evenness. Microbial composition was compared across 
samples by Microbial composition was compared across samples by 
using the DEICODE plugin in QIIME 2 which employs a robust Aitchison 
distance metric. This beta diversity metric accounts for the sparse 
compositional nature of the microbiome, which has a demonstratively 
higher discriminatory power compared to other distance metrics such as 
UniFrac and Bray-Curtis (Anderson, 2001). These differences were 
visualized with principal coordinates analysis. The significance of dif-
ferences in microbial composition between individuals with high or low 
ETI scores, adjusting for age, BMI, diet, and sex was assessed using 
PERMANOVA with 100,000 permutations (Anderson, 2001). Differen-
tial abundance of microbial genera was determined using multivariate 
negative binomial mixed models implemented in DESeq2 that included 
age, BMI, diet, and sex as covariates (Love et al., 2014). P-values were 
adjusted for multiple hypothesis testing to generate q-values, with a 
significance threshold of q < 0.05. 

2.3.3. Fecal metabolomic profiling 
Fecal aliquots were shipped to Metabolon, Inc., and run as a single 

batch on their global HD4 metabolomics platform (Evans et al., 2009). 
This involved running methanol extracted samples through ultrahigh 
performance liquid chromatography-tandem mass spectroscopy under 
four separate chromatography and electrospray ionization conditions to 
separate compounds with a wide range of chemical properties. Com-
pounds were identified by comparison of spectral features to Metab-
olon’s proprietary library that includes MS/MS spectral data on more 
than 3300 purified standards. Study specific technical replicates 
generated by pooling aliquots of all samples were used to measure total 
process variability (median relative standard deviation 13%). Results 
were provided as scaled, imputed abundances of 872 known 
compounds. 

Missing values of raw data were filled up using median values, and 
ineffective peaks were removed through the interquartile range 
denoising method. In addition, the internal standard normalization 
method was employed in the data analysis. The dataset for the multiple 
classification analysis was compiled from the metabolite profiling re-
sults and a 3D matrix involving metabolite numbers, sample names, and 
normalized peak intensities were fed into the MetaboAnlyst web soft-
ware 3.0 (http://www.metaboanalyst.ca). 

2.4. Magnetic resonance imaging 

Whole brain structural and functional (resting state) data was ac-
quired using a 3.0T Siemens Prisma MRI scanner (Siemens, Erlangen, 
Germany). Detailed information on the standardized acquisition pro-
tocols, quality control measures, and image preprocessing are provided 
in previously published studies (Gupta et al., 2017b; Dong et al., 2020b; 
Osadchiy et al., 2020). 

2.4.1. Structural MRI acquisition 
High resolution T1-weighted images were acquired: echo time/ 

repetition time (TE/TR) = 3.26 ms/2200 ms, field of view = 220 × 220 
mm slice thickness = 1 mm, 176 slices, 256 × 256 voxel matrices, and 
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voxel size = 0.86 × 0.86 × 1 mm. 

2.4.2. Functional MRI acquisition 
Resting-state scans were acquired with eyes closed and an echo 

planar sequence with the following parameters: TE/TR = 28 ms/2000 
ms, flip angle = 77◦, scan duration = 8m6s–10m6s, FOV = 220 mm, 
slices = 40 and slice thickness = 4.0 mm, and slices were obtained with 
whole-brain coverage. 

2.4.3. Preprocessing of MRI images 
Preprocessing and quality control of functional images was done 

using SPM-12 software (Welcome Department of Cognitive Neurology, 
London, UK). The first two volumes were discarded to allow for stabi-
lization of the magnetic field. Slice timing correction was performed 
first, followed by rigid six-degree motion-correction for the six realign-
ment parameters. The motion correction parameters in each degree 
were examined for excessive motion. If any motion was detected above 
2 mm translation or 2◦ rotation, the scan, along with the paired struc-
tural scan was discarded. In order to robustly take account the effects of 
motion, root mean squared realignment estimates were calculated as 
robust measures of motion using publicly available MATLAB code. Any 
subjects with a greater RMS value than 0.25 was not included in the 
analysis. The resting state images were then co-registered to their 
respective anatomical T1 images. Each T1 image was then segmented 
and normalized to a smoothed template brain in Montreal Neurological 
Institute (Melander et al., 1999) template space. Each subject’s T1 
normalization parameters were then applied to that subject’s resting 
state image, resulting in an MNI space normalized resting state image. 
The resulting images were smoothed with 5 mm (Romens et al., 2015) 
Gaussian kernel. For each subject, a sample of the volumes was 
inspected for any artifacts and anomalies. Levels of signal dropout were 
also visually inspected for excessive dropout in a priori regions of 
interest. 

2.4.4. Structural image parcellation 
T1-image segmentation and cortical and subcortical regional par-

cellation were conducted using Schaefer 400 atlas (Schaefer et al., 
2018), Harvard-Oxford subcortical atlas (Destrieux et al., 2010), and the 
Ascending Arousal Network atlas (Edlow et al., 2012). This parcellation 
results in the labeling of 430 regions, 400 cortical structures, 14 bilateral 
subcortical structures, bilateral cerebellum, and 14 brainstem nuclei. 

2.4.5. Functional brain connectivity matrix construction 
To summarize, all pre-processed, normalized images were entered 

into the CONN-fMRI functional connectivity toolbox version 17 in 
MATLAB. All images were first corrected for noise using the automatic 
component-based noise correction (aCompCor) method to remove 
physiological noise without regressing out the global signal. Confounds 
for the six motion parameters along with their first-order temporal de-
rivatives, along with confounds emerging from white matter and cere-
bral spinal fluid, and first-order temporal derivatives of motion, and root 
mean squared values of the detrended realignment estimates were 
removed using regression. Although the influence of head motion 
cannot be completely removed, CompCor has been shown to be partic-
ularly effective for dealing with residual motion relative to other 
methods. The images were then band-pass filtered between 0.008 and 
0.009 Hz to minimize the effects of low frequency drift and high fre-
quency noise after CompCor regression. Connectivity matrices for each 
subject, consisting of all the parcellated regions were then computed. 
This represents the association between two average temporal BOLD 
time series across all the voxels in each region. The final outputs for each 
subject consisted of a connectivity matrix between the 430 parcellated 
regions and was indexed by Fisher transformed Z correlation coefficients 
between each region of interest. 

