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Abstract

Background: As next-generation sequencing technology made rapid and cost-effective sequencing available, the
importance of computational approaches in finding and analyzing copy number variations (CNVs) has been amplified.
Furthermore, most genome projects need to accurately analyze sequences with fairly low-coverage read data. It is
urgently needed to develop a method to detect the exact types and locations of CNVs from low coverage read data.

Results: Here, we propose a new CNV detection method, CNV SS, which uses scale-space filtering. The scale-space
filtering is evaluated by applying to the read coverage data the Gaussian convolution for various scales according to a
given scaling parameter. Next, by differentiating twice and finding zero-crossing points, inflection points of
scale-space filtered read coverage data are calculated per scale. Then, the types and the exact locations of CNVs are
obtained by analyzing the finger print map, the contours of zero-crossing points for various scales.

Conclusions: The performance of CNV SS showed that FNR and FPR stay in the range of 1.27% to 2.43% and 1.14%
to 2.44%, respectively, even at a relatively low coverage (0.5x≤C≤2x). CNV SS gave also much more effective results
than the conventional methods in the evaluation of FNR, at 3.82% at least and 76.97% at most even when the
coverage level of read data is low. CNV SS source code is freely available from http://dblab.hallym.ac.kr/CNV SS/.

Background
After the findings of Down syndrome in the 1950s, the
relevance between copy number variation (CNV) and
genetic disorders has been extensively researched, and
many studies have found Crohn’s disease, type 1 dia-
betes, rheumatoid arthritis, and mental and development
disorders to be connected with CNV [1]. Furthermore,
as next-generation sequencing (NGS) technology became
more widely used, the genome-wide association study
accelerated, hence amplifying the importance of finding
CNVs related to diseases and phenotypes. The connection
of CNVs found in the Long QT syndrome genes KCNQ1
and KCNQ2 has recently been stated [2], and primary
open-angle glaucome has been found to be connected
with 11 rare noble CNVs [3]. Additionally, CNVs related
to attention deficit hyperactivity disorder and schizophre-
nia have been concluded to show disease-specific pat-
terns [4,5]. These studies indicate the importance of
CNV detection and analysis, especially in the personalized
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medicine that is based on race-specific or disease-specific
genetic expressions.

Since 2008, researchers in 75 colleges and companies
worldwide, through a consortium called the 1000 Genome
Project, have found 95% of the diversity in the human
genome, as well as 15 million genetic diversities that had
not been studied before [6]. Many genome projects are
actively being carried out around the world, individually
or by forming consortiums, to analyze genomic sequences
not only of humans, but also of other living organisms
(http://ldl.genomics.cn; http://genome10k.soe.ucsc.edu/).
Therefore, it is expected that a massive amount of data
regarding various genetic sequences is being produced,
resulting in the urgent need to develop a way to extract
and analyze structural variants, such as CNVs, from the
massive and various genetic sequences.

Originally, microarray technology [7,8] and the
sequence-based method [9-11] were used to find CNVs
in human genetic sequences. In particular, the sequence-
based method, a computational approach, compares
different genome sequences. This method is known to
detect CNVs more accurately than microarray technol-
ogy, enabling the detection of small or intermediate-sized

© 2013 Lee et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

http://dblab.hallym.ac.kr/CNV_SS/
http://ldl.genomics.cn
http://genome10k.soe.ucsc.edu/


Lee et al. BMC Bioinformatics 2013, 14:57 Page 2 of 16
http://www.biomedcentral.com/1471-2105/14/57

CNVs. Moreover, the appearance of NGS technology
enables rapid and cost-effective sequencing, offering
extensive bioinformatic analysis of the generated data and
highlighting the importance of computational approaches
in finding and analyzing CNVs. The sequence-based
method can be divided into two categories: comparing
completed assembly sequences and directly using NGS
data. The method using NGS data aligns short reads of
NGS data onto a completely assembled sequence, a refer-
ence sequence, to find CNVs by analyzing the alignment
results produced; it is cheaper than the method that com-
pares completely assembled sequences. However, errors
in the read data are common, and the probability of errors
occurring in the repeat areas of reference sequences is
high. It is difficult to find exact locations of CNVs using
these data consisting of many errors.

To solve this problem, methods based on paired-end
read mapping (PEM), which map paired-end reads made
from NGS onto known genome sequences to find CNVs
[12]; methods using event-wise testing (EWT) algorithms,
which analyze read coverage data in finding CNVs [13];
and methods based on Bayesian statistics [14] have been
developed. PEM-based methods, however, make it dif-
ficult to find CNVs in areas with complex structural
mutation, since these methods rely on technologies for
producing paired reads. Methods using EWT algorithms
limit the findable CNV size because of their having a
fixed window size. Moreover, PEM-based methods, EWT-
based methods, and Bayesian statistic-based methods all
need high coverage for reads.

Recently, methods based on a sliding window approach,
such as CNV-seq [15] and CNV shape (Hong SK, et al.:
Shape-based retrieval of CNV regions in read coverage
data, forthcoming), were proposed for detection of even
small CNVs at low coverage read data. However, CNV-seq
still uses the ratio of the read coverage between con-
trol and test sequences, as microarray technology does,
causing errors in the decision of CNV types. CNV shape,
which is excellent in the type decision, also has errors
in the exact localization of CNVs because it is based on
the shape variation of read coverage data. Methods based
on the sliding window approach, such as CNV-seq and
CNV shape need to optimize the size of the sliding win-
dow according to the coverage and noise levels of target
data. However, a larger sliding window size decreases the
noise effect and also results in a decrease of the resolu-
tion in CNV detection. Therefore, if an initially optimized
and fixed sliding window size is used as in both CNV-
seq and CNV shape, small CNVs could be missing due to
its limited resolution especially when the coverage level
is low and the noise level is high. Therefore, there is
an urgent need to develop a method to detect the exact
types and locations of CNVs from low coverage read data,
since most genome projects need to accurately predict

the probability of an individual catching a disease or hav-
ing genetic disorders by analyzing sequences with fairly
low-coverage read data.

