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To the Editor: Calcium oxalate crystal (CaOx) depo-
sition within the renal parenchyma is well described as
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a cause of both acute kidney injury and chronic kidney
disease. Animal and cell line studies have previously
demonstrated that this injury is modulated by
oxidative stress�induced danger-associated molecular
patterns following CaOx deposition within the inter-
stitium1,2. It has been postulated that these oxidative
stress-induced danger-associated molecular patterns
may participate in the pathogenesis of acute kidney
injury and chronic kidney disease in humans, leading
to the recruitment of an inflammatory response char-
acterized by an increased infiltration of monocytes and
macrophages.1,3,4 However, evidence of this mecha-
nism in humans is lacking. We report the morpholog-
ical changes in renal cortical tissue from a 36-year-old
woman with acute oxalate nephropathy secondary to
ethylene glycol intoxication, and correlate them with a
marker of oxidative stress and cell populations in an
associated inflammatory infiltrate. Our findings provide
initial evidence linking renal deposits of CaOx to
oxidative stress and inflammation in humans.

A 36-year-old woman was brought to hospital
after being found unresponsive at home. She was
noted to have acute kidney injury (serum creatinine
789 mmol/l) and a severe metabolic acidosis (pH 7.09;
HCO3 2 mmol/l; pCO2 5 mm Hg). She had no relevant
past medical history and had a previously recorded
serum creatinine of 51 mmol/l. As the cause of her
acute kidney injury was unknown, a renal biopsy was
performed on day 7 of her admission, which demon-
strated acute oxalate nephropathy with significant
deposition of CaOx in the renal parenchyma. Further
investigation demonstrated a toxic level of serum
Figure 1. Study methodology. EDTA, ethylenediaminetetraacetic acid; IF,
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ethylene glycol (8.8 mmol/l). She required 14 days of
intermittent hemodialysis before renal recovery, and
her serum creatinine remained elevated (102 mmol/l) 3
months after discharge.

To investigate the relationship between oxidative
stress and the recruitment of inflammatory cells
following acute oxalate nephropathy, excess fresh renal
cortical tissue from the biopsy was obtained with
informed consent and institutional ethics approval
(Royal Brisbane and Women’s Hospital Human
Research Ethics Committee 2006/072).

Flow-cytometric analysis was performed after
digesting the biopsy tissue with 1 mg/ml collagenase
P (Roche, Mannheim, Germany) in the presence of 20
mg/ml DNase I (Roche) (250-ml volume) for 15 minutes
and then further digesting with a mixture of 10 mg/ml
trypsin and 4 mg/ml ethylenediamine tetraacetic acid
(Life Technologies, Grand Island, NY) (500-ml volume)
for 10 minutes (Figure 1). Single-cell suspensions were
initially stained with LIVE/DEAD Fixable Near-IR
Dead Cell Stain Kit (Life Technologies) to exclude
nonviable cells. Cells were then incubated with Human
TruStain FcX Blocking Solution (Biolegend, San Diego,
CA) at room temperature for 5 to 10 minutes and then
stained on ice for 30 minutes with mouse antihuman
CD45, CD14, CD3 antibodies in cold fluorescence-
activated cell-sorting buffer (0.5% bovine serum
albumin [Sigma, St. Louis, MO] and 0.02% sodium
azide [Sigma] in phosphate-buffered saline solution).
Cell acquisition was performed on an LSR Fortessa (BD
Biosciences, Sparks, MD) and data analyzed with
FlowJo software (TreeStar, Ashland, OR).
immunofluorescence; IHC, immunohistochemistry.

Kidney International Reports (2018) 3, 1214–1221
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Immunofluorescence staining was performed on
frozen 7-mm tissue sections that were fixed with 25%
ethanol:75% acetone at room temperature for 5 minutes,
followed by a protein block with Background Sniper
Blocking Reagent for 30 minutes (Biocare Medical,
Concord, CA) (Figure 1). Sections were subsequently
probed with anti-CD3 (rabbit polyclonal IgG; Agilent
Technologies, Santa Clara, CA) and anti-CD68
(monoclonal mouse IgG3; Clone PG-M1; Agilent) at
room temperature for 1 hour. Fluorescent detection
was obtained by secondary incubation with
AlexaFluor-488 antimouse IgG and AlexaFluor-647
antirabbit IgG (Life Technologies) at room temperature
for 30 minutes. Nuclei were stained with 40,6-
diamidino-2-phenylindole (DAPI; Life Technologies).
Slides were coverslipped in fluorescence mounting
medium (Agilent Technologies). A Zeiss 780 NLO
confocal microscope (Carl Zeiss, Hamburg, Germany)
was used for fluorescence microscopy. Image
acquisition and analysis were performed using ZEN
software (Carl Zeiss).

Immunohistochemical staining was also performed on
frozen 7-mm tissue sections that were fixed with 25%
ethanol:75% acetone at room temperature for 5 minutes
(Figure 1). Endogenous peroxidase activity was blocked
with 1% H2O2 for 10 minutes, followed by a protein
block with 2% bovine serum albumin in Odyssey
Blocking Buffer (Li-Cor, Lincoln, NE). Sections were
probed with anti�4-hydroxynonenal (4-HNE) (goat
polyclonal IgG; Abcam, Cambridge, MA) and
anti�phosphorylated mixed lineage domain-like
protein (p-MLKL) (monoclonal rabbit IgG; Abcam) at
room temperature for 1 hour. Tissue sections were
washed, and a goat or rabbit horseradish peroxidase
polymer system (Biocare Medical) was applied
according to the manufacturer’s instructions.
Peroxidase activity was developed with DAB substrate
for 5 minutes. Sections were lightly counterstained
with hematoxylin and mounted using DPX mounting
medium. All analyses were compared to healthy renal
cortical tissue as a control.