2.5. Statistical analysis 

2.5.1. Sparse partial least squares — discriminate analysis 
A partial least squares-discriminant analysis (PLS-DA) was con-

ducted in R (Boston, MA) to explore the group difference between high 
vs. low ETI groups by incorporating known classifications for the me-
tabolites. Similarly, a sparse PLS-DA for whole brain resting state con-
nectivity was run to understand the classification in brain signatures 
related to high vs. low ETI. In order to prevent overfitting of the model, 
we ran permutation tests. The metabolites with values of the first 
component of variable importance projection (VIP) greater than 1.0 
were assessed, indicating the estimate of the importance of each 
metabolite used in the model. The brain connectivity regions/brain 
signatures from the two components of the weighted design matric and 
contributing to the discrimination between the two groups were sum-
marized using the top variable loadings on the individual dimensions/ 
components and VIP coefficients. T-tests using contrasts in a general 
linear model controlling for age, BMI, diet (3 categories), and sex (male, 
female) were conducted. P-values were adjusted for with the Benjamini- 
Hochberg false discovery rate (FDR) procedure and significant q-values, 
were reported (Benjamini and Hochberg, 1995). The metabolites with 
VIPs >1.0 and q < 0.05 were selected as significantly different between 
the two groups. The fold change was also calculated to investigate the 
difference by comparing the mean value of the peak area obtained be-
tween the two groups. 

2.5.2. Network analysis 
Network analysis was performed to integrate information from three 

data sets: 
1) stool-derived metabolites 2) clinical data (ETI, PSS, HADS Anxi-

ety, HADS Depression) and 3) functional connectivity brain data. The 
interaction between the phenome (clinical measures), microbiome 
(stool-derived metabolites) and connectome (brain connectivity) was 
determined by computing Spearman correlations between different data 
types in R v. 3.6.2, controlling for age, BMI, diet, and sex. These cor-
relations were run separately for 1. All participants 2. the low ETI group 
and for 3. the high ETI group. Circos images were created to visualize 
and construct brain, symptom, and gut-derived metabolite interaction 
networks thresholded at FDR corrected q < 0.05. We present the net-
works by placing nodes of the same type of data together and displaying 
connecting edges representing correlations. A red edge indicates a sig-
nificant correlation in the high ETI group. A green edge indicates a 
significant correlation in the low ETI group. A grey edge represents a 
significant correlation for all the participants as a function of increasing 
ETI scores. 

3. Results 

3.1. Subject demographics and clinical variables 

Individuals in the low ETI group had a mean score of 1.2, while those 
in the high ETI group had a mean score of 8.6. Those with a history of 
high ELA exposure as indexed by the ETI scale had significantly higher 
BMI (p < 0.001) and anxiety (p = 0.032) levels (Table 1). Although the 
high ELA group was older (p = 0.244), and reported higher levels of 
depression symptoms (p = 0.284), and perceived stress (p = 0.069), 
these differences were not significant. To account for the significant 
difference in BMI between low and high ETI groups, we controlled for it 
in subsequent multivariate analyses. Diet did not differ by ETI group 
(American: High ETI = 15, Low ETI = 19, Mediterranean/Plant Based: 
High ETI = 25, Low ETI = 39, Other: High ETI = 12, Low ETI = 18. 

3.2. Early life adversity and gut microbiome composition 

There were no significant relationships between a history of ELA 
exposure and microbial alpha diversity, the variation of microbes within 
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a sample, (Chao1, p = 0.345; Shannon, p = 0.465) (Supplementary 
Fig. 1A), microbial beta diversity, the variation of microbial commu-
nities between samples, (measured by Aitchison-based PCoA; perma-
nova p = 0.421) (Supplementary Fig. 1B) or relative taxonomic 
abundance, at either the phylum or genus levels (Supplementary 
Fig. 1C). 

3.3. Early life adversity associates with adult gut metabolites 

The PLS-DA of the gut metabolites showed a defined clustering, 
based on low or high ETI exposure (Table 2; Fig. 1A). Out of 557 gut 
metabolites screened, 207 loaded on component 1 > 1.0, and were 
classified as “VIP” metabolites. Of this narrowed-down list of 207, 33 
metabolites showed a significant relationship to ETI exposure (p <
0.05), belonging to amino acid, carbohydrate, cofactors and vitamins, 
energy, lipid, nucleotide, and xenobiotics super pathways (Table 2). 

Table 1 
Clinical characteristics associated with early life adversity.  

Psychological Measures Low ETI N High ETI N t-value p-value 

Mean SD Mean SD 

Sex 48 Female 28 Male 76 37 Female 15 Male 52 – – 
Age 27.28 7.55 76 28.81 7.051737 52 − 1.17 0.2441 
ETI 1.20 1.36 76 8.60a 3.40 52 16.27 0.0001 
BMI (kg/m2) 27.42 5.16 76 30.76 5.30 52 − 3.53 0.0006 
PSS Score 11.18 6.39 76 13.37 6.77 52 − 1.84 0.0690 
HADS Anxiety 3.97 3.33 76 5.33 3.55 52 − 2.17 0.0322 
HADS Depression 1.82 2.00 76 2.29 2.69 52 − 1.08 0.2845 

N = 128 total, Low ETI group N = 76, High ETI group N = 52. 
Means and standard deviations are reported for normally distributed data. ETI threshold = 4 (Low ETI: ETI-SR total ≤ 4, High ETI: ETI-SR total > 4). ETI: early 
traumatic inventory; BMI: body mass index, PSS: Perceived Stress Scale, HADS: Hospital Anxiety and Depression Scale. 
p-significant <0.05. 

a Previous reports for mean ETI in healthy adults are 7.5 (sd 5.4)41. 