This manuscript proposes a new method, CNV SS, to
detect CNVs by using the multi-resolution system of
scale-space filtering, enabling the detection of the types
and the exact locations of CNVs of all sizes even when the
coverage level of read data is low (<5x). The scale-space
filtering is a technique that can produce qualitative and
hierarchic symbolic descriptions of a signal by transform-
ing it into a continuum of versions, scale-space image,
of the original signal convolved with a kernel contain-
ing a scale parameter. The scale-space image provides
a concise but complete qualitative description, such as
local extrema and intervals bounded by dominant points,
covering all scales of observation. In this study, the scale-
space filtering is evaluated by assuming a Gaussian distri-
bution of read coverage data and the scale-space image is
obtained by applying to the read coverage data the Gaus-
sian convolution for various scales according to a given
scale parameter. Next, inflection points, zero-crossing
points of the second derivatives of the scale-space image
are calculated per scale. Then, the types and the exact
locations of CNVs are obtained by analyzing the contours
of the inflection points of the scale-space image.

Scale-space filtering
Real-world objects are composed of different structures at
different scales. That is, real-world objects may appear in
different ways depending on the scale of observation. For
example, the concept of a “tree” is appropriate at the scale
of meters, while concepts such as leaves and molecules
are more appropriate at finer scales. For extracting CNVs
of unknown sizes and locations by analyzing read cover-
age data, there is no way to know a priori what scales are
appropriate for describing the structures of CNVs in the
read coverage data. Hence, the reasonable approach is to
consider descriptions at multiple scales in order to be able
to capture the unknown scale variations that may occur.
Scale-space filtering, proposed by Witkin, is a method
that describes signals qualitatively covering all scales of
observation [16]. It is a framework for multi-scale signal
representation which handles a signal at different scales
and represents it as a one-parameter family of smoothed
signals, called scale-space image, parameterized by the
size of the smoothing kernel used for suppressing fine-
scale structures. The parameter in the family is referred
to as the scale parameter. The Gaussian kernel is gener-
ally used for smoothing signals, because it is symmetric
and readily differentiable, with the standard deviation σ

as the scale parameter. A signal convolved with the Gaus-
sian kernel satisfies “well-behavedness” criteria, in which
the signal is smoothed more as σ increases, and eventually
approaches the mean value of the signal [17,18].
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Let f (t) be a signal. The scale-space image f (t, σ) of f (t)
is then defined by the convolution of f (t) and the Gaussian
kernel g(t, σ) as follows:

f (t, σ) = f (t) ∗ g(t, σ) =
∫ +∞

−∞
f (t)

1
σ
√

2π
e− (t−u)2

2σ2 du.

(1)

Here, zero-crossing points, where the signs of the
derivatives of the scale-space image f (t, σ) change, can-
not newly appear, but only disappear as σ increases, since
the scale-space image f (t, σ) gets smoother as σ increases.
It is particularly useful for the second-order derivative
because the zero-crossing points at which δ2f (t,σ)

δt2 = 0
represent the inflection points of the scale-space image
f (t, σ). Notice that the Gaussian kernel is the only one
guaranteed to satisfy this property [19].

Figure 1 represents a typical scale-space image with
increasing σ (on the bottom) and the contours of the
zero-crossing points of the second derivatives of the scale-
space image (on the top) [16]. Here, the vertical dotted
lines show the inflection points of the scale-space image
at the lowest σ(= σ0) and the horizontal arrowed lines,

intervals at a σ(= σk) between two neighboring inflec-
tion points along with the corresponding points marked
by “x” on the scale-space image at σ(= σk). Each interval
represents a pattern of the signal. Specifically, the inter-
val numbered 1 represents the pattern of concave down
(pttn up) and the intervals numbered 2 and 3 represent
the pattern of concave up (pttn dn) in Figure 1. The col-
lection of the contours is called the finger print map
of the scale-space image. The contours open downward,
and closed upward due to the characteristic of the zero-
crossing points of the second derivatives of the scale-space
image. Each contour represents one of the two patterns,
concave up and down of a signal, which is specified by
two neighboring inflection points. The pattern of a signal
is more easily detected from intervals for larger σ since
larger σ is less prone to noise. An interval at a scale is
smoothed out for some large σ as shown in Figure 1. Also,
an interval at a scale may enclose intervals at lower scales,
which means the enclosed intervals of lower scales may
be treated as small signals (noises) within the interval at
a scale. However, the positions of inflection points may
be shifted outward for large σ because of the convolu-
tions, expanding the intervals for large σ . Therefore, once
a pattern of a signal is defined from an interval at large

Figure 1 A typical scale-space image and the finger print map. A typical scale-space image with increasing σ (on the bottom) and the contours
of the zero-crossing points of the second derivatives of the scale-space image (on the top) (adopted from [16]). The vertical dotted lines show the
inflection points of the scale-space image at the lowest σ(= σ0) and the horizontal arrowed lines, intervals at a σ(= σk) between two neighboring
inflection points, along with the corresponding points marked by “x” on the scale-space image at σ(= σk).
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σ , the accurate location of the pattern should be found
by tracing the convergence of the interval through the
contours along the scale parameter σ downward to the
initial value.

CNV is one of alterations of the DNA of a genome
that results in the cell having an abnormal number of
copies of one or more sections of the DNA. CNV regions
on read coverage data can be defined as regions where
the levels of the coverage vary greatly between different
regions. Therefore, in terms of scale-space filtering, CNV
regions can be regarded as intervals bounded by dom-
inant points where the read coverage data vary greatly
between different regions. In other words, CNV regions
can be regarded as intervals between two neighboring
inflection points, one from positive curvature to negative
curvature and the other from negative curvature to posi-
tive curvature, vice versa. In CNV SS, scale-space filtering
evaluates scale-space image by applying the read coverage
data the Gaussian convolution for various scales accord-
ing to a given scale parameter. The scale-space image
represents noise-filtered read coverage data with variable
sliding window size corresponding to the scale parameter
for every scale. CNV SS selectively chooses the scale for
CNV detection depending on the coverage level as well
as the size of CNVs, that is to have adaptable window
size for various noise levels as well as various CNV sizes
and then localizes the exact position of the CNV at the
lowest scale.

