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Abstract
Various neurotrophins (NTs), including nerve growth factor, brain-derived neurotrophic factor, neurotrophin-3, and neurotrophin-4, 
promote cellular differentiation, survival, and maintenance, as well as synaptic plasticity, in the peripheral and central nervous 
system. The function of microRNAs (miRNAs) and other small non-coding RNAs, as regulators of gene expression, is pivotal 
for the appropriate control of cell growth and differentiation. There are positive and negative loops between NTs and miRNAs, 
which exert modulatory effects on different signaling pathways. The interplay between NTs and miRNAs plays a crucial role in 
the regulation of several physiological and pathological brain procedures. Emerging evidence suggests the diagnostic and thera-
peutic roles of the interactions between NTs and miRNAs in several neuropsychological disorders, including epilepsy, multiple 
sclerosis, Alzheimer’s disease, Huntington’s disease, amyotrophic lateral sclerosis, schizophrenia, anxiety disorders, depression, 
post-traumatic stress disorder, bipolar disorder, and drug abuse. Here, we review current data regarding the regulatory interactions 
between NTs and miRNAs in neuropsychological disorders, for which novel diagnostic and/or therapeutic strategies are emerg-
ing. Targeting NTs-miRNAs interactions for diagnostic or therapeutic approaches needs to be validated by future clinical studies.
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Abbreviations
AD	� Alzheimer’s disease
ALS	� Amyotrophic lateral sclerosis
BDNF	� Brain-derived neurotrophic factor

CREB	� CAMP response element-binding pro-
tein B

CNS	� Central nervous system
CSF	� Cerebrospinal fluid
CUMS	� Chronic unpredictable mild stress
EGR3	� Early growth response 3
ERK1/2	� Extracellular-signal-regulated kinase 

1/2
hESC	� Human embryonic stem cell
HD	� Huntington’s disease
LIMK1	� LIM kinase-1
mTOR	� Mammalian target of rapamycin
MeCP2	� Methyl CpG binding protein 2
miRNAs	� MicroRNAs
Ras/Raf/MAPK	� Mitogen-activated protein kinase
MS	� Multiple sclerosis
NGF	� Nerve growth factor
NTs	� Neurotrophins
NT3	� Neurotrophin-3
NT4	� Neurotrophin-4
NTR3	�  Neurotrophic receptor tyrosine kinase 3
NF-κB	� Nuclear factor kappa B
PD	� Parkinson’s disease
PC12	� Pheochromocytoma cell line
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PI3K-Akt	� Phosphatidylinositol 3-kinase-protein 
kinase B

PBMCs 	� Peripheral blood mononuclear cells
PPARα	� Peroxisome proliferator-activated recep-

tor alpha
PTSD	� Post-traumatic stress disorder
p75NTR	� P75 neurotrophin receptor
RA	� Retinoic acid
Sirt1	� Silent information regulator 1
TF	� Transcription factor
TFs	� Transcription factors
Trk	� Tropomyosin-related kinase
t-NTR3	� Truncated isoform of NTR3
3′ UTR​	� 3′ Untranslated region

Introduction

The mammalian neurotrophins (NTs), a family of struc-
turally-related proteins, regulate neurite outgrowth and 
modulate neuronal differentiation and survival [1]. The NT 
family consists of four proteins: brain-derived neurotrophic 
factor (BDNF), nerve growth factor (NGF), neurotrophin-3 
(NT3), and neurotrophin-4 (NT4), which are important in 
the regulation of various physiological and pathological 
conditions [2]. There are two different classes of receptors 
that are activated by NTs, (i) the p75 neurotrophin receptors 
(p75NTR), which are a low-affinity NTs receptors, and (ii) 
the tropomyosin-related kinase receptors (Trk), which are 
high-affinity NTs receptors and consist of TrkA, TrkB, and 
TrkC [3, 4]. NGF has the highest affinity to TrkA, BDNF 
and NT4 stimulate preferentially TrkB, and NT3 acts mainly 
through TrkC. Several diverse intracellular signaling path-
ways may be affected by the activation of Trk, including the 
phosphatidylinositol 3-kinase-protein kinase B (PI3K-Akt) 
signaling pathway, extracellular-signal-regulated kinase 
1/2 (ERK1/2), PI3K, phospholipase C, and mitogen-acti-
vated protein kinase (Ras/Raf/MAPK) pathway [5–8]. The 
p75NTR is a multifunctional transmembrane protein, which 
can unselectively bind to all mature NTs [9]. The p75NTR 
couple to different intracellular binding proteins, activate 
signaling adaptors, and modulate the Trk signaling pathway. 
The p75NTR contributes to the neurogenesis of adult neural 
progenitors via NGF activation [10, 11]. Several signaling 
elements of the Trk pathways mediate NT functions, par-
ticularly gene transcription regulation [3]. Moreover, NTs 
are implicated in the regulation of several transcription fac-
tors (TFs), like cAMP response element-binding protein B 
(CREB) and nuclear factor kappa B (NF-κB) [12]. There are 
functional connections between NTs, TFs, and their tran-
scriptional targets [13]. Enhancement of NT expression in 
the brain could protect neuronal tissues against a variety of 
pathological insults, such as ischemic and traumatic events 

as well as neurodegenerative processes [14, 15]. NTs and 
their receptors are also involved in neuropsychiatric disor-
ders [16].

The bidirectional interactions between NTs and brain-
specific microRNAs (miRNAs) regulate the expression of 
numerous protein-encoding genes [17]. miRNAs, a class of 
tiny non-coding RNAs with a length of approximately 22 
nucleotides, are the major post-transcriptional regulators of 
gene expression [18]. miRNA precursors are located within 
both intragenic and intergenic regions of DNA. miRNAs 
function involves a multi-step process, including transcrip-
tion and processing of primary miRNAs, precursor-miRNAs 
hairpin formation, and export of mature miRNAs from the 
cytoplasm to the nucleus [19, 20]. Multiple factors play a 
regulatory role in these processes, including RNA polymer-
ase II, rosha, Exportin 5, Dicer, and Argonaute [21]. Mature 
miRNA can be sorted and loaded into the Argonaute pro-
teins to form an RNA-induced silencing complex [22].

Approximately 30–60% of all mammalian proteins can be 
targeted by miRNAs, which are implicated in various cellu-
lar and developmental processes. miRNAs regulate cell pro-
liferation, differentiation, regeneration, and cell death [23, 
24]. miRNAs and their abundant targets also play a pivotal 
role in neural lineage and subtype determination as well as 
neural stem cell development in both physiological and path-
ological states [25]. Circulating miRNAs are released into 
the extracellular fluids, such as blood, urine, and cerebrospi-
nal fluid (CSF) [26]. Growing evidence suggests that brain-
specific miRNAs play an important role in the regulation 
of neuronal activity [27]. Furthermore, miRNAs mediate 
neuronal communication via regulating the protein synthesis 
that is implicated in synaptic transmission [28]. miRNA dys-
regulation in the nervous system could affect a wide range of 
biological functions, such as neurogenesis, myelination, and 
dendritic outgrowth [29, 30]. Dysregulation in the miRNA 
signaling disrupts the functions of neurons [31], astrocytes 
[32], microglia [33], oligodendrocytes [30], and ependymal 
cells [34]. miRNAs are implicated as biologically crucial 
mediators in the pathogenesis of various neuropsychological 
diseases, such as Alzheimer’s disease (AD), Huntington’s 
disease (HD), Parkinson’s disease (PD), epilepsy, anxiety, 
depression, schizophrenia, post-traumatic stress disorder 
(PTSD), bipolar disorder, and substance abuse [31, 35–37]. 
miRNAs could serve as a potential biomarker for the early 
detection of various neurodegenerative disorders [26].