Table 2 
Gut metabolites associated with early life adversity.  

VIP metabolites Super Pathway Sub Pathway beta se t p- 
value 

q- 
value 

glutamate, gamma-methyl ester Amino Acid Glutamate Metabolism − 0.407 0.175 − 2.322 0.022 0.044 
5-oxoproline Amino Acid Glutathione Metabolism − 0.425 0.180 − 2.356 0.020 0.044 
formiminoglutamate Amino Acid Histidine Metabolism − 0.424 0.184 − 2.308 0.023 0.219 
N6-formyllysine Amino Acid Lysine Metabolism 0.423 0.188 2.254 0.026 0.219 
N,N,N-trimethyl-5-aminovalerate Amino Acid Lysine Metabolism − 0.462 0.185 − 2.501 0.014 0.219 
N,N-dimethyl-5-aminovalerate Amino Acid Lysine Metabolism − 0.519 0.184 − 2.822 0.006 0.219 
N6,N6-dimethyllysine Amino Acid Lysine Metabolism 0.413 0.189 2.190 0.030 0.219 
N1,N12-diacetylspermine Amino Acid Polyamine Metabolism 0.419 0.184 2.278 0.024 0.219 
(N(1) + N(8))-acetylspermidine Amino Acid Polyamine Metabolism 0.402 0.185 2.177 0.031 0.219 
diacetylspermidine* Amino Acid Polyamine Metabolism 0.468 0.186 2.513 0.013 0.219 
lactate Carbohydrate Glycolysis, Gluconeogenesis, and Pyruvate 

Metabolism 
− 0.390 0.185 − 2.102 0.038 0.401 

xanthopterin Cofactors and 
Vitamins 

Pterin Metabolism − 0.410 0.186 − 2.204 0.029 0.250 

malate Energy TCA Cycle − 0.550 0.182 − 3.016 0.003 0.018 
tricarballylate Energy TCA Cycle − 0.378 0.188 − 2.016 0.046 0.138 
N-behenoyl-sphingadienine (d18:2/ 

22:0)* 
Lipid Ceramides − 0.420 0.188 − 2.232 0.027 0.282 

LAHSA (18:2/OH-18:0)* Lipid Fatty Acid Hydroxyl Fatty Acid − 0.405 0.184 − 2.198 0.029 0.282 
dihydroorotate Lipid Fatty Acid Metabolism(Acyl Carnitine) − 0.485 0.187 − 2.598 0.011 0.234 
azelate (nonanedioate; C9) Lipid Fatty Acid, Dicarboxylate − 0.396 0.188 − 2.102 0.038 0.282 
maleate Lipid Fatty Acid, Dicarboxylate − 0.499 0.187 − 2.671 0.009 0.234 
mevalonate Lipid Mevalonate Metabolism 0.406 0.183 2.223 0.028 0.282 
1-palmitoylglycerol (16:0) Lipid Monoacylglycerol 0.405 0.185 2.186 0.031 0.282 
pregnen-diol disulfate* Lipid Pregnenolone Steroids 0.542 0.187 2.902 0.004 0.235 
lithocholic acid sulfate (2) Lipid Secondary Bile Acid Metabolism 0.367 0.182 2.017 0.045 0.282 
sphinganine Lipid Sphingolipid Synthesis − 0.384 0.188 − 2.042 0.043 0.282 
allantoin Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 

containing 
− 0.423 0.185 − 2.290 0.024 0.148 

urate Nucleotide Purine Metabolism, (Hypo)Xanthine/Inosine 
containing 

− 0.569 0.182 − 3.122 0.002 0.036 

pseudouridine Nucleotide Pyrimidine Metabolism, Uracil containing − 0.376 0.185 − 2.028 0.045 0.148 
3-(3-hydroxyphenyl)propionate Xenobiotics Benzoate Metabolism 0.467 0.182 2.560 0.012 0.107 
3-(4-hydroxyphenyl)propionate Xenobiotics Benzoate Metabolism 0.389 0.188 2.071 0.040 0.141 
3,4-dihydroxybenzoate Xenobiotics Benzoate Metabolism − 0.395 0.179 − 2.212 0.029 0.121 
piperidine Xenobiotics Food Component/Plant − 0.459 0.187 − 2.459 0.015 0.107 
sitostanol Xenobiotics Food Component/Plant − 0.489 0.186 − 2.630 0.009 0.107 
sucralose Xenobiotics Food Component/Plant − 0.416 0.188 − 2.218 0.028 0.121 

N = 128 total, Low ETI group N = 76, High ETI group N = 52. 
p-value significant <0.05. 
Q-values derived from FDR correction, q-value significant <0.05. 
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Fig. 1. Early Life Adversity Differentiates Fecal Metabolite Composition. N = 128 total, Low ETI group N = 76, High ETI group N = 52. A: Gut metabolites 
cluster by PLS-DA. B: Fold change of significant metabolites after FDR correction, q < 0.05. Errors bars represent mean ± SEM. 

Table 3 
Brain connectivity associated with early life adversity.  

Network 
A 

Region A Network 
B 

Region B LOADINGS 
Comp 1 

LOADINGS 
Comp 2 

VIP Comp 
1 

VIP Comp 
2 

t p-value q-value Interpretation 

Brain Signature 1 
SMN R_SupFG 

(SMA) 
SAL R_SupCirInS 

(aINS) 
− 0.778  236.196 164.545 − 4.271 3.80E- 

05 
2.99E- 
04 

high ETI ↑ 

SMN R_PosCG (SI) CEN L_IntPS_TrPS 
(IPL) 

− 0.467  141.889 98.846 − 4.149 6.10E- 
05 

2.99E- 
04 

high ETI ↑ 

DMN R_InfTG (LTC) SAL R_SupCirInS 
(aINS) 

− 0.395  119.872 83.508 − 4.120 6.80E- 
05 

2.99E- 
04 

high ETI ↑ 

DMN R_SupTGLp 
(LTC) 