Methods
CNV SS proceeds in two stages: up and down stages.
Figure 2 describes the overall processes. The up stage
includes preprocessing, Gaussian convolution, and finger
print mapping. The down stage includes baseline adjust-
ment, interval search, and CNV detection.

First, in the up stage, read coverage data are generated
by mapping reads of input data to a reference genome.
Then, they are decomposed into l layers by Gaussian
convolution with increasing σ . Next, the zero-crossing
points of the second-order derivatives of the decomposed
data are evaluated per layer. Finally, a finger print map is
obtained from the zero-crossing points.

In the down stage, the baselines of each layer are cal-
culated using the mean and the standard deviation of the
read coverage data for each layer with decreasing σ . Inter-
vals are also searched by using the baselines through the
finger print map with decreasing σ . Here, an interval is a
region of the input sequence where a CNV gain or loss
is detected. More than one interval is not permitted in
a region of the sequence. Therefore, once an interval is
obtained at a layer, the exact position of the detected CNV
is decided by localizing the positions where the start and
the end points of the interval converge at the lowest layer;

no more interval searching at the corresponding region is
necessary at the sub-layers.

Preprocessing
Read coverage data are generated by aligning reads of
input data to a given reference sequence, and then they
are filtered by a median filter. The median filter is an
effective method that can suppress isolated noises with-
out blurring sharp edges of a signal which is affected by
the size of the sliding window. In other words, the size
of the sliding widow in median filtering should be chosen
not to blur sharp edges of the signal. The read coverage
data c[ i] = c1c2 . . . cn consist of a series of the number
ci of reads aligned to the genome position i (1 ≤ i ≤
n). The read coverage data c[ i] are median filtered to
reduce the noise errors before proceeding to the Gaus-
sian convolution. The median filtering is accomplished
by replacing each entry ci with the median of entries,
ci−w/2 . . . ci . . . ci+w/2 in a sliding window with size w + 1.
The value for w was set to 150 which was determined as
around 15% of the smallest CNV size by a heuristic eval-
uation in order to keep CNV signals while suppressing
isolated noises in the read coverage data. Figures 3(a) and
3(b) show virtual read coverage data before and after the
median filtering, respectively. It can be seen that the large
spikes are reduced and the data become less noisy after
filtering.

Gaussian convolution
The read coverage data c[ i] = c1c2 . . . cn are decomposed
into l layers by Gaussian convolution with increasing σ as
in the following equation:

c[ i, k] = c[ i] ∗g[ j, σk] =
m∑

j=−m
c[ i − j]

1
σk

√
2π

e
− j2

2σ2
k ,

(2)

where c[ i, k] is called the scale-space image of c[ i] =
c1c2 . . . cn, k (0 ≤ k ≤ l − 1) represents the index of the
layer of the scale-space image, σk is the value of the scale
parameter at layer k, and m is the window size of the Gaus-
sian kernel g[ j, σk], which is set to m = 3σk . The scale
parameter σk is the standard deviation of the Gaussian
kernel g[ j, σk], and is set to σk = 103 × (1.1)k consider-
ing the range of detectable CNV size and time complexity.
The range of the scale parameter σk determines the range
of CNV size detectable in this method. The ratio of two
adjacent scales determines both the time complexity and
the resolution in CNV detection. The smaller ratio of two
adjacent scales, the better in resolution of CNV detection
but the worse in the time complexity. Therefore, trading
off between the resolution and the time complexity can be
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Figure 2 The overall processes of CNV SS. CNV SS proceeds in two stages: up and down stages. The up stage includes preprocessing, Gaussian
convolution, and finger print mapping. The down stage includes baseline adjustment, interval search, and CNV detection.

controlled by the ratio of two adjacent scales. The value of
σk increases exponentially as k increases.

The computational complexity to get a scale-space
image c[ i, k] of c[ i] is O((1.1)ln). It is well known that
the convolution in the time domain is the same as the
product in the frequency domain. Therefore, we obtain
the scale-space image c[ i, k] of c[ i] by applying dis-
crete Fourier transform in frequency domain to reduce
the computational complexity. Let C[ w] and G[ w, k] =
e−w2σ 2

k /2 be the discrete Fourier transform of c[ i], and
g[ j, σk], respectively. The scale-space image is then
obtained by

c[ i, k] = F−1{G[ w, k] C[ w] }, (3)

where F−1 is the inverse discrete Fourier transform oper-
ator. The computational complexity to get a scale-space
image c[ i, k] of c[ i] by discrete Fourier and discrete
inverse Fourier transform is O(nlog2n) if the fast Fourier
transform algorithm is used. When the number of the lay-
ers of the scale-space image is large, the computing time
can be greatly reduced in the frequency domain. Specifi-
cally for n = 106, l = 60, the computational complexity
can be reduced about 1,000 times. Figure 4 shows the
scale-space image obtained by using the read coverage

Figure 3 An example of virtual read coverage data. The read coverage data are median filtered to reduce the noise errors before proceeding to
the Gaussian convolution; (a) and (b) show virtual read coverage data before and after the median filtering, respectively.
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Figure 4 An example of a scale-space image. The scale-space image obtained by applying the read coverage data of Figure 3(b) the Gaussian
convolution for various scale parameters of σk , k=0, 1, 40, 46, 52, and 59.

data of Figure 3(b) representatively for k = 0, 1, 40, 46, 52,
and 59.

Finger print mapping
The zero-crossing points of the second-order derivatives
of the scale-space image c[ i, k] are searched for each
layer k(0 ≤ k ≤ l − 1). Here, the second derivative
c′′[ i, k] of c[ i, k] is approximated by the second-order dif-
ference, that is, c′′[ i, k] ≈ c[ i + 1, k] −2c[ i, k] +c[ i − 1, k].
A zero-crossing signal z[ i, k] is defined as follows:

z[ i, k] =

⎧⎪⎨
⎪⎩

+ 1, c′′[ i + 1, k] > 0 and c′′[ i − 1, k] < 0
− 1, c′′[ i + 1, k] < 0 and c′′[ i − 1, k] > 0,

0, else
(4)

where the condition c′′[ i + 1, k] > 0 and c′′[ i − 1, k] < 0
represent the zero crossing point i at which c′′[ i, k] crosses
zero from minus to plus, and the conditions c′′[ i+1, k] < 0
and c′′[ i − 1, k] > 0, from plus to minus.