Both NTs and brain-specific miRNAs play a potential 
role in diagnostic and therapeutic approaches for central 
nervous system (CNS) disorders. Indeed, a strong relation-
ship between the regulation of NTs-miRNAs and the patho-
physiology of various brain disorders has been determined 
[38–40]. Here, we summarize the current understanding of 
the regulatory mechanisms of NTs and miRNAs interac-
tions. Furthermore, we provide a comprehensive review of 
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the current knowledge regarding the potential diagnostic, 
predictive, prognostic, and/or therapeutic roles of the NTs 
and miRNAs interactions in neuropsychological disorders.

Molecular Interactions between NTs 
and miRNA Signaling

miRNAs are considered one of the important regulators in 
eukaryotic transcription [41]. Various brain-specific miR-
NAs are known to play a critical role in NT expression and 
function [31]. NTs and miRNAs mutually regulate each 
other. NT expression is not only regulated by miRNAs, but 
it, in turn, modulates miRNA expression [42, 43]. NTs are 
involved in a wide range of gene expressions mostly at the 
level of transcription and translation [44]. NTs modulate 
MAPK/ERK pathways and control miRNA levels. The mod-
ulation of MAPK/ERK could alter miRNA values through 
(i) phosphorylation of TAR RNA binding protein and Dicer, 
(ii) regulation of CREB and NF-κB, and (iii) alteration of 
Lin-28 homolog A [17]. A given miRNA may directly regu-
late multiple mRNAs, each of them has different binding 
sites to promote the binding performance [45].

Effect of miRNAs on NT Expression

Brain-enriched miRNAs have been described to play a 
critical role in NT expression. NTs regulate neuronal and 
synaptic functions during development and adulthood, and 
miRNAs modulate NTs [46–48]. miRNAs target different 
mRNAs through the interaction with the 3′ untranslated 
regions (3′ UTR); however, binding to other regulatory 
regions of mRNA can also occur [43, 49]. The direct or 
indirect interactions between miRNAs and their target genes 
can be influenced by multiple factors [50]. Some miRNAs 
mediate NTs expression through post-transcriptionally regu-
lating TFs expression. CREB, as a transcription factor (TF), 
stimulates transcription in association with CREB-binding 
protein and its homolog p300. CREB could also bind to vari-
ous BDNF promoter elements and enhance the NT activities 
[17, 41, 51]. For instance, miR-134 directly targets CREB 
mRNA and inhibits its translation. Inhibition of CREB sign-
aling could abolish the BDNF expression [17].

miRNAs modulate NTs in an isoform-specific manner. 
An in vitro study on the human neuroblastoma cell line 
SH-SY5Y has shown that an isoform of the neurotrophic 
receptor tyrosine kinase 3 (NTR3) is specifically regulated 
by different sets of miRNAs. Overexpression of miR-128 
regulates the truncated isoform of NTR3 (t-NTR3) and 
miR-151-3p regulates the full-length isoform of NTR3 at 
the mRNA level [46]. In vitro analysis of TrkC expression 
in retinoic acid (RA)-treated SK-N-BE cells indicated that 
t-NTR3 mRNA can be targeted by miR-9, miR-125a, and 

miR-125b. A regulatory circuitry involving these miRNAs 
and TrkC has been identified to play a key role in control-
ling cell proliferation [52]. miRNAs can also regulate NTs 
receptors under certain conditions. Upregulation of P75NTR 
is implicated in the pathogenesis of brain injury and apop-
tosis. miR-592 could regulate p75NTR at the mRNA level, 
and an inverse relationship is defined between miR-592 and 
p75NTR [17, 53]. We have identified various miRNAs that 
can directly target NTs in humans and mice using the miR-
TarBase database (Table 1).

miRNAs Interactions with NGF, BDNF, and NT3

miRNAs can modulate the expression of NGF, BDNF, and 
NT3. Multiple studies have revealed the role of miRNA 
downstream on NGF to regulate cell proliferation and/or 
apoptosis and consequently modulate neuronal differentia-
tion [54]. miR-200 inhibits cell proliferation and promotes 
cell differentiation and neurite formation via targeting TF 
SRY-box transcription factor 2 and kruppel-like factor 4 
[55]. Studies on developing rat brains as well as pheochro-
mocytoma cell lines (PC12) provide supporting evidence 
that miR-29a and miR-29c increase neurite outgrowth 
through direct inhibition of tumor suppressor gene phos-
phatase and tensin homolog expression [56]. In PC12 cells, 
miR-200 targets some TFs and induces a neural marker, 
neurofilament light polypeptide [55, 57]. Previous studies 
have also demonstrated that miR-183 and/or miR-96 inhibit 
NGF-treated PC12 differentiation [58]. Furthermore, miR-
221 plays a pivotal role in the NGF signaling, and overex-
pression of miR-221 can replace NGF in neural differentia-
tion and survival [59]. miR-21 maintains the NGF effect on 
neuronal survival [60].

miR-155 upregulation enhances NGF expression at the 
protein level and its downregulation inhibits cytokine sign-
aling 1 expression and NF-κB activation (Table 2) [61]. 
Knockout of miR-204/211 increases NGF expression at 
the mRNA level and activates the Akt signaling pathway 
(Table 2) [62]. miR-455-3p can also directly target NGF 
mRNA [63]. Another study suggests that lethal (Let)-7-5p 
is an upstream regulator of NGF [64]. In vivo studies eluci-
date that let-7 and miR-675 can directly target P53 and NGF 
mRNA [65–67]. Transfection of human dorsal root ganglia 
cell culture with miR-455-3p significantly reduced NGF 
expression at the mRNA level, which was reversible after 
the application of a miR-455-3p inhibitor (Table 2) [68]. 
Moreover, downregulation of miR-125b reversely increases 
NGF expression at the mRNA and protein levels (Table 2) 
[69]. Chronic inflammatory pain leads to the upregulated 
expression of miR-29b, which promotes the demethylation 
at the promoter region of the NGF gene, resulting in the 
upregulation of NGF gene expression (Table 2) [70]. Analy-
sis of CSF of patients infected with acute viral encephalitis 
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has shown overexpression of miR-150-5p that negatively 
correlated with transforming growth factor-β, NGF, axon 
guidance, and MAPK [71]. An experimental study on an 
acute cerebral ischemia model indicates that upregulation 
of miR-381 inhibits leucine-rich repeat containing-4 via the 
stromal cell-derived factor-1/C-X-C chemokine receptor 
type 4 signaling, enhances NGF protein expression, prevents 
neuronal apoptosis (Table 2) [72].