SMN R_SupFS (SMA) − 0.145  44.041 30.681 − 4.023 9.83E- 
05 

2.99E- 
04 

high ETI ↑ 

DMN R_PrCun OCC L_MOcG (OCC) 0.011  3.181 78.003 3.971 1.19E- 
04 

2.99E- 
04 

low ETI ↑ 

Brain Signature 2 
SMN L_PaCL_S SMN R_Thal  − 0.660  143.839 − 3.353 0.001 0.002 high ETI ↑ 
DMN L_MTG (LTC) CAN L_MedOrS 

(OFC)  
− 0.434  94.628 − 2.525 0.013 0.019 high ETI ↑ 

DMN R_ATrCoS 
(LTC) 

CAN R_RG (OFC)  − 0.168  36.603 − 2.674 0.009 0.014 high ETI ↑ 

DMN R_PrCun SAL R_SupCirInS 
(aINS)  

0.199  43.528 1.562 0.121 0.121 low ETI ↑ 

DMN R_PrCun SMN L_PRCG (M1)  0.251  54.791 2.046 0.043 0.054 low ETI ↑ 
DMN R_PrCun SMN R_PosCG (S1)  0.162  35.258 1.649 0.102 0.117 low ETI ↑ 
DMN R_PrCun SMN L_PRCG (M1)  0.096  20.959 1.567 0.120 0.121 low ETI ↑ 
DMN R_PrCun OCC L_MOcG (OCC)  0.358 3.181 78.003 3.971 1.19 E- 

04 
2.99 E- 
04 

low ETI ↑ 

ERN L_ACgG_S 
(pACC) 

SMN L_InfCirInS 
(aINS)  

0.277  60.415 3.583 4.84 E- 
04 

1.04E- 
04 

low ETI ↑ 

OCC R_CoS_LinS 
(OCC) 

ERN L_ACgG_S 
(pACC)  

0.062  13.483 2.329 0.021 0.029 low ETI ↑ 

N = 128 total, Low ETI group N = 76, High ETI group N = 52. 
p-value significant <0.05. 
Q-values derived from FDR correction, q-value significant <0.05. 
Comp: Components; VIP: variable importance projection. 
Networks. 
SMN: sensorimotor, DMN: default mode, SAL: salience, CEN: central executive, CAN: central autonomic, ERN: emotion regulation, OCC: occipital. 
Brain Regions. 
SupFG: superior frontal gyrus, SMA: supplementary motor area, SupCirInS: superior segment of the circular sulcus of the insula, aINS: anterior insula, PosCG: post-
central gyrus, S1: primary somatosensory cortex, IntPS_TrPS: intraparietal sulcus (interparietal sulcus) and transverse parietal sulci, IPL: inferior parietal lobule, InfTG: 
inferior temporal gyrus, LTC: lateral temporal cortex, SupTGLp: lateral aspect of the superior temporal gyrus, SupFS: superior frontal sulcus, MOcG: middle occipital 
gyrus, OCC: occipital lobe, PaCL/S: paracentral lobule and sulcus, Thal: thalamus, MTG: middle temporal gyrus, MedOrS: medial orbital sulcus (temporal sulcus), OFC: 
orbitofrontal cortex, ATrCoS: anterior transverse collateral sulcus, RG: straight gyrus (gyrus rectus), PrCun: precuneus, PRCG: precentral gyrus, ACgG_S: anterior part 
of the cingulate gyrus and sulcus, pACC: pregenual anterior cingulate cortex, InfCirInS: inferior segment of the circular sulcus of the insula, CoS_LinS: medial occipito- 
temporal sulcus (collateral sulcus) and lingual sulcus. 
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After correcting for multiple comparisons, four metabolites remained 
significantly correlated with ETI exposure: glutamate, gamma-methyl 
ester (p = 0.022, q = 0.044), in the glutamate metabolism sub- 
pathway; 5-oxoproline (p = 0.020, q = 0.044), in the glutathione 
metabolism sub-pathway; malate (p = 0.003, q = 0.018), in the tricar-
boxylic acid (TCA) cycle sub-pathway; and urate (p = 0.002, q = 0.036), 
in the purine metabolism sub-pathway. Of these four significant me-
tabolites, all were reduced by approximately two-fold in individuals 
with high ETI exposure, compared to those with low ETI exposure 
(Fig. 1B). 

3.4. Early life adversity associates with brain functional connectivity 

A sPLS-DA of brain functional connectivity displayed significant 
clustering based on low or high ETI exposure (Table 3; Fig. 2A). Con-
nectivity between eleven pairs of brain regions were significantly asso-
ciated with ETI exposure (p < 0.05), and after correcting for multiple 
comparisons, ten pairs of regions remained significant (q < 0.05) 
(Table 3). All regions found to be significantly different have been 
summarized in Fig. 3 (represented by regions in each specific brain 
network). 

High ETI-related connectivity was observed between salience, 
sensorimotor, central executive, default mode and central autonomic 
networks. Specific positive relationships included salience (superior 
segment of the circular sulcus of the insula) with both sensorimotor 
(superior frontal gyrus (q < 0.001)) and default mode (inferior temporal 
gyrus (q < 0.001)); sensorimotor (post-central gyrus) with central ex-
ecutive (intraparietal sulcus, interparietal sulcus, and transverse parietal 
sulci (q < 0.001)); default mode (lateral aspect of the superior temporal 
gyrus) with sensorimotor (superior frontal sulcus (q < 0.001)); senso-
rimotor (paracentral lobule and sulcus) with sensorimotor (thalamus (q 
= 0.002)); default mode (middle temporal gyrus and anterior transverse 
collateral sulcus) with central autonomic (medial orbital sulcus (q =
0.019) and straight gyrus (gyrus rectus) (q = 0.014), respectively) 
(Fig. 2B; Fig. 3; Table 3). 