Figure 5 shows a plot of zero-crossing signal z[ i, k], also
called a finger print map on the top, along with the second
derivatives on the bottom, representatively for k = 40, 46,
52, and 59, of the scale-space image described in Figure 4,
where the x-axis represents the position i on the reference
sequence and the y-axis, the value of the scale parameter
σk for 0 ≤ k ≤ l − 1. In the figure, the values +1 and −1 of
z[ i, k] are represented by markers ‘o’ and ‘+’, respectively.
The values 0 of z[ i, k] are not marked in the figure. The
vertical dotted lines indicate the zero-crossing points. All
the zero-crossing points for k = 52 are indicated by the
vertical dotted lines but some of them for k = 40 and 46.

Baseline detection
At the down stage, three baselines, m∗(k), m∗(k)+dδ∗(k),
and m∗(k)−dδ∗(k) are calculated using the effective mean
m∗(k) and the effective standard deviation δ∗(k) of the

scale-space image c[ i, k] for each of the layers that have
more than two non-zero elements in zero-crossing signal
z[ i, k], where d is a parameter for the baseline adjust-
ment. Here, we set the value of d to 3. The effective
mean m∗(k) and the effective standard deviation δ∗(k)

at layer k are evaluated by the average and the stan-
dard deviation of c[ i, k], respectively, excluding the points
whose values are out of the normal range. The normal
range is set at m(k) ± 2δ(k), where m(k) = ∑

i
c[ i, k] /

∑
i

and δ(k) =
√∑

i
(c[ i, k] −m[ k] )2/

∑
i

are the mean and the

standard deviation of c[ i, k], respectively.

Interval search
Intervals are searched from the zero-crossing signal z[ i, k]
using the baselines m∗(k) ± 3δ∗(k) for each of the layers
that have more than two non-zero elements in zero-
crossing signal z[ i, k]. The mth interval [ lm,k , um,k] at layer
k is defined as a closed interval {i|lm,k ≤ i ≤ um,k} in the
position index i of the zero-crossing signal z[ i, k], that is a
set of the position indices of z[ i, k] between lm,k and um,k
inclusive, satisfying the following three conditions to be a
putative CNV region. First, interval [ lm,k , um,k] does not
include position indices corresponding to all the regions
of CNVs already declared at layers above the layer k. Sec-
ond, z[ lm,k , k] •z[ um,k , k] < 0 and z[ i, k] = 0 for all the
position indices between lm,k and um,k . Third, the aver-

age
um,k∑

i=lm,k

c[ i, k] /(um,k − lm,k + 1) of the scale-space image

on the position indices between lm,k and um,k inclusive is
beyond the given baselines, m∗(k) − 3δ∗(k) or m∗(k) +
3δ∗(k).

Once we have the mth interval [ lm,k , um,k] as a puta-
tive CNV region, then we trace the zero-crossing sig-
nal z[ i, k] from the positions lm,k and um,k at layer k
until we get the corresponding positions l′m,k and u′

m,k ,
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Figure 5 A plot of the zero-crossing signal with the second derivatives of the scale-space image of Figure 4. A plot of zero-crossing signal
z[ i, k], also called a finger print map on the top, along with the second derivatives on the bottom, representatively for k=40, 46, 52, and 59, of the
scale-space image described in Figure 4, where the zero-crossing points from minus to plus (z[ i, k] = +1) are denoted by ‘o’, and from plus to minus
(z[ i, k] = −1) by ‘+’.

respectively bounded at layer k=0, where the closed inter-
val [ l′m,k , u′

m,k] = {i|l′m,k ≤ i ≤ u′
m,k} is to be declared

as a CNV. In other words, the interval [ l′m,k , u′
m,k] is a

precisely fine tuned CNV region corresponding to the
interval [ lm,k , um,k], a putative CNV detected at layer k.
CNV search is proceeded from the top layer to the bot-
tom layer, layer by layer. Therefore, for searching intervals

at layer k, the sum of sets,
kmax⋃

s=k+1

mmax,s⋃
m=1

[ l′m,s, u′
m,s] corre-

sponding to all the regions of CNVs already declared at the
upper layers from k +1 to kmax should be excluded, where
mmax,s is the total number of CNVs detected at layer s.

In other words, all the sum of intervals,
mmax,k⋃
m=1

[ lm,k , um,k]

searched at layer k should not be overlapped with the

sum of intervals,
kmax⋃

s=k+1

mmax,s⋃
m=1

[ l′m,s, u′
m,s] already declared

as CNVs at the upper layers, which is the first condi-
tion. The second condition is that if lm,k is a zero cross-
ing point from minus to plus then um,k should be from
plus to minus, vice versa as well as there are no other
zero crossing points between lm,k and um,k . The mean-
ing of the second condition is that the values of the scale
space image c[ i, k] between lm,k and um,k , inclusive have

significantly different values from others of c[ i, k] to be
declared as a CNV. The third condition is for the defini-
tion of baselines m∗(k), m∗(k) ± 3δ∗(k), the guidelines for
determining whether the values of the scale space image
c[ i, k] between lm,k and um,k , inclusive have significantly
different from others of c[ i, k] for 1 ≤ i ≤ n, where
m∗(k) and δ∗(k) are the effective mean and the effective
standard deviation of c[ i, k] for 1 ≤ i ≤ n at layer k,
respectively.

Figure 6 shows the finger print map of the scale-space
image of Figure 4 with intervals at layers k=40, 46, and
52 along with the graphs of the scale-space images (solid
curve) and the second derivatives (dotted curve) for k=40,
46, and 52 from the bottom, respectively. Here, the verti-
cal dotted lines represent the intervals [ lm,k , um,k] and the
horizontal dotted lines represent the baselines m∗(k) and
m∗(k) ± 3δ∗(k) for each of the layers k=40, 46, and 52. As
shown in Figure 6, the intervals presented satisfy the three
conditions described above.