Both miRNAs and BDNF play a role in the regulation of 
brain synaptic plasticity. Deletion of various brain-specific 
miRNAs, such as miR-124, miR-132, miR-137, miR-138, 
miR29a, and miR29c, increased hippocampal synaptic trans-
mission as well as the expression of BDNF protein. Dif-
ferent miRNAs, such as miR-15a, miR-206, and miR-210, 
directly regulate BDNF protein expression and activity [12, 
73]. Moreover, several investigations revealed that BDNF 
mRNA is the direct target of miR-10b, miR-19, miR-22, 
miR-26a-1, miR-26a-2, miR-26b, miR-195, and miR-30a-5p 
[74–76]. miR-15a has been suggested to inhibit the prolifera-
tion of neuronal cells and promote cell apoptosis by targeting 
BDNF mRNA and protein through downregulation of the 
PI3K/AKT pathway [77]. The high expression of miR-153 
by targeting leptin receptors significantly suppresses the 
Janus kinase/signal transducers and activators of the tran-
scription signaling pathway and thereby enhances BDNF 
expression at the mRNA and protein levels and neuronal 
proliferation (Table 2) [78]. Overexpression of miR-10a by 
targeting the BDNF signaling pathway could inhibit cell pro-
liferation and induce neuronal apoptosis in the hippocampus 
[79]. Upregulation of miR-211 significantly inhibits BDNF 

mRNA and protein expression and suppresses the viability 
and proliferation of normal human astrocytes via the acti-
vation of lipopolysaccharides and the PI3K/Akt pathway 
(Table 2) [80]. Methyl CpG binding protein 2 (MeCP2) is 
one of the important genes in the maturation of new neurons 
and its dysregulation plays a role in the pathophysiology of 
Rett syndrome [81].

MeCP2 is a transcriptional regulator of BDNF [82]. The 
BDNF protein level was reduced in the MeCP2 mutant mice 
and an increase in BDNF levels improved motor skills in 
both mutant mice and children with Rett syndrome [83]. It 
was demonstrated that deletion of BDNF in MeCP2 muta-
tions caused an earlier onset of overt symptoms in patients 
with Rett syndrome [84]. Several investigations provide evi-
dence regarding the functional interaction between MeCP2 
and BDNF. The modulation of BDNF pathways has been 
suggested as a potential strategy for treating children with 
Rett syndrome [85]. MeCP2 also regulates miR-15a and 
its reduction leads to abnormality in dendrite morphology 
during neurogenesis. On the other hand, miR-15a regulates 
BDNF expression at the mRNA and protein levels and exog-
enous BDNF can partially compensate for miR-15a defi-
ciency during neuron maturation [86].

BDNF and miR-124 play a critical role in the pathogene-
sis of acute ischemic stroke. Contrary to other investigations, 
a negative correlation has been observed between serum 
BDNF and miR-124 values in patients with ischemic stroke 
[87]. Several miRNAs might act as diagnostic, prognostic, 
and/or therapeutic biomarkers for human gliomas [88]. 
A negative regulatory correlation between miR-103 and 

Table 1   miRNAs-neurotrophins 
interactions evaluated by 
miRTarBase database. BDNF, 
brain-derived neurotrophic 
factor; NGF, nerve growth 
factor; NT 3, neurotrophin-3; 
NT 4, neurotrophin-4; NA, not 
available

Target Species (target) Species (miRNA) miRNA ID Validation methods

BDNF Homo sapiens Homo sapiens hsa-miR-124-3p MIRT000362 Reporter assay
Homo sapiens Homo sapiens hsa-miR-30a-5p MIRT001946 Reporter assay
Homo sapiens Homo sapiens hsa-miR-1-3p MIRT002955 Reporter assay
Homo sapiens Homo sapiens hsa-miR-210-3p MIRT003153 Reporter assay
Homo sapiens Homo sapiens hsa-miR-22-3p MIRT005900 Reporter assay
Homo sapiens Homo sapiens hsa-miR-204-5p MIRT437447 Reporter assay
Homo sapiens Homo sapiens hsa-miR-16-5p MIRT437463 Reporter assay
Homo sapiens Homo sapiens hsa-miR-1-5p MIRT732282 Reporter assay
Mus musculus Mus musculus mmu-miR-381-3p MIRT004768 Reporter assay
Mus musculus Mus musculus mmu-miR-495-3p MIRT004769 Reporter assay
Mus musculus Mus musculus mmu-miR-30a-5p MIRT004770 Reporter assay
Mus musculus Mus musculus mmu-miR-30d-5p MIRT004771 Reporter assay
Mus musculus Mus musculus mmu-miR-206-3p MIRT005406 Reporter assay

NGF Homo sapiens Homo sapiens - - NA
Mus musculus Mus musculus - - NA

NT3 Homo sapiens Homo sapiens - - NA
Mus musculus Mus musculus - - NA

NT4 Homo sapiens Homo sapiens - - NA
Mus musculus Mus musculus - NA

6263Molecular Neurobiology  (2022) 59:6260–6280

1 3



Table 2   Effects of microRNAs 
on neurotrophins expression

miRNA
alteration

Neurotrophins expression
Type of research Type of cell or model

Type of 
interaction Ref.