Low ETI-related connectivity was observed between occipital, 
default mode, and emotion regulation networks, including: default 
mode (precuneus) with occipital (middle occipital gyrus (q < 0.001)); 
emotion regulation (anterior part of the cingulate gyrus and sulcus) with 
both sensorimotor (inferior segment of the circular sulcus of the insula 
(q < 0.001)) and occipital (medial occipito-temporal sulcus (collateral 
sulcus) (q = 0.029)). (Fig. 2B; Fig. 3; Table 3). Additionally, low ETI 
exposure correlated with increased connectivity approaching signifi-
cance between default mode (precuneus) and sensorimotor (precentral 
gyrus (q = 0.054)). 

3.5. Early life adversity correlates with alterations in the brain-gut- 
microbiome system and current mood symptoms 

Significant relationships were identified between the significant 
pairs of connected brain regions (Section 4.3), four metabolites (gluta-
mate gamma-methyl ester, 5-oxoproline, malate, and urate; Section 
4.2), and four clinical variables (ETI score, PSS score, HADS anxiety, and 
HADS depression; Section 4.1) (Table 4; Fig. 4). Significant associations 
between the variables and by ETI exposure are depicted by group (high 
ETI and low ETI) and after correcting for multiple comparisons (q <
0.05). 

In the High ETI group, significant negative associations with key 
regions of the salience (superior segment of the circular sulcus of the 
insula), emotion regulation (anterior part of the cingulate gyrus and 
sulcus), central autonomic (gyrus rectus [straight gyrus]), default mode 
(inferior temporal gyrus, anterior transverse collateral sulcus), and oc-
cipital (medial occipito-temporal sulcus [collateral sulcus]) networks 
were found with malate and glutamate gamma-methyl ester. Glutamate 
gamma-methyl ester and 5-oxoproline were negatively associated with 
symptoms of both anxiety and depression, while urate was negatively 
associated with symptoms of depression. Connectivity between the 
sensorimotor and default model networks was positively associated with 
perceived stress. In addition, sensorimotor networks were negatively 
correlated with BMI, whereas default mode and central autonomic 
networks were positively correlated with BMI. 

In the Low ETI group, significant negative correlations were found 
between the connectivity of regions in the sensorimotor (paracentral 
lobule and sulcus, thalamus, and inferior segment of the circular sulcus 
of the insula) and emotion regulation (anterior part of the cingulate 
gyrus and sulcus) networks with glutamate gamma-methyl ester, 5-oxo-
proline, and urate. However, positive correlations between connectivity 
in regions of the sensorimotor (postcentral gyrus) and central executive 
(intraparietal sulcus (interparietal sulcus) and transverse parietal sulci) 
were positively associated with perceived stress, and symptoms of 
anxiety and depression. 5-oxoproline and urate were positively associ-
ated with ETI total score, while glutamate gamma-methyl ester and 5- 
oxoproline were negatively associated with BMI. 

4. Discussion 

The current study aimed to test the hypothesis that a history of ELA is 
associated with altered brain-gut interactions that impact perceived 
stress, and symptoms of depression and anxiety in adulthood. Our 
findings support the notion that ELA can lead to persistent disruptions in 
the brain-gut system, which may contribute to susceptibility to psy-
chological conditions later into adulthood in response to early life 

Fig. 2. Early Life Adversity Differentiates Brain Connectivity. N = 128 total, Low ETI group N = 76, High ETI group N = 52. A: Brain connectivity clusters by SPLS- 
DA. B: Significant regions after FDR correction, q < 0.05. Error bars represent mean ± SEM. 
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adversity. To our knowledge, this is the first study to comprehensively 
link adversity during childhood to later-life alterations in intestinal 
metabolites and functional brain connectivity in humans. 

4.1. Early life adversity is associated with adult gut metabolites 

We identified four fecal metabolites – urate, malate, glutamate 
gamma-methyl ester, and 5-oxoproline – as significantly negatively 
correlated with a history of ELA. Although a clear understanding of the 
role of these metabolites in humans is limited, previous preclinical in-
vestigations demonstrate that some of them display sensitivity to envi-
ronmental disruptors and disease (Ilievski et al., 2016), as well as to 
microbiome alterations (Donohoe et al., 2011) (Donohoe et al., 2011), 

(Scheperjans et al., 2015). In particular, high levels of urate in human 
plasma have been related to protection against Parkinson’s disease 
(Weisskopf et al., 2007) and associated with a microbial enterotype 
dominated by Prevotella (Scheperjans et al., 2015). Conversely, in a 
sample of pregnant women, early adversity correlated positively with 
Prevotella (Hantsoo et al., 2019). In addition, 5-oxoproline was increased 
in the livers of mice transplanted with microbiota from patients with 
major depressive disorder (Li et al., 2018), while levels were decreased 
in the serum of rats treated with antibiotics (Behr et al., 2017), sug-
gesting a role for the gut microbiota in the regulation of the metabolite. 

One potential pathway by which these metabolites may mediate the 
relationship between ELA, brain connectivity, and mood is via regula-
tion of oxidative stress. ELA has been previously linked to oxidative 
stress and cellular aging (Schiavone et al., 2015). In a sample of healthy 
women, oxidative stress index was positively associated with perceived 
stress and telomere length (Epel et al., 2004). Similarly, a history of 
childhood maltreatment predicted shorter telomeres (Tyrka et al., 2016) 
and greater mitochondrial DNA copies (Tyrka et al., 2016), a marker of 
oxidative damage, in healthy adults. Notably, the four metabolites of 
interest have previously been implicated in and described within the 
context of oxidative stress in animal models (Wu et al., 2008; Randhawa 
et al., 2014; Kumar and A.K., 2012). In particular, 5-oxoproline was 
reduced in aged rats, and rescued by probiotic treatment, acting as a 
gut-targeted antioxidant (Hor et al., 2019). In this way, disruptions in 
the four metabolites may play a role in ELA-related brain network al-
terations that are mediated by oxidative stress pathways. 