CNV detection
The type and the localization of a CNV are determined by
using the results of interval search. An interval [ lm,k , um,k]
identifies the region where a statistically significant
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Figure 6 Finger print map of the scale-space image of Figure 4. Finger print map of the scale-space image of Figure 4 with intervals at layers
k=40, 46, and 52, along with the graphs of the scale-space images (solid curve) and the second derivatives (dotted curve) for k=40, 46, and 52 from
the bottom, respectively, where m∗ + 3δ∗ , m∗ , and m∗ − 3δ∗ depicted by horizontal dotted lines in each of the graphs represented the
corresponding baselines.

variation occurs on the input sequence and a CNV gain
or loss is to be detected. That is, a CNV gain or loss is

identified if the average
um,k∑

i=lm,k

c[ i, k] /(um,k − lm,k + 1) of

scale-space image in the interval is above m∗(k) + 3δ∗(k)

or below m∗(k) − 3δ∗(k), respectively. Then the localiza-
tion of a CNV is defined by tracing to the corresponding
region [ l′m,k , u′

m,k] as the layer k converges to zero. Figure 6
shows a CNV calling as a gain by the vertical solid lines
below the finger print map representing the correspond-
ing region [ l′m,k , u′

m,k] of the interval [ lm,k , um,k] at k=52
where the average of the scale-space image c[ i, k] in the
interval [ lm,k , um,k] is above m∗(k) + 3δ∗(k).

Materials
A simulation data generator (SDG) was developed to gen-
erate simulated data. It generates a reference sequence
and a test sequence, which contain CNVs of various
sizes and types, as well as single nucleotide polymor-
phisms (SNPs) and short indels. The SDG starts with a
given DNA sequence both as a reference sequence and
as a test sequence. It then copies some of the CNVs
of the sequence referring to the CNV database of the
Database of Genomic Variants (DGV; http://projects.tcag.

ca/variation) and substitutes them in random positions
of the reference sequence or the test sequence so that
the test sequence has CNV gains or losses that differ in
size and location compared with the reference sequence.
An indel is constructed by inserting or deleting a short
sequence at a random position of the reference or the
test sequence. For SNPs, the SDG replaces the nucleotides
at random positions of the test sequence so that each
of the replaced positions in the test sequence has a dif-
ferent nucleotide from that in the reference sequence.
Once a reference sequence and a test sequence are gen-
erated, reads of the test sequence are generated by sim-
ulating the shotgun sequencing process of the Solexa
machine.

A total of 80 simulated data were generated by SDG,
in which NCBI Build 36.3 chromosome (chr) 8 genomic
contig NT 077531.3 was used as the starting sequence
and the corresponding information of the 17 potential
CNV regions (total length of 318,750 bp, average length
of 18,750 bp, minimum length of 1,024 bp, and maximum
length of 70,613 bp) referring to DGV were used. Specif-
ically, 10 of the 17 potential CNV regions were randomly
selected and inserted in random positions of the reference
sequence or the test sequence. The test sequences were

http://projects.tcag.ca/variation
http://projects.tcag.ca/variation
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treated to have a given sequencing error rate (E%). Then,
paired-end reads of length 36 bp were randomly extracted
at a given read coverage (C) from each of the 80 simulated
test sequences.

Read data downloaded from the site of the 1000
Genome Project (http://www.1000genomes.org) were
used for the experiment with real human data. The down-
loaded data were paired-end reads of six hapmap sam-
ples: NA10851 (5.6x), NA18511 (1.8x), NA18570 (2.2x),
NA18576 (1.8x), NA18592 (2.3x), and NA18944 (2.3x),
which were generated by the Solexa GA machine.

The performance of CNV SS was assessed by compar-
ing the detected CNV regions with those reported to DGV
on each individual, in which we used the CNV database
of DGV updated on November 2, 2010. CNV SS was
also compared with three other CNV detection meth-
ods: CNV shape (Hong SK, et al.: Shape-based retrieval
of CNV regions in read coverage data, forthcoming),
CNV-seq [15], and modified CNV-seq (Hong SK, et al.:
Shape-based retrieval of CNV regions in read coverage
data, forthcoming) with optimized parameters for each
method.

SOAP2 (Short Oligonucleotide Alignment Program)
[20] was used for the alignment of the read data, and a ran-
dom match method, one of various alignment algorithms
that SOAP2 supports, was used with e = 2 mismatch cri-
teria as a tolerable limit with regard to noise, such as
sequence errors. The experiments were carried out in the
platform of Windows 7 and CentOS 5.5 on Intel Core i7
2.8GHz CPU, 8GB main memory, and 2TB hard drive.

The programming language used for the development of
CNV SS was MATLAB.

Results and discussion
Experiments with simulated data
The first experiment was carried out to assess the perfor-
mance of CNV SS for various read coverage levels: 0.1x,
0.5x, 1x, 2x, 3x, 6x, and 10x. Here, the sequencing error
rate E=2% was considered according to a typical error
rate existing in real data generated by shotgun sequenc-
ing technology, even though the sequence error rate keeps
improving due to the advancement of the technology. Per-
formance was assessed by estimating the false negative
rate (FNR) and the false positive rate (FPR) on the basis
of the size of detected CNV regions. More than 20 exper-
iments for each read coverage level were accomplished
with different simulated data, the results from which were
averaged for the assessment. The performance of the
CNV SS was then compared with those of CNV shape
and CNV-seq.