BDNF NGF NT3
miR-21 - - In vivo Spinal cord injury model Indirect 96

miR-21 - - In vivo Pilocarpine-induced status 

epilepticus rat model

Direct 146

miR-29b - - In vivo Chronic inflammatory pain 

mouse model

Direct 70

miR-30a-3p - - In vivo Rat model of chronic 

constriction injury

Indirect 93

miR-30c - In vivo
Cerebral

ischemia/reperfusion injury 

rat model

Unknown 101

miR-34a - - In vitro PC12 cell line Direct 185

miR-34a-5p - - In vivo Total abdominal irradiation

exposed mice

Direct 129

miR-103 - - In vitro U251 glioma cell lines Direct 89

miR-103a - - In vivo Lithium chloride-

pilocarpine rat model

Direct 143

miR-124 - In vitro Schwann cell Unknown 99

- - In vivo R6/2 transgenic mice Unknown 163

miR-124 - - In vivo C57BL/6 mice Indirect 215

miR-125b - - In vivo Bile duct ligation model Direct 69

miR-132 - -
Bioinformatic 

study/

In vitro

Human neuronal cell 

model Unknown 219

miR-134 - - In vitro
Oxygen-glucose 

deprivation model of cell 

ischemia

Indirect 91

miR-141 - - In vivo Diabetes mellitus erectile 

dysfunction rat model
Indirect

110

miR-153 - - In vivo Autistic mice models Indirect 78

miR-155 - - In vitro Bone marrow-derived 

macrophages

Indirect 61

miR-155 - - In vivo Lithium-pilocarpine mice 

model

Direct 141

miR-182 - -
Bioinformatic 

study/In vitro
Human neuronal cell 

model

Direct 219

- - In vivo CUMS mice model Direct 223

miR-183c - - In vivo Chronic alcohol-treated 

animals

Direct 98

miR-202-3p - - In vivo CUMS mice model Unknown 220

miR-204 - - In vitro PC12 cell lines Unknown 62

miR-210-3p - - In vitro SH-SY5Y cells Direct 186

miR-211 - - In vitro PC12 cell lines Unknown 62

miR-211 - - In vitro Human astrocytes culture Direct 80

miR-221 - - Human study

In vivo

CSF and serum of Major 

depressive disorder

patients

CUMS mice

Indirect 214

miR-381 - - In vivo
Cerebral lymphatic 

blockage and cerebral 

artery occlusion in rats

Indirect 72

miR-455-3p - - In vitro Human dorsal root ganglia 

cell

Direct 68

miR-613 - -

Human study

In vivo

Serum and CSF of patients 

with mild cognitive 

impairment

dementia of Alzheimer's 

type
Transgenic mice

Direct 172

CUMS, chronic unpredictable mild stress. Green triangle, upregulation; red inverted triangle, downregulation
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the BDNF mRNA and protein expression levels has been 
reported in gliomas. Overexpression of miR-103 inhibits the 
proliferation and invasion of cancer cells in patients with 
gliomas through downregulation of BDNF (Table 2) [89]. 
The oxygen–glucose deprivation/reoxygenation enhances 
miR-1 expression, which directly suppresses the expression 
of BDNF mRNA and protein, and subsequently affects cell 
survival and apoptosis [90]. Downregulation of miR-134 
reduces ischemic injury through upregulation of CREB and 
downstream genes, including BDNF and Bcl-2, in ischemic 
hippocampal neurons (Table 2) [91].

Experimental evidence indicates that alterations of miR-
NAs contribute to neuropathic pain [92]. Using in vitro 
model of chronic constriction injury, it has been shown that 
decreased miR-30a-3p contributes to neuropathic pain. This 
study suggested that miR-30a-3p may inhibit BDNF acti-
vation via targeting the acetylated histone H3 and H4 on 
its promoter (Table 2) [93]. Investigations on animal and 
human embryonic stem cell (hESC)-derived neurons have 
revealed the association between anesthesia-induced neu-
ral injury and increasing hsa-miR-375 and miR-170 levels. 
These studies indicated that the BDNF gene is directly and 
reversely regulated by hsa-miR-375 and miR-170 and its 
upregulation protects neurons from anesthesia-induced neu-
ronal cell damage and neural toxicity [94, 95]. The reduction 
of miR-21 level in a mice model of the spinal cord injury led 
to the upregulation of BDNF gene expression (Table 2) [96].

Resveratrol, a potent silent information regulator 1 
(Sirt1), downregulates miR-134 and consequently causes 
an increase in CREB/BDNF expression levels in the hip-
pocampus and improves hippocampal-dependent learn-
ing and memory [97]. In chronic alcohol-treated animals, 
downregulation of miR-183c in association with overex-
pression of BDNF mRNA exhibits a neuroprotective effect 
(Table 2) [98]. Overexpression of miR-124 in Schwann cells 
significantly enhances the BDNF and NT3 mRNA expres-
sion, which might involve in neuron development processes 
(Table 2) [99]. NT3 and BDNF are predictive targets for 
miR-182 upregulation that might negatively control NT3 
and BDNF expression in ancestral stress-induced behav-
iors [100]. miR-30c transfection can also improve neuronal 
injury and increase NT3 and BDNF expression in the rat 
hippocampus (Table 2) [101]. miR-200c and miR-429 also 
directly target NT3 mRNA [102, 103].

miRNA Interactions with TrkA, TrkB, TrkC, and P75NTR

Several miRNAs regulate the TrkA, TrkB, TrkC, and 
P75NTR signaling pathways [104]. Alterations in the NGF/
TrkA signaling pathway are important in neuroblastoma cell 
differentiation and regression. On the other hand, alteration 
of miR-92a expression levels is related to the biological 
behavior of neuroblastoma cells. Higher miR-92a expression 

values increase the proliferation and migration of human 
neuroblastoma cells via downregulation of TrkA [105]. The 
impact of miRNAs on TrkB was evaluated using SHSY5Y 
cells. miR-216b regulates TrkB-Shc through binding to 3’ 
UTR [104]. A study on early brain injury after subarach-
noid hemorrhage indicated that the administration of human 
umbilical mesenchymal stem cells-derived miR-206-knock-
down exosomes impedes brain injury via the modulation of 
the BDNF/TrkB/CREB signaling pathway [106].

The results of the human genetic analysis revealed that 
the expression of miR-185 may impact neurodevelopment 
through the regulation of the NTR3 gene [47, 107]. Further-
more, CNS damage can target p75NTR and lead to neuronal 
apoptosis and cell death. Reduction in miR-592, a key regu-
lator of p75NTR, modulates neuronal injury and reduces 
cell apoptosis after ischemic insults [108]. Furthermore, 
miR-18a downregulates TrkA and p75NTR mRNA levels 
in neuroblastoma cell culture [109]. Experimental studies 
have shown that miR-141 binds to NGF receptor-associated 
protein 1 mRNA and suppresses the NGF/p75NTR signaling 
(Table 2) [110].

Effect of NTs on miRNA Expression

NTs regulate the expression of miRNAs through the activa-
tion of various specific TFs, such as NF-kB and CREB. Acti-
vation of Trk receptors leads to upregulation of the ERK/
CREB signaling pathway, which is involved in the regulation 
of primiR-212/132 transcription [12]. Besides, the activation 
of p75NTR can lead to the activation of the NF-kB pathway 
[111]. The activation of the ERK1/2 and CREB signaling 
pathways implicated in the NGF-induced expression of miR-
NAs can promote NGF-related cell survival. For instance, 
NGF induces miR-221/222 expression through the activation 
of the ERK1/2 pathway and results in a reduction of pro-
apoptosis protein and cell survival (Tables 3 and 4) [112].

In PC12 cells, sustained mitogen-activated protein kinase/
ERK activity and activation of transcription factor activator 
protein 1 in response to NGF, positively regulate miR-21, 
which plays an important role in brain development. miR-21 
also contributes to the activation of the NGF signaling [113]. 
Treatment of PC12 cells with NGF modulates the expression 
of miR-29c, miR-93, miR-212/132, miR-103, miR-30c, miR-
691, miR-207, and miR-709 [60]. NGF causes an increase 
of synapsin I expression via downregulation of miR-541, 
which plays a crucial role in neurite outgrowth and particu-
larly localizes in axon membrane (Tables 3 and 4) [114]. 
The proliferation and terminal differentiation of neuronal 
cells are regulated by the NGF receptor, TrkA, as well as 
by downstream signaling cascades, including Ras–MAPK, 
PI3K–Akt pathways, and inositol triphosphate-mediated 
calcium release [115]. An in vivo study on hypersensitive 
bladder demonstrates that increased NGF expression is 
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associated with upregulation and downregulation of miR-
132 and miR-221, respectively (Table 3) [116]. BDNF is the 
main regulator of neuron survival with an inhibitory effect 
on neuronal apoptosis through the activation of the PI3K/
Akt pathway. It has been suggested that dysregulation of 
BDNF-miRNA interaction could result in apoptosis [90].