An alternative, although potentially related mechanism, is supported 
by the metabolites being intimately involved in the metabolism of 
glutamate and related compounds. Glutamate gamma-methyl ester is a 
metabolite of glutamate (Tsuge et al., 2017), while 5-oxoproline is a 
precursor and closely-related analogue of glutamate (Kumar and A.K., 

2012). Furthermore, 5-oxoproline plays a critical role in glutamate 
clearance, by stimulating glutamate transport from the brain and 
inhibiting its uptake by endothelial cells of the blood-brain barrier 
(Hawkins et al., 2006a). The observed reduction in 5-oxoproline may 
therefore interfere with CNS clearance of glutamate, which at increased 
concentrations can be particularly excitotoxic (Dong et al., 2009) in 
those with a history of high ELA. Additionally, a role for urate-induced, 
astrocyte-mediated protection against excitotoxicity has been reported 
in vitro (Du et al., 2007). A reduction in these metabolites may lower the 
threshold for cytotoxicity while simultaneously increasing CNS con-
centrations of glutamate, thereby increasing the risk for excitotoxity and 
cell death. 

4.2. Early life adversity is associated with adult brain functional 
connectivity 

Many types of ELA have previously been associated with altered 
brain structure and connectivity, including amygdala, prefrontal, 
limbic, hippocampal, and striatal regions (Hodel et al., 2015; Miskovic 
et al., 2010; Gee et al., 2013). Here, we identify additional brain regions 
wherein connectivity was significantly correlated with greater ELA 
scores, which may explain the relationship between early life adversity 
and negative psychological outcomes later in life. In particular, we 
report reduced connectivity of the precuneus, a default mode network 
region critical for aspects of social cognition (Li et al., 2014), and 
self-consciousness and interpretation (Cavanna and Trimble, 2006), 
which may point to altered evaluation of self and others underlying 
anxious feelings. Indeed, default mode efficiency is negatively corre-
lated with anxiety in young adults (Tao et al., 2015), and default mode 
connectivity relates to responsiveness during anxiety learning (Tao 
et al., 2015) as well as being heavily implicated in depressive symptoms 
(Brakowski et al., 2017). Additionally, our findings of decreased con-
nectivity involving emotion regulation networks such as the anterior 
cingulate cortex, which is involved in conflict monitoring (Kerns et al., 
2004) and emotional and cognitive attention (Bush et al., 2000), and 
increased connectivity of the insula, a key region in the salience network 
(Menon and Uddin, 2010), may suggest modified ability to regulate 
emotional responses. We report increased connectivity of frontal and 
parietal sensorimotor regions, and central executive and autonomic 
areas, which is consistent with a meta-analysis implicating executive 
control, salience, and sensorimotor networks in anxiety (Xu et al., 2019). 

The fact that ELA disrupts many regions involved in cognitive and 
emotional processes, which are highly vulnerable to persistent delete-
rious effects of ELA (Pechtel and Pizzagalli, 2011), may present a 

Fig. 3. Early Life Adversity Impacts Multiple 
Brain NetworksBrain Regions: SupFG/S: superior 
frontal gyrus and sulcus, PreCG: precentral gyrus, 
PostCG: postcentral gyrus, PaCL: paracentral lobule, 
pINS: posterior insula; Thal: thalamus, pACC: pre-
genual anterior cingulate cortex, MOcG: middle 
occipital gyrus, CoS-LinS: medial occipito-temporal 
sulcus (collateral sulcus) and lingual sulcus, IPL: 
inferior parietal lobule, aINS: anterior insula, 
PrCun: precuneus, SupTGLp: lateral aspect of the 
superior temporal gyrus, MTG: middle temporal 
gyrus, InfTG: inferior temporal gyrus, MedOrS: 
medial orbital sulcus (olfactory sulcus), RG: gyrus 
rectus (straight gyrus).   
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neurological basis underlying our finding that early adversity correlates 
with later-life stress and anxiety. Similarly, measures of centrality and 
segregation in brain regions implicated in emotion and salience 
reportedly correlate with ELA (Gupta et al., 2017b), suggesting that 
these regions may contribute to psychological manifestations of early 
trauma. This potential interaction is further supported by findings that 
functional connectivity of regions, including the amygdala, putamen, 
and middle frontal gyrus, as well as regions we also identified, such as 
the middle temporal and superior frontal gyri, differentiated patients 
with generalized anxiety from healthy controls (Qiao et al., 2017). 

4.3. A history of early life adversity correlates with alterations in the 
brain-gut-microbiome system and mood symptoms 

We identified significant relationships between fecal metabolites and 
altered functional brain connectivity measures involving, most notably, 
the sensorimotor and default mode networks, which have been impli-
cated in both anxiety (Xu et al., 2019) and depression (Brakowski et al., 
2017). Previous work has underscored associations between the 
brain-gut axis and psychological outcomes across the lifetime. 
Gut-targeted probiotic treatment in healthy adults was sufficient to 
reduce resting state connectivity in somatosensory and insular areas 
during an emotional attention task (Tillisch et al., 2013) and to increase 
prefrontal cortical activity and reduce induced stress (Allen et al., 2016). 
Connectivity of reward regions has been related to microbiome-derived 
indole metabolites and anxiety and food addiction outcomes in adults 
(Osadchiy et al., 2018). In addition, connectivity of regions involved in 
salience, emotion regulation, and sensorimotor function correlated with 
microbial diversity and cognitive outcomes in infants (Gao et al., 2019). 
Interestingly, in pilot analyses, we have also observed relationships 
between stress and gut health: in particular, we find that increased stress 
reactivity is associated with a four-fold higher flare frequency in ulcer-
ative colitis patients, and a similar effect in patients with irritable bowel 
syndrome, both of which are associated with a history of ELA and psy-
chiatric comorbidities. Findings such as these suggest an interaction 
between psychological well-being and gut microbiome status, both in 
healthy and in disease populations. 