Figure 7 shows the results of the experiments for var-
ious read coverage levels at the sequencing error rate
E=2%. As shown in Figure 7, most algorithms are fairly
good at the detection of CNVs at high coverage levels.
However, CNV SS shows better performance in FNR than
other methods at low coverage levels. Overall FNRs and
FPRs of CNV SS were in the range of 0.58% to 8.96%
and 0.87% to 4.76%, with medians of 1.14% and 1.271%,
respectively. The FNRs and FPRs decrease as the read cov-
erage level increases. The decreasing rates also get lower

Figure 7 Performance vs coverage level. Comparison of the performances of three algorithms for simulated data of coverage level C in the range
of 0.1x to 10x. The sequence error rate E was set to 2%. Performance was assessed by estimating the false negative rate (FNR) and the false positive
rate (FPR) on the basis of the size of detected CNV regions.

http://www.1000genomes.org
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as the read coverage level increases, resulting in the satu-
ration of FPRs around at the read coverage level of 2x or
3x. CNV SS has fairly good FNR (2.44%) and FPR (2.43%)
even at a very low level of read coverage C=0.5x.

Compared with CNV shape and CNV-seq, CNV SS
gave a little increased FPRs. This is due to the fact that
CNV SS searches CNVs at every layer of the scale-space
image from the top to the bottom not to exclude small
(around 1 Kbp) CNVs, inevitably resulting in calling small

noise signals as CNVs as well. To exclude noise signals in
CNV detection, our future work considers an algorithm
for selectively adjusting the range of layers of the scale-
space image according to the properties of the input data
set in CNV detection, which will decrease FPRs even at
very low coverage levels.

The second experiment was carried out to assess
CNV SS for various sequencing error rates, 1% through
10%. Figures 8(a) and 8(b) show the FNRs and FPRs as

Figure 8 Performance vs sequencing error rate. Comparison of the performances of three algorithms for simulated data of sequence error rate E
in the range of 1% to 10%. Performance was assessed by estimating the false negative rate (FNR) and the false positive rate (FPR) on the basis of the
size of detected CNV regions; (a) and (b) show the results for coverage levels of C=1x and C=3x, respectively.
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the sequencing error rate increases when the read cover-
age levels are 1x and 3x, respectively. The FNRs and FPRs
increase as the sequencing error rate increases. As can
be seen in Figure 8(a), the FNRs both for CNV-seq and
the CNV shape increase rapidly as the sequencing error
rate increases when the read coverage level is low. While
CNV SS has fairly good FNR (4.25%) and FPR (3.71%)
even when the sequencing error rate E is high (10%) and

the level of read coverage C is low (1x). The overall FNRs
and FPRs for CNV SS were in the range of 1.25% to
4.25% and 0.98% to 3.71%, respectively, at the read cov-
erage level C=1x, and in the range of 0.92% to 2.56% and
0.63% to 1.78%, respectively, at the read coverage level
C=3x. The result suggests that CNV SS can be very robust
in error-prone environments at a moderate level of the
read coverage.

Figure 9 ROC curves for three algorithms at different coverage levels and error rates. The ROC curves are generated by measuring false
positive and false negative rates on simulated data at different threshold levels; (a) and (b) show the ROC curves for the cases of (C=1x, E=4%) and
(C=3x, E=2%) data sets, respectively.
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The third experiment was carried out to assess the
performance of CNV SS in conjunction with two other
methods as the threshold for determining a CNV is var-
ied. We calculated the receiver operation characteristic
(ROC) curves of CNV SS using two data sets. These
ROC curves, together with the ROC curves of CNV-seq
and CNV shape based on the same data sets, were plot-
ted in Figure 9. Figures 9(a) and 9(b) show the ROC
curves for the cases of (C=1x, E=4%) and (C=3x, E=2%)
data sets, respectively. These curves show that CNV SS
and CNV shape are more sensitive than CNV-seq. As
CNV SS detects larger CNVs at higher scale and smaller
CNVs at lower scale, the sensitivity can be increased
compared to the conventional methods using a fixed win-
dow size. For the case of lower coverage level and higher
error, CNV SS gave better performance results than
other methods.

Experiments with hapmap samples
Paired-end reads of six hapmap samples, NA10851
(5.6x), NA18511 (1.8x), NA18570 (2.2x), NA18576 (1.8x),
NA18592 (2.3x), and NA18944 (2.3x), were used for the
experiments with real human data. FPR and FNR were
evaluated on the basis of the CNV database of the DGV
and then compared with those of CNV shape, the conven-
tional CNV-seq, and the modified CNV-seq.

In the first experiment, paired-end reads from the
human leukocyte antigen (HLA) region of chr. 6 of
NA18511 (1.8x) and NA10851 (5.6x) were used. The HLA
region, which resides on the short arm of human chr. 6
and is 3.408 Mbp long, is known to have around 200 genes
related to the human immune system and several potential
CNV regions involving disease-specific genes [21].

Figure 10 shows the results of the experiment on the
HLA regions of NA18511 and NA10851. The top panels

Figure 10 Detected CNV regions. CNV regions detected by four methods in the HLA regions of (a) NA18511 and (b) NA10852. The top panels of
Figures 10(a) and 10(b) show the graphs of the read coverage data along with the position of chr. 6 of NA18511 and NA10851, respectively. The
middle panels of Figures 10(a) and 10(b) display the finger print maps of the read coverage data of NA18511 and NA10851, respectively. The bottom
panels of Figures 10(a) and 10(b) show the CNV regions detected by each of CNV SS, CNV shape, CNV-seq, and modified CNV-seq on NA18511 and
NA10851, respectively; the same panels show the CNV regions reported in the DGV.
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of Figures 10(a) and 10(b) show the graphs of the read cov-
erage data along the position of chr. 6 of NA18511 and
NA10851, respectively. The middle panels of Figures 10(a)
and 10(b) display the finger print maps of the read cov-
erage data of NA18511 and NA10851, respectively; the
x-axis is the position of chr. 6, and the y-axis represents
the values of the scale parameter σ . The bottom pan-
els of Figures 10(a) and 10(b) show the regions of CNVs
detected by CNV SS on NA18511 and NA10851, respec-
tively; the same panels show the regions of CNVs detected
by each of CNV shape, CNV-seq, and modified CNV-
seq for comparison, and the CNV regions reported in the
DGV. A total of 10 CNVs (minimum size, maximum size,
and total sum of the regions are 1,124 bp, 117,689 bp, and
239,961 bp, respectively) for HLA of chr. 6 on NA18511
and 3 CNVs (minimum size, maximum size, and total sum
of the regions are 10,175 bp, 142,219 bp, and 236,332 bp,
respectively) on NA10851 are reported in the DGV.