NT Receptor Signaling Interaction with miRNAs

NGF is one of the key modulators of miRNA [59, 60]. 
The PC12 cell line has been used as a model for the study 
of the interaction between NGF and miRNAs expres-
sions. Treatment of PC12 cells with NGF upregulates the 
expressions of miR-34, miR-181a, miR-200, and miR-326 
and downregulates the expressions of miR-106b, miR-
126, miR-139-3p, miR-143, miR-210, and miR-532-3p 
(Table 3, 4) [59]. An in vitro study on the role of NGF 
in the proliferation of human corneal cells revealed that 
NGF downregulates miR-494 and thereby restores its 
direct target, Cyclin D, a protein required for the progres-
sion of the G1 phase of the cell cycle (Tables 3 and 4) 

[117]. NGF also downregulates miR-23b by a TF named 
c-Myc [118]. In primary sensory neurons, NGF inhibits 
miR-181d-mediated suppression of microtubule-associ-
ated protein 1B and calmodulin and consequently leads to 
axonal elongation (Table 3 and 4) [119]. Differentiation 
of NGF-treated Muller cells toward neurons is associated 
with the inhibition of miR-98 as well as Let-7b, Let-7d, 
and Let-7i (Tables 3 and 4) [120]. Moreover, NGF induces 
miR-34a expression via the inhibition of tumor suppres-
sor P53 and maintains mature neural cells in the G1 phase 
(Table 3, 4) [54]. NGF deprivation suppresses miR-21 lev-
els which consequently leads to the elevation of cell divi-
sion cycle 25 homolog A, caspase activation, and neural 
death (Tables 3 and 4) [121].

miRNAs can be also regulated by BDNF. It has been 
reported that miR-1 is dysregulated after BDNF gene dele-
tion in neurons of the dorsal root ganglion [122]. Further-
more, BDNF increases the ratio of miR-212/132 in cortical 
neuron culture. These miRNAs are regulated by the ERK 
pathway and particularly downstream effectors mitogen and 
stress-activated kinase1 and CREB (Tables 3 and 5) [12]. 

Table 3   Effects of neurotrophins on microRNAs expression

Neurotrophin miRNA Types of Research Types of cell or model Ref

Upregulation Downregulation

NGF miR-221/222 - In vitro PC12 cell line 112
miR-34a - In vitro PC12 cell line 54
miR-34, miR-181a, 

miR-200, miR-326
miR-106b, miR-126, miR-139-3p, 

miR-143, miR-210,
miR-532-3p

In vitro PC12 cell line 59

- miR-541 In vitro PC12 cell line 114
miR-132 miR-221 In vivo Sprague–Dawley rats 116
- miR-494 In vitro Human corneal epithelial cell 117
- Let-7b, Let-7d, Let-7i, miR-98 In vitro Muller cells isolated from retina 120
- miR-21 In vitro PC12 cell line 121
- miR-181d In vitro Primary sensory neurons 119

BDNF miR-212 - In vitro Cortical neuron culture 12
miR-132 - In vitro Cortical neuron cell culture 126
miR-125b - In vitro SH-SY5Y cells 125
- miR-134 In vitro Primary hippocampal cultures 130
- miR-155-5p In vivo Experimental autoimmune enceph-

alomyelitis mice model
153

Table 4   miRNAs that show altered expression following NGF treatment of cells. NGF, nerve growth factor

miRNAs alteration Types Ref

miRNA upregulation miR-34a, miR-34, miR-181a, miR-200, miR-326, miR-221/222 54, 59, 112
miRNA downregulation miR-106b, miR-126, miR-139-3p, miR-143, miR-210, miR-532-3p, miR-541, miR-

494, miR-181d, miR-98, Let-7b, Let-7d, Let-7i, miR-21
59, 114, 117, 

119, 120, 
121
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Several studies have found that increased expression of miR-
29 controls the upregulation of miR-145 following BDNF-
induced SH-SY5Y cell differentiation [123]. miR-134 inhib-
its LIM kinase-1 (LIMK1) which is crucial for the size of a 
dendritic spine. BDNF prevents the inhibitory effect of miR-
134 on LIMK1 expression and maintains synaptic plasticity 
[124]. miR-125b is involved in neuroblastoma cell differen-
tiation. RA and BDNF promote miR-125b expression and 
increase neurite outgrowth (Tables 3 and 5) [125]. In cortical 
neuron cell culture, BDNF upregulates miR-132 expression 
via the MAPK/ERK1/2 pathway and leads to increased neur-
ite growth. Interestingly, downregulation of the MAPK/ERK 
pathway inhibits the BDNF-dependent increase of miR-
132. The increase of miR-132 expression through MAPK/
ERK1/2 is essential for BDNF-dependent overexpression of 
postsynaptic proteins, particularly N-methyl-D-aspartate 2A 
and glutamate receptor 1 (Tables 3 and 5) [12, 126].

The interaction between BDNF and miR-140 plays a key 
role in astrocyte proliferation following an injury to the spi-
nal cord [127]. Furthermore, regulatory interaction between 
BDNF and miRNAs could modulate the proliferation of can-
cer cells. After treatment with cisplatin, a higher miR-16 
expression associated with greater BDNF levels significantly 
reduces cancer cell differentiation and growth [128]. Radi-
otherapy on abdomen malignancies by affecting gut flora 
results in cognitive impairments. miR-34a-5p upregulation 
in the small intestine and peripheral blood leads to BDNF 
reduction in the hippocampus and subsequently cognitive 
dysfunction. Intravenous injection of miR-34a-5p antagomir 
can prevent gut flora changes and cognitive abnormalities 
(Table 2) [129]. Moreover, BDNF improves cell survival 
and inhibits apoptosis in hypoxic-hypoglycemic hippocam-
pal neurons through the activation of TrkB and the inhibition 
of miR-134 expression. This BDNF effect could be medi-
ated through the modulation of the TrkB/miR-134 pathway 
(Tables 3 and 5) [130].

The Role of NTs‑miRNA Interaction 
in Neuropsychological Disorders

NTs-miRNAs interplay plays a key role in the modulation 
of neural regeneration as well as in cognitive functions 
[131, 132]. Various studies have suggested that circulating 

miRNAs can serve as early diagnosis and prognostic bio-
markers in neurodegenerative and neuropsychiatric dis-
eases [45, 133]. The mRNA levels of BDNF, NT4, and 
specific miRNA in peripheral blood mononuclear cells 
(PBMC) could potentially serve as biomarkers of CNS 
inflammation and neurodegenerative processes [134]. In 
the following, we will discuss the role of NTs-miRNA 
interactions in different neuropsychiatric disorders.