While other studies have found relationships between early adver-
sity, microbial diversity or taxonomic relative abundances, and current 
stress and anxiety (Callaghan et al., 2020; Hantsoo et al., 2019), we did 
not see any difference in diversity or relative abundances in our cohort. 
However, we observe a change in functional output, suggesting that 
while the levels of microbes are comparable, something about their 
functional potential is being altered by early adversity. Gut microbial 
metabolites may influence brain network connectivity through both 
direct and indirect mechanisms. While 5-oxoproline decreases entry of 
amino acids into the brain by interacting with transporters (Hawkins 
et al., 2006b), urate is capable of passing across the blood-brain barrier 
and acts as a pro-inflammatory agent (Shao et al., 2016). However, since 
the metabolites in this study were measured in feces rather than serum, 
whether these metabolites may have any direct access to the brain re-
mains unclear. Alternatively, these metabolites may act indirectly via 
vagal afferent nerve pathways (Bartolomei et al., 2016; Cao et al., 2017), 
which in turn may contribute to the observed changes in functional 
connectivity. 

Not only ELA, but other negative emotional and physiological states 
have the potential to interact with the brain-gut axis as well. We show 
that symptoms of anxiety and depression and BMI correlate significantly 
with urate, glutamate gamma-methyl ester, and 5-oxoproline, that these 
scales as well as current stress relate significantly to brain functional 
connectivity of sensorimotor, central executive, default mode, and 
central autonomic regions, and that subsets of these networks, in addi-
tion to salience, emotion regulation, and occipital, correlate 

Table 4 
Early life adversity interacts with clinical variables, gut metabolites and brain 
connectivity.  

HIGH ETI (ETI-SR total > 4)    

correlation 
coefficient 

p- 
value 

q- 
value 

Brain x Metabolites 
R_InfTG - 

R_SupCirinS 
DMN- 
SAL 

malate − 0.292 0.003 0.003 

R_ ATrCoS 
(LTC) - R_RG 
(OFC) 

DMN- 
CAN 

glutamate, 
gamma- 
methyl ester 

− 0.399 0.001 0.003 

R_CoS_LinS - 
L_ACgG_S 

OCC- 
ERN 

malate − 0.279 0.001 0.003 

Brain x Clinical Variables 
R_SupTGLp - 

R_SupFS 
DMN- 
SMN 

PSS Score 0.348 0.001 0.002 

L_PaCL_S - 
R_Tha 

SMN- 
SMN 

BMI − 0.283 0.004 0.002 

R_ATrCoS - 
R_RG 

DMN- 
CAN 

BMI 0.329 0.001 0.004 

Metabolites x Clinical Variables 
HADS Anxiety  glutamate, 

gamma- 
methyl ester 

− 0.311 0.002 0.005 

HADS 
Depression  

glutamate, 
gamma- 
methyl ester 

− 0.299 0.003 0.005 

HADS 
Depression  

5-oxoproline − 0.322 0.020 0.005 

HADS Anxiety  5-oxoproline − 0.289 0.003 0.020 
HADS 

Depression  
urate − 0.353 0.010 0.013  

LOW ETI (ETI-SR total<¼4)    
correlation 
coefficient 

p- 
value 

q- 
value 

Brain x Metabolites 
L_PaCL_S - 

R_Tha 
SMN- 
SMN 

glutamate, 
gamma- 
methyl ester 

− 0.228 0.004 0.004 

L_PaCL_S - 
R_Tha 

SMN- 
SMN 

5-oxoproline − 0.229 0.004 0.004 

L_ACgG_S - 
L_InfCirIns 

ERN- 
SMN 

urate − 0.229 0.004 0.004 

Brain x Clinical Variables 
R_PosCG - 

L_IntPS_TrPS 
SMN- 
CEN 

PSS Score 0.254 0.002 0.003 

R_PosCG - 
L_IntPS_TrPS 

SMN- 
CEN 

HADS Anxiety 0.264 0.002 0.003 

R_PosCG - 
L_IntPS_TrPS 

SMN- 
CEN 

HADS 
Depression 

0.333 0.003 0.003 

Metabolites x Clinical Variables 
BMI  glutamate, 

gamma- 
methyl ester 

− 0.291 0.011 0.022 

ETI Total Score  5-oxoproline 0.253 0.023 0.023 
BMI  5-oxoproline − 0.266 0.021 0.023 
ETI Total Score  urate 0.276 0.001 0.004 

N = 128 total, Low ETI group N = 76, High ETI group N = 52. 
p-value significant <0.05. 
Q-values derived from FDR correction, q-value significant <0.05. 
Networks. 
SMN: sensorimotor, DMN: default mode, SAL: salience, CEN: central executive, 
CAN: central autonomic, ERN: emotion regulation, OCC: occipital. 
Brain Regions. 
SupFG: superior frontal gyrus, SupCirInS: superior segment of the circular sulcus 
of the insula, PosCG: postcentral gyrus, IntPS_TrPS: intraparietal sulcus (inter-
parietal sulcus) and transverse parietal sulci, InfTG: inferior temporal gyrus, 
SupTGLp: lateral aspect of the superior temporal gyrus, SupFS: superior frontal 
sulcus, PaCL/S: paracentral lobule and sulcus, Thal: thalamus, ATrCoS: anterior 
transverse collateral sulcus, RG: straight gyrus (gyrus rectus), ACgG_S: anterior 
part of the cingulate gyrus and sulcus, InfCirInS: inferior segment of the circular 
sulcus of the insula; CoS_LinS: medial occipito-temporal sulcus (collateral sul-
cus) and lingual sulcus. 
Clinical Variables. 

ETI: early traumatic inventory; BMI: body mass index, PSS: Perceived Stress 
Scale, HADS: Hospital Anxiety and Depression Scale. 
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significantly with the metabolites. These relationships are of signifi-
cance due to the potential functional influence of altered sensory mo-
dalities and orbitofrontal cortex function, which are critical for decision- 
making (Bechara et al., 2000), on negative psychological states. Similar 
findings have been reported in the context of food addiction, with 
amygdala circuitry and the gut microbiota-derived indole skatole 
correlating with higher food addiction scores (Osadchiy et al., 2018). 
Additionally, stress-related disorders such as PTSD have been related to 
altered connectivity in the hippocampus (Chen and Etkin, 2013) as well 
as in amygdala-insula circuits (Rabinak et al., 2011), and acute stress has 
been related to metabolites, with increased CSF homovanillic acid 
correlating with induced symptoms in PTSD patients (Geracioti et al., 
2013). However, these past studies do not decouple contributions of past 
adversity from current experiences of stress and anxiety. 