As shown in the middle and the bottom panels of
Figure 10, CNV SS accurately detects the CNV types, gain
or loss, for both NA18511 and NA10851, which is con-
sidered because of the typical characteristics of the scale-
space filtering. However, CNV shape may incorrectly
detect the types of small CNV regions when the noise
distribution is irregular in low-coverage sequencing data,
because the method is based on the variations in the shape
of the read coverage data. Furthermore, CNV-seq cannot
verify the types of detected CNVs because the method is
based on the coverage ratio of test to control samples. As
shown in the bottom panels of Figures 10(a) and 10(b),
CNV-seq failed to detect as CNVs a region of 32,578,489
bp through 32,608,297 bp on chr. 6 of NA18511 and a
region of 32,578,489 bp through 32,608,297 bp on chr.
6 of NA10851, which are both reported as CNV loss
regions in the CNV database of the DGV. Furthermore,
the region 31,409,353 bp through 31,419,289 bp on chr. 6
was detected as a CNV loss by CNV SS, while it was esti-
mated to be a CNV gain on NA18511 and, at the same
time, a CNV loss on NA10851 by CNV-seq, as shown
from the top panels of Figures 10(a) and 10(b).

Table 1 summarizes a quantitative analysis of the results
of the experiments on the HLA regions of NA18511
and NA10851, in which the performance of CNV SS

was compared with that of CNV shape, the conventional
CNV-seq, and the modified CNV-seq through the FPRs
and the FNRs. The columns ‘Min’ and ‘Max’ represent
the smallest and the largest sizes of the CNVs detected
by each method, and overlap with those reported in the
DGV as well. The fraction of the overlapping is also
given in each of the columns ‘Min’ and ‘Max’ by paren-
theses. The column ‘Gain’ (‘Loss’) represents the total
sum of the sizes of CNV gains (losses) detected by each
method.

As shown in Table 1, the smallest CNV detected by
CNV SS has a 100% overlap with the smallest 10 Kbp
CNV in DGV on NA10851, while the smallest ones
detected by CNV shape, CNV-seq, and modified CNV-
seq have 47.7%, 57.2%, and 53.7% overlaps with the small-
est 10 Kbp CNV in DGV on NA10851, respectively. The
largest CNV detected by CNV SS has a 100% overlap with
the largest 142 Kbp CNV in DGV on NA10851, while
the largest ones detected by CNV shape, CNV-seq, and
modified CNV-seq have 44.6%, 18.6%, and 55.7% over-
laps with the largest 142 Kbp CNV in DGV on NA10851,
respectively.

For NA18511, any method listed in Table 1 does not
have a CNV call on the smallest 1.12 Kbp CNV in DGV,
which is regarded due to the low level of read cover-
age data of NA18511. The smallest CNV detected by
CNV SS has a 100% overlap with the 5.9 Kbp CNV
in DGV on NA18511, while the smallest ones detected
by CNV shape, CNV-seq, and modified CNV-seq have
85.0%, 51.9%, and 100% overlaps with 4.4 Kbp, 16.0 Kbp,
and 5.9 Kbp CNVs in DGV on NA18511, respectively.
The largest CNV detected by CNV SS has a 100% over-
lap with the largest 117 Kbp CNV in DGV on NA18511,
while the largest ones detected by CNV shape, CNV-seq,
and modified CNV-seq have 100%, 22.5%, and 85.1% over-
laps with the largest 117 Kbp CNV in DGV on NA18511,
respectively.

FNRs of 16.31% and 8.99% were derived for NA18511
and NA10851 in CNV SS. In contrast, CNV shape
yielded FNRs of 35.10% and 26.40%. CNV-seq and
the modified CNV-seq yielded FNRs of 72.93% and
43.97% for NA18511 and 68.47% and 39.01% for
NA10851, respectively.

Table 1 Table 1 Summary of performance in HLA regions of NA18511 (1.8x) and NA10851 (5.6x)

Method NA18511 NA10851

Detected region (Kbp) FPR(%) FNR(%) Detected region (Kbp) FPR(%) FNR(%)

Min Max Gain loss Min Max Gain Loss

CNV SS 5.9(100) 117(100) 21 307 4.03 16.31 10(100) 142(100) 0 378 5.13 8.99

CNV shape 4.4(85) 117(100) 14 217 1.98 35.10 10(47.7) 142(44.6) 3 134 2.73 26.40

CNV-seq 16(51.9) 117(22.5) 77 46 0.04 72.93 10(57.2) 142(18.6) 46 77 1.57 68.47

CNV-seq (modified) 5.9(100) 117(85.1) 13 179 0.04 43.97 10(53.7) 142(55.7) 0 203 1.78 39.01
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Table 2 Comparative summary of performance in the whole regions of human chromosome 6 of NA18511 and NA10851

Method NA18511 NA10851

Detected region (Kbp) FPR(%) FNR(%) Detected region (Kbp) FPR(%) FNR(%)

Min Max Gain Loss Min Max Gain Loss

CNV SS 1.8(100) 117(100) 473 438 2.12 41.08 1.3(100) 142(100) 361 1690 2.77 17.31

CNV shape 1.1(85) 117(98.8) 13730 2515 9.39 45.32 1.1(100) 142(90.5) 1020 931 0.92 24.94

CNV-seq 4.1(100) 117(8.8) 288 63 0.13 86.29 6.2(100) 142(7.2) 63 288 0.04 75.17

CNV-seq (modified) 4.1(100) 117(100) 602 730 0.56 57.68 1.3(100) 142(55.7) 538 757 0.54 40.00

In the second experiment, paired-end reads from the
whole region of human chr. 6 of NA18511 and NA10851
were used. Human chr. 6 is 170.899 Mbp long, and a total
of 75 CNVs (minimum size, maximum size, and total sum
of the regions are 1,045 bp, 117,686 bp, and 965,011 bp,
respectively) and 54 CNVs (minimum size, maximum size,
and total sum of the regions are 1,057 bp, 142,219 bp,
and 606,194 bp, respectively) are reported in the CNV
database of the DGV for chr. 6 on NA18511 and NA10851,
respectively.