Role of NTs‑miRNA Interaction in Various 
Neurological Diseases

Epilepsy

Dysregulation of NTs-miRNAs interaction is involved in 
the pathogenesis of epilepsy [135]. Targeting NTs-miR-
NAs interaction affects several biological processes and 
could be a strategy for efficient intervention following a 
potential epileptogenic insult [135, 136]. The BDNF/TrkB 
signaling plays a modulatory role in the brain’s dynamic 
state leading to greater excitability of mesial temporal 
lobe epilepsy (MTLE) [137, 138]. An enhancement of the 
BDNF/TrkB signaling, mediated via BDNF overexpres-
sion in the hippocampus, contributes to epileptogenesis in 
MTLE [139]. Moreover, overexpression of miR-155 signif-
icantly suppressed the BDNF and TrkB protein expression 
and exhibited a neuroprotective effect on epilepsy-induced 
neuronal damage via the PI3K/Akt/mammalian target of 
rapamycin (mTOR) signaling pathway in patients with 
MTLE (Fig. 1) [140]. Application of miR-155 antagonist 
significantly enhanced the expression of BDNF both at 
mRNA and protein levels in an animal MTLE model and 
resulted in the reduction of epileptiform burst discharges 
and seizure-like behaviors (Table 2, Fig. 1) [141]. Further-
more, upregulation of miR-132 promotes epileptogenesis 
via the BDNF-TrkB signaling in the primary cultures of 
hippocampal neurons (Fig. 1) [142]. Inhibition of miR-
103a suppresses astrocyte activation in the hippocampus 
and improves neuronal injury by downregulation of the 
BDNF gene (Table 2, Fig. 1) [143]. miR-21 expression in 
the hippocampus is significantly increased after seizures. 
Enhancement of miR-21 is associated with a decrease in 
the inhibitory effect of NT3 and an increase in neuronal 
apoptosis. A significant enhancement of the expression of 
passenger strand miR-21 compared to mature miR-21 has 
been observed in the rat hippocampus after pilocarpine-
induced status epilepticus. An inverse relationship has 
been observed between miR-21 and NT3 mRNA levels in 
hippocampal neurons after status epileptic. Targeting of 
NT3 by mature miR-21 could potentially result in a greater 
transforming growth factor-beta receptor expression 
and contributes to epileptogenesis [144–146]. A higher 

Table 5   miRNAs that show altered expression following BDNF treat-
ment of cells. BDNF, brain-derived neurotrophic factor

miRNAs alteration Types References

miRNA upregulation miR-212, miR-124, 
miR-132, miR-125b

12,162, 126, 125

miRNA downregulation miR-134 130
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expression of miR-21 could downregulate the expression 
of NT3 (Table 2, Fig. 1) [143, 147]. Therefore, miR-21 
has been suggested as an ideal target for the modulation 
of the NT3 signaling in the hippocampus following status 
epilepticus [146].

Multiple Sclerosis

The dysregulation of NTs-miRNAs interaction may influ-
ence the inflammatory process in multiple sclerosis (MS) 
[148]. However, limited investigations were designed to 
investigate the interaction between NTs and miRNAs in 
MS [149]. It has been indicated that different NTs, such 
as BDNF, might produce within active MS lesions [150]. 
BDNF receptors have been found in reactive astrocytes 
and neurons in active MS plaques [151]. NGF can improve 
axon regeneration, synaptogenesis, cell survival, oligoden-
drocyte differentiation, and oligodendrocyte precursor pro-
liferation in the sclerosis plaques. NGF also promotes the 
production of BDNF and regulates key proteins essential 
for myelination [152]. In the experimental autoimmune 
encephalomyelitis model, it has been shown that BDNF 
mRNA correlated negatively with pro-inflammatory 

miR-155-5p expression levels (Fig. 1) [153]. Studies con-
ducted on PBMCs obtained from patients with MS have 
revealed a decrease in BDNF mRNA expression and 
simultaneous increases in miR-132 and miR-182-5p val-
ues (Fig. 1) [134]. Moreover, the expression of miR-125a, 
miR-146b, and miR-200c significantly increased, while the 
expression of miR-328, miR-199a, and miR-152 markedly 
decreased in peripheral blood of patients with MS [135, 
151]. BDNF mRNA was identified as a target of miR-99b 
and miR-125a. Interestingly, an inverse association was 
reported between miR-125a and BDNF in an experimen-
tal MS model (Fig. 1) [153]. In MS lesions, autoimmune 
and mesenchymal stem cells protect specific cell popula-
tions and suppress the formation of new lesions through the 
release of NGF and GDNF at the lesion sites [154]. Various 
types of microglia play complex roles in neuroinflamma-
tion and regeneration processes in MS [155]. miR-142-3p 
is one of the highly upregulated miRNAs in microglia in 
response to various pathological insults, such as the inflam-
matory process in MS [156]. miR-142-3p modulates BDNF 
expression via its target calcium/calmodulin-dependent 
kinase 2a and modulates the expression of proinflamma-
tory mediators (Fig. 1) [157].

Fig. 1   The interaction between various microRNAs and neurotrophins in different neuropsychological disorders
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HD

The underlying molecular mechanisms of HD, such as 
alterations in synaptic plasticity, gene expression, neu-
rotransmitter signaling, NTs, and miRNAs, can be con-
sidered potential therapeutic targets [131]. The abnormal 
expression of global miRNAs or specific miRNAs has 
been determined in different regions of the brains of HD-
affected subjects [131, 158]. The striatum has been identi-
fied as a primary site of degeneration in HD. It has been 
hypothesized that altered BDNF delivery from the neo-
cortex to the striatum plays a role in the pathophysiology 
of HD [159]. The decreased BDNF release and transport 
in neocortical neurons lead to insufficient trophic support 
of the striatum and enhance the vulnerability of striatal 
neurons and synapses in a knock-in mouse model of HD 
[160, 161].

A limited number of studies have investigated the 
effect of NTs-miRNA interaction in HD [131]. The mod-
ulatory interplay between miR-132, BDNF, and MeCP2 
plays a key role in the pathophysiology of HD. miR-124 is 
positively regulated by BDNF in HD (Table 5) [162]. Fur-
thermore, there is regulatory feedback between miR-132 
and MeCP2, as well as with its downstream target BDNF 
in HD. Upregulation of miR-132 leads to the suppression 
of MeCP2 and BDNF transcript levels and consequently 
striatal cell death (Fig. 1) [17]. Furthermore, miRNA-124 
may contribute to neurogenesis by regulating NTs in HD. 
miR-124 increases the value of BDNF, promotes neuro-
genesis, and improves neuronal survival in the striatum 
in an animal model of HD (Table 2, Fig. 1) [163]. Stud-
ies on the miRNA profile of patients with HD revealed 
upregulation of miR-10b-5p and miR-30a-5p, which leads 
to downregulation of BDNF and neuronal death. CREB1 
is the predicted target gene of these two miRNAs in HD. 
miR-10b-5p has a neuroprotective effect in response to 
the mutation in HD (Fig. 1) [164]. Since HD is an inher-
ited neurodegenerative condition through different mech-
anisms, such as abnormality and misfolding of proteins, 
mitochondrial dysfunctions, and degradation of misfolded 
protein, targeting NTs-miRNA interaction may provide a 
potential treatment option for HD [165, 166]. Moreover, 
it has been shown that the p65 subunit of NF-κB regulates 
miR-146a in an HD experimental model [167].