4.4. Future directions 

Limitations of this study include its use of retrospective self-reporting 
through standardized surveys, which can introduce potential bias into 
the results and may potentially lead to reduced reliability of the findings. 
This limitation includes the self-reporting for assessment of menstrual 
phase and menopause status, which future studies will need to address 
more accurately by measuring female sex hormone levels especially 
when investigating sex differences. Critically, our measure of early 

adversity is not temporally specific, but rather covers the broad period of 
time from birth to 18 years of age. Future research is warranted to refine 
this time window to examine relationships between brain-gut pheno-
types and ELA during more specific critical periods during development. 
Secondly, our reported microbial and metabolite findings are derived 
from fecal samples, which include both microbiota- and host-derived 
metabolites, and do not necessarily give insight into tissue levels 
within the CNS. Furthermore, we analyzed only a single fecal sample per 
participant, although the microbiome and metabolome have been re-
ported to be relatively stable across adulthood (Lozupone et al., 2012; 
Yousri et al., 2014). We chose to focus on gut metabolites as opposed to 
microbial community composition as most brain-gut interactions are 
mediated by microbiota products (such as metabolites) rather than an 
intrinsic characteristic of the particular microbe itself (such as lipo-
polysaccharide) (Osadchiy et al., 2019c). Previous high-quality studies 
(Wu et al., 2011; Tanes et al., 2021) have underscored the important role 
of dietary fiber in modulating the gut microbiota and gut-microbiota 
derived fecal metabolites. Although we controlled for the type of diet 
consumed in our analysis, we did not quantify the fiber content of our 
participants’ diets, which may confound our results. 

Although the associations between ELA and the brain-gut axis were 
evident, our sample consisted of participants with a relatively “healthy” 
status, where anyone with clinical level symptoms of anxiety or 
depression were excluded from the study. We selected these participants 

Fig. 4. Early Life Adversity Interacts with Clinical Variables, Gut Metabolites and Brain Connectivity N = 128 total, Low ETI group N = 76, High ETI group N = 52. p- 
value significant <0.05. Q-values derived from FDR correction, q-value significant <0.05. Red Line: Significant associations in the High ETI group (ETI Total >4). 
Green Line: Significant associations in the High ETI group (ETI Total<=4). Grey Line: Significant associations in the whole sample. Networks: SMN: sensorimotor, 
DMN: default mode, SAL: salience, CEN: central executive, CAN: central autonomic, ERN: emotion regulation, OCC: occipital. Brain Regions: SupFG: superior frontal 
gyrus, SupCirInS: superior segment of the circular sulcus of the insula, PosCG: postcentral gyrus, IntPS_TrPS: intraparietal sulcus (interparietal sulcus) and transverse 
parietal sulci, InfTG: inferior temporal gyrus, SupTGLp: lateral aspect of the superior temporal gyrus, SupFS: superior frontal sulcus, PaCL/S: paracentral lobule and 
sulcus, Thal: thalamus, ATrCoS: anterior transverse collateral sulcus, RG: straight gyrus (gyrus rectus), ACgG_S: anterior part of the cingulate gyrus and sulcus, 
InfCirInS: inferior segment of the circular sulcus of the insula; CoS_LinS: medial occipito-temporal sulcus (collateral sulcus) and lingual sulcus. Clinical Variables: ETI: 
early traumatic inventory; BMI: body mass index, PSS: Perceived Stress Scale, HADS: Hospital Anxiety and Depression Scale. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.) 
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with the intent to highlight and isolate the negative outcomes associated 
with ELA that are distinct from any effects from overt neurological 
disease. Future studies that expand upon reported brain-gut phenotypes 
in individuals with ELA-associated conditions, such as anxiety and 
depression, are of interest. Finally, while the results from this study 
reveal novel associations between ELA and later-life alterations in 
microbiome-related metabolites and functional brain connectivity, the 
cross-sectional study design precludes the ability to make causal in-
ferences. Longitudinal studies in humans would help to strengthen 
correlations and shed light on the timing of interactions between early 
trauma and altered metabolites and functional brain connectivity. 

Although we control for BMI in our final analysis exploring the 
relationship between ELA, metabolites, and clinical measures, it is 
important to highlight the positive association between ELA and BMI we 
identify here – a relationship that has also been confirmed in previous 
work (Fuemmeler et al., 2009; Osadchiy et al., 2019d). Obesity is 
increasingly understood as a brain-gut-microbiome disorder, with 
mechanisms similar to those we identify in this present work with 
respect to anxiety and depression. Future investigations may benefit 
from exploring the intersection between ELA and BMI on these clinical 
measures within the context of brain-gut interactions (Gupta et al., 
2020). 

4.5. Clinical implications and conclusions 

Our findings in human subjects with a history of ELA demonstrate 
associations that may support the hypothesis that traumatic experiences 
during critical periods of brain and gut development shape long-term 
changes in brain-gut interactions. We suggest that this may occur via 
the well characterized effect of ELA on brain networks involved in 
emotion regulation and autonomic nervous system output to potentially 
alter gut microbial function, in the form of microbially-modulated me-
tabolites. The observed dysregulation of glutamate pathways may result 
in excitotoxicity and oxidative stress, disrupting neural circuit assembly 
and existing brain network connectivity, and increasing the risk of 
developing anxiety and depression. Overall, findings from the study 
provide clinical evidence of brain-gut alterations in response to ELA, and 
further form a solid foundation upon which to assess potential roles for 
the microbiome in mediating adverse effects of ELA on brain develop-
ment and later-life behavior. 
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