Table 2 describes a quantitative analysis of the results
of the experiment on the whole region of human chr.
6 of NA18511 and NA10851, in which the performance
of the CNV SS was compared with that of CNV shape,
the conventional CNV-seq, and the modified CNV-seq
through FPRs and FNRs. The comparison of the per-
formance result of each method in Table 1 with that in
Table 2 reveals that the FNRs are a little increased in the
whole region of chr. 6. This is likely to be due to the spe-
cial characteristics of the HLA region where many CNV
regions, including large-scale ones, are well studied and
reported; although the HLA region occupies only around
2% of the whole region of chr. 6, 38% and 24% among
the CNV regions reported on chr. 6 are within the HLA
regions on NA18511 and NA10851, respectively.

The sizes of CNVs detected by CNV SS on NA18511
and NA10851 are in the range of 1.8 Kbp to 117 Kbp and
1.3 Kbp to 142 Kbp, respectively. These results confirm
that CNV SS is superior to CNV shape, the conventional
CNV-seq, and the modified CNV-seq in terms of detect-
ing CNVs of various sizes. The results also show that small
CNVs can be accurately detected from low-coverage data.

We can deduce therefore that CNV SS is very effective at
reducing the noise inherent in the read coverage data and
in detecting CNVs of various sizes and types.

In the third experiment, paired-end reads from the
whole region of human chr. 6 of NA18570 (2.2x),
NA18576 (1.8x), NA18592 (2.3x), and NA18944 (2.3x)
were used for additional experiments for low-coverage
data. Table 3 describes the comparative performance
results of the four methods. The overall FNR for CNV SS
is between 17.31% and 41.08%, the FPR between 2.12%
and 3.31% with relatively low coverage data. It can be seen
that FNR and FPR may decrease as the level of read cover-
age increases. However, the performance of the proposed
method has low dependency on the level of the read cover-
age. The results show that our method has fairly good FNR
and FPR even at a very low level of read coverage (1.8-
2.3x), and the proposed method outperforms the other
methods by as much as 70.98% to 85.80%.

Conclusion
A new method to detect CNVs based on scale-space fil-
tering, called CNV SS, is proposed. CNV SS proceeds in
two stages: up and down stages. In the up stage, read cov-
erage data are transformed into a scale-space image with
several layers by Gaussian convolution, and then the fin-
ger print map is obtained from the zero-crossing points
of the second-order derivatives of the scale-space image
per layer with increasing σ . In the down stage, base-
lines and intervals of each layer are calculated using the
mean and the standard deviation of the read coverage data
for each layer with decreasing σ . The intervals are the
regions of the input sequence where CNV gains or losses

Table 3 Performance comparison of four methods on chromosome 6 sequence data of six individuals at relatively low
coverage

Method NA18576 (1.8x) NA18511 (1.8x) NA18570 (2.2x) NA18592 (2.3x) NA18944 (2.3x) NA10851 (5.6x)

FPR(%) FNR(%) FPR(%) FNR(%) FPR(%) FNR(%) FPR(%) FNR(%) FPR(%) FNR(%) FPR(%) FNR(%)

CNV SS 2.37 39.89 2.12 41.08 2.36 23.79 3.31 36.77 2.48 37.24 2.77 17.31

CNV shape 9.25 46.51 9.39 45.32 12.96 44.28 9.38 57.28 17.47 38.72 0.92 24.94

CNV-seq 0.12 68.84 0.13 86.29 0.11 81.99 0.09 80.86 0.10 82.78 0.07 75.17

CNV-seq 0.77 46.36 0.56 57.68 0.52 54.53 0.49 61.03 0.78 46.32 0.54 40.00

(modified)
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are detected. The exact positions and the types of the
CNV gains or losses are decided by the intervals and the
baselines of each of the layers.

To verify the performance of this method, experi-
ments using simulated data and real human data were
undertaken. The simulated data with average coverage C
(0.1x≤C≤10x) and error rate E (≤10%) were produced
using contig NT 077531.3 of chr. 8 of NCBI Build 36.3
by inputting structural variations reported to the DGV,
such as SNPs, indels, and CNVs, into its random positions.
When the E error rate was fixed at 2% in the experiments
using simulated data, the results showed that FNR and
FPR decrease as the read coverage level increases, and stay
in the range of 1.27% to 2.43% and 1.14% to 2.44%, respec-
tively, even at a relatively low coverage (0.5x≤C≤2x).
Moreover, in the experiments using simulated data with
average coverage C (=1x, 3x) and the E error rate increas-
ing by 1% within the range of 1% to 10%, the results yielded
FPRs of 0.98% to 3.70% and FNRs of 1.25% to 4.25% at
C=1x, and FPRs of 0.63% to 1.78% and FNRs of 0.92% to
2.56% at C=3x. The result suggests that CNV SS can be
very robust in error-prone environments, and the effect of
errors can be reduced as the read coverage level increases.
The experiments using simulated data discovered the rela-
tion between the scope of standard deviation and accuracy
(FPR, FNR), which should be considered in scale-space fil-
tering, according to the change of value in the C coverage
rate and the E error rate.

In the experiments with real human data, pair-end reads
of six hapmap samples, namely, NA10851 (5.6x), NA18511
(1.8x), NA18570 (2.2x), NA18576 (1.8x), NA18592 (2.3x),
and NA18944 (2.3x), downloaded from the 1000 Genome
Project website, were used. The FPRs and FNRs by the
proposed method CNV SS were evaluated on the basis
of the CNV database of the DGV and then compared
with conventional methods such as CNV shape, CNV-
seq, and modified CNV-seq. The proposed method gave a
relatively similar output of FPR (≤3.31) with the conven-
tional methods, whereas in FNR, the proposed method
was found to be much more effective than the conven-
tional methods, by 3.82% at the least and 76.97% at the
most. These results show that CNV SS can find CNVs
effectively, using relatively low-coverage data, and also can
find various CNVs regardless of their size.
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