AD

miRNAs play an important regulatory role in different neu-
rodegenerative diseases [36]. BDNF is crucial to the main-
tenance of neocortical network activities and its dysfunction 
contributes to memory impairment in AD [168]. NGF also 
plays a key role in the maintenance of neural structural integ-
rity and function and enhances cell survival and regeneration 

in subjects with age-related diseases, such as AD [169]. The 
epigenetic mechanisms, like DNA methylation and miRNA 
alterations, can regulate the expression of NTs in patients 
with AD [131]. An elevated value of different miRNAs in 
human prefrontal neocortical tissue was associated with a 
reduced value of BDNF [170].

miRNAs are gene modulatory molecules with neuropro-
tective roles in the development of AD. The levels of differ-
ent miRNAs are associated with the expression of various 
AD-related proteins [171]. Analysis of CSF and serum of 
patients with mild cognitive impairment and dementia of AD 
type, as well as the hippocampus of an AD mice model, indi-
cated that miR-613 downregulates the expression of BDNF 
through directly targeting 3′ UTR (Table 2, 6, Fig. 1) [172]. 
Lower values of BDNF have been identified in the neocortex 
and hippocampus in AD [173]. CSF analysis of patients with 
AD indicated that the expression of miR-29c was positively 
associated with the protein expression of BDNF; suggesting 
its effect on neuronal proliferation through the regulation of 
BDNF expression (Fig. 1) [174]. Neuropeptide Y, a potent 
orexigenic neuromodulator in the brain, increased BDNF 
mRNA and protein expression by inhibiting miR-30a-5p in 
an in vitro model of AD (Fig. 1) [173, 175]. Increased miR-
206 brain level has been observed in the mouse model of 
AD, whereas its reduction promoted the BDNF levels and 
improved cognitive functions (Fig. 1) [176]. miR-322 pro-
duces tau phosphorylation by negatively regulating BDNF-
TrkB signal activation in AD (Fig. 1) [177]. Moreover, intra-
ventricular application of amyloid-β1-42 (Aβ1-42) reduced 
the miR-107 level in mice. However, the administration of 
miR-107 mimic prevented the impairments of spatial mem-
ory and synaptic plasticity as well as the cell loss caused by 
Aβ neurotoxicity through the inhibition of the BDNF-TrkB 
signaling pathway (Fig. 1) [178]. An enhancement of miR-
455-3p expression has been reported in patients with AD, 
which was associated with Aβ pathologies and modulation 
of NGF (Fig. 1) [179]. Moreover, miR-10a overexpression 
inhibits hippocampal synapse remodeling and cell prolifera-
tion and promotes apoptosis in AD rats through the inhibi-
tion of the BDNF-TrkB signaling pathway (Fig. 1) [180].

PD

miRNAs have been reported to implicate in pathways related 
to the pathophysiology of PD [181]. Previous studies indi-
cated that downregulation of Dicer expression in dopamine 
neurons may cause dysregulation of various miRNAs linked 
to PD-associated genes, such as miR-133b, and regulates 
the function of aged dopaminergic neurons [182]. Further-
more, NTs are involved in multiple signaling cascades that 
play roles in the progression of PD pathology [183]. The 
BDNF/TrkB signaling is essential for the survival and matu-
ration of the nigrostriatal dopaminergic neurons. The BDNF 
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inhibits neuronal apoptosis and promotes the maturation of 
functional dopaminergic neurons [131, 184]. Upregulation 
of miR-34a, miR-141, and miR-9 is associated with down-
regulation of Sirt1, B-cell lymphoma protein 2, and BDNF 
mRNA in an in vitro PD model (Fig. 1). Importantly, this 
study has shown that miR-34a could become the target of 
the alteration of human BDNF levels for the treatment of 
PD (Table 2) [185].

In the PD neuron models, upregulation of miR-210-3p 
reduces BDNF production and results in neuronal damage 
(Table 2, Fig. 1) [186]. Elevated miR-21 levels and reduced 
peroxisome proliferator-activated receptor alpha (PPARα) 
values have been observed in patients with PD. A combined 
application of an omega-3 fatty acid and aspirin effectively 
promoted the expression of PPARα protein as well as BDNF 
and GDNF protein via the inhibition of miR-21 in SH-Y5Y 
cells (Fig. 1) [187]. miR-30e has significantly downregulated 
in the substantia nigra in a mouse model of PD. Applica-
tion of the miR-30e agomir restored the sustained decreased 
BDNF production in these mice, which was associated 
with improved motor behavioral function and neural net-
work activity (Fig. 1) [188]. Furthermore, the link between 
BDNF and various miRNAs, such as miR-210-3p, miR-34a, 
miR-141, miR-9, miR-21, and miR-30, in PD pathology, has 
been suggested [189]. A potential role of dysregulation of 
hypothalamic BDNF and miR-30e via the modulation of the 
melanocortin-4 receptor in the pathophysiology of PD has 
been suggested [131]. Moreover, miR-30a-5p reduces BDNF 
values and exerts a neurotoxic role on dopaminergic neurons 
in PD (Fig. 1) [190]. miR-7 also regulates the expression of 
BDNF through an autoregulatory mechanism in the early 
stages of neuronal damage in the atrazine-induced rat model 
of PD (Fig. 1) [191]. Alterations of miR-134 and miR-141 
modulate the expression of mesencephalic astrocyte-derived 
neurotrophic factor and cerebral dopamine neurotrophic fac-
tor that play a role in the pathophysiology of several neuro-
logical disorders, including PD [192].

Amyotrophic Lateral Sclerosis

Enhancement of BDNF levels has been considered one of 
the main strategies to stop or prolong the progression of 
amyotrophic lateral sclerosis (ALS). The modulation of 
the BDNF/TrkB pathway under certain conditions exerts 
neuroprotective effects on motor neurons against various 
pathological insults [193–195], probably via the inhibition 
of apoptosis and restoring the impaired calcium homeostasis 
[196]. Dysregulation of several miRNAs, such as miR-132, 
miR-125b, miR-34a, and miR-504, has been determined 
in patients with ALS [197–199]. Microglia are a possible 
source of dysregulated miRNAs in ALS [200]. The dys-
function of microglial downregulates BDNF/TrkB signal-
ing in motor neurons of ALS mice [201]. The inhibition 

of miR-125b exerts a neuroprotective effect on motor neu-
rons via both reduction of pro-inflammatory mediators and 
the stimulation of microglia activators, such as BDNF, in 
ALS (Fig. 1) [197]. Different miRNAs, such as miR-320a, 
miR-424-5p, and miR-503, modulate the differentiation of 
mesenchymal stromal cells induced to express high levels 
of neurotrophic factors and potentially could be used as a 
biomarker in ALS clinical trials [202].