Polarized light microscopy confirmed the presence of
CaOx deposits within the renal interstitium (Figure 2a)
of our patient. There was a significant increase in 4-
HNE renal expression compared to the healthy
control (44.40 vs. 3.18 positive pixel intensity/mm2;
P < 0.001) with foci of higher 4-HNE renal
expression co-localizing with the CaOx crystals
(Figure 2b). Evidence from animal studies suggests
that CaOx induces lipid peroxidation of the renal
tubular membranes, which increases oxygen reactive
species and consequently oxidative stress.3,5,6 4-HNE
represents one of the most bioactive products of lipid
Kidney International Reports (2018) 3, 1214–1221
peroxidation, and plays an important role mediating
numerous signaling pathways including the
inflammatory response.7 The increased renal
expression of 4-HNE in our patient is similar to that
seen in these previous animal and cell line studies,
and provides support for the same pathogenic
mechanism occurring in humans.

In addition to inducing oxidative stress, CaOx
crystal deposition has also been shown to cause direct
cytotoxic effects on renal tubular cells, and this may
lead to necrotic cell death.8,9 The term “necroptosis”
has recently been used to describe this regulated form
of cell necrosis triggered by crystal deposition.10 The
signal transduction pathway of necroptotic cell death
is mediated by ligation of tumor necrosis factor
alpha to its receptor. This ultimately results in the
phosphorylation of MLKL, which, once
phosphorylated, translocates to the plasma membrane
where it disrupts plasma membrane integrity.8,10,11

The significant tubular positivity for p�MLKL found
in our patient compared to the healthy control
(Figure 2c) provides corroborating evidence for the
role of necroptosis-mediated cell death from acute
oxalate nephropathy. Furthermore, the strong
tubular positivity of p�MLKL in our patient was
associated with the increased expression of 4-HNE.
This supports the recently emerging concept that
necroptosis may trigger further inflammation,
whereas reactive oxygen species may act as critical
regulators of necroptotic signaling.10,11

Immunofluorescence demonstrated an increased
infiltration of macrophages (CD68) and T cells (CD3)
with foci of activity around calcium oxalate crystals
(Figure 2d). There was a marked increase in leukocytes
(26% vs. 3% CD45þ cells) by flow cytometry in our
patient compared to the healthy control (Figure 2e
and f). These leukocytes were predominantly
mononuclear cells (85% of leukocytes), of which 47%
were T cells (CD3) and 29% were monocytes (CD14).
Previous animal studies have shown that CaOx
within the renal interstitium activates the immune
system via macrophages and monocytes.1,12 Similarly,
the renal parenchyma of our patient was also
infiltrated with monocytes, macrophages, and T cells
(CD3), with a more intense infiltration of
inflammatory cells around CaOx crystals. Our results
support previous findings suggesting that CaOx-
generated oxidative stress recruits effector cells via
monocytes and macrophages,4,5,11 and suggests that
the immune responses observed in animal and cell
line studies may also occur in humans.

Although our study was able to describe an asso-
ciation among renal CaOx deposition, oxidative stress,
1219



Figure 2. (a) Hematoxylin (purple) and eosin (pink) staining of frozen kidney sections from healthy control (left) and case study (right) tissue
under light microscopy and with polarization (right, inset) to visualize oxalate crystals. (b) Immunohistological labeling of healthy control (left)
and case study (right) frozen tissue stained for 4-hydroxynonenal (4-HNE). Bars¼50 mm. Quantitative analysis (positive pixel intensity/mm2 area)
of 4-HNE staining. Results represent mean � SD of values from 3 randomly selected areas for each tissue sample. ***P < 0.001, unpaired t test.
(c) Immunohistological labeling of healthy control (left) and case study (right) frozen tissue stained for phosphorylated mixed lineage domain-
like protein (p-MLKL). Bars¼50 mm. (d) Immunofluorescent labeling of healthy control (left) and case study (right) frozen tissue stained for CD3
(red) and CD68 (green). Bars¼50 mm. (e,f) Multicolor flow-cytometric identification of immune cells (gated on live, singlet cells) in healthy control
(e) and case study (f) kidney tissue. DAPI, 40,6-diamidino-2-phenylindole.
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and inflammation, a causal relationship cannot be
proved. For obvious ethical reasons, we were limited
to a single time-point collection of kidney tissue, and
we were not able to describe the sequence of immu-
nological responses to renal CaOx deposition. Of note,
our patient did not have pre-existing chronic kidney
disease, and our findings are therefore likely to
represent only the pathological response to acute CaOx
deposition.
1220
In summary, we describe the presence of increased
renal oxidative stress, evidence of activated necroptotic
pathways, and renal inflammation in a patient with
acute oxalate nephropathy secondary to ethylene gly-
col intoxication. Our findings are the first to translate
previous animal and cell line studies2,3,5,6 into humans,
and suggest a shared pathogenic mechanism of renal
CaOx deposition, increased oxidative stress, inflamma-
tion, and necroptosis.
Kidney International Reports (2018) 3, 1214–1221
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