Role of miRNAs and NTs in Psychological Disorders

Based on the function of NTs in neuronal development and 
synaptic plasticity, a growing body of relevant evidence 
suggests the implication of NTs in the pathophysiology of 
various psychological disorders [203]. Furthermore, several 
studies have suggested that alterations of miRNAs expres-
sion profiles could contribute to the pathophysiology of 
psychological disorders, such as schizophrenia, depression, 
anxiety, drug abuse, PTSD, and bipolar disorder [204–206]. 
Besides, some studies indicate the importance of the NTs-
miRNAs interactions in the development and progression of 
several neuropsychiatric disorders [207].

Depression

Alterations in the expression of different NTs contribute to 
the pathophysiology of depression [208, 209]. It has been 
suggested that the enhancement of the NTs signaling has 
a strong potential for the treatment of depression and the 
molecules-derived NTs pathways might be considered a 
biomarker for depression [210, 211]. BDNF exerts region-
dependent antidepressant effects. Shati/Nat8l, an N-acetyl-
transferase in the dorsal striatum, can regulate BDNF via 
epigenetic regulations. The targeting of the Shati/Nat8l-
BDNF pathway could be a potential therapeutic target for 
the treatment of depression [208]. Furthermore, it has been 
found that the level of NGF mRNA in the brain is correlated 
with anxiety and depression symptoms [212]. Evidence from 
experimental investigations and postmortem studies suggests 
that alterations of miRNAs contribute to the pathology of 
depression. Both upregulation and downregulation of sev-
eral miRNAs have been reported in patients with depres-
sion [213]. miR-221 involves in the development of depres-
sion. It targets the wingless-type MMTV integration site 
family member 2, which results in the decreased activity 
of the CREB/BDNF signaling pathway in the hippocampus 
(Table 2, Fig. 1) [214]. miR-124 is a type of miRNA abun-
dantly expressed in the hippocampus and directly targets the 
glucocorticoid receptor expression in the human embryonic 
kidney-293 cells. Downregulation of miR-124 may pro-
vide a strategy for the treatment of depression by activat-
ing the BDNF-TrkB, ERK, and CREB signaling pathways 
in the hippocampus. Under long-time exposure to stressful 
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conditions, glucocorticoid hormones may cause depression 
via the regulatory effect of miR-124 on BDNF (Table 2, 
Fig.  1) [215]. In  vivo study of corticosterone-induced 
depressive-like mice indicated that upregulation of miR-124 
is required for the inhibition of the CREB-TrkB signaling 
pathway in the hippocampus [216]. Changes in miR-124a 
might participate in the induction of depressive-like behav-
ior through direct regulation of BDNF gene expression in 
stressed rats (Fig. 1) [217]. Moreover, alterations in miR-132 
and miR-124 values in non-treated and citalopram-treated 
patients with depression have shown that enhancement of 
both miRNAs increases plasma BDNF values (Fig. 1) [207].

Ketamine, a potent anti-depressive substance, decreases 
miR-206 expression in the hippocampus and miR-206 
upregulation significantly reduces the ketamine-dependent 
increase of BDNF (Fig. 1) [218]. In maternal deprivation-
induced depressive-like behaviors, overexpression of miR-16 
is accompanied by a significant decrease in BDNF (Fig. 1) 
[204]. Furthermore, a decrease in BDNF levels was asso-
ciated with increased values of miR-132 and miR-182 in 
patients with depression; suggesting a potential role of 
serum BDNF and its related miRNAs as diagnostic bio-
markers (Table 2, Fig. 1) [219]. Upregulation of miR-202-3p 
significantly increases depressive-like behaviors, decreases 
the expression of BDNF, and reduces hippocampal dam-
age in rats (Table 2, Fig. 1) [220]. Moreover, interactions 
between miR-132 and MeCP2 modulate the hippocampal 
BDNF protein expression in a rat model of chronic stress-
induced depression [221]. Furthermore, miR-26a-3p plays 
a key role in the hippocampal neuronal network alterations 
in a chronic unpredictable mild stress (CUMS)-induced 
rat model through its regulatory effects on BDNF and the 
phosphatase/tensin homolog/PI3K/Akt signaling pathway 
[222]. In vitro neuronal studies and in vivo models of CUMS 
revealed that miR-182 directly inhibits BDNF and leads to 
lower CREB levels and depression-like behaviors (Table 2, 
Fig. 1) [223].

Anxiety Disorders

Experimental and clinical studies indicate the involvement 
of BDNF in anxiety disorders. Different types of stressors 
lead to a reduction of BDNF expression values [224]. Fur-
thermore, several studies have reported the association of 
NTR3 activation with the pathophysiology of anxiety dis-
orders. Consequently, it has been demonstrated that miR-9 
and miR-125 regulate the expression of the t-NTR3 isoform 
in anxiety-like behaviors [225]. It has been reported that the 
reduction of miR-124a expression in the hippocampal den-
tate gyrus leads to decreased anxiety-like behavior, which 
is inversely correlated with the expression of its target gene, 
BDNF (Fig. 1) [226]. In the chronic unpredictable stress-
induced depression rat model, miR-10b downregulation and 

BDNF upregulation have been shown in the hippocampus 
(Fig. 1) [75].

Schizophrenia

Both experimental and clinical investigations suggest that 
alterations in NTs and miRNAs in certain brain regions are 
implicated in the pathophysiology of schizophrenia [227, 
228]. miR-137 regulates the expression of schizophrenia-
associated genes and contributes to the regulation of neu-
ronal response by targeting the PI3K-Akt-mTOR branch 
of neuregulin-1/ErbB and BDNF signaling [229]. In the 
prefrontal cortex of patients with schizophrenia, downregu-
lation of neuropeptide Y and somatostatin mRNA values 
are associated with increased miR-195 levels and decreased 
BDNF expression (Fig. 1) [230]. The correlation between 
miR-195 and BDNF changes may play a role in GABAer-
gic neurotransmission abnormalities and influence cogni-
tive impairments of patients with schizophrenia [230, 231]. 
Furthermore, the alterations of the miR-30a family in the 
prefrontal cortex of patients with schizophrenia are associ-
ated with changes in BDNF levels (Fig. 1) [170, 232, 233]. 
Early growth response 3 (EGR3) and some miRNAs play a 
modulatory role in the schizophrenia regulatory neuronal 
network [234]. EGR3, a downstream gene of different sign-
aling pathways, is triggered by various NTs, such as NGF 
and BDNF [235].

Substance Use Disorders

Dysregulation of various miRNAs-NTs interactions is 
implicated in the pathophysiology of drug abuse. There 
are growing studies that explore the interplay between 
drug abuse and NTs biological action in various brain 
regions. The expression of striatal BDNF correlates 
with the expression of CREB, TrkB, and pri-miR-132 
following amphetamine application in rats [236]. Heavy 
alcohol use causes upregulation of some miRNAs and 
consequently regulates BDNF values [237]. Adolescent 
intermittent ethanol exposure increased the miR-137 
expression level in the amygdala. Application of miR-
137 antagomir in the amygdala decreased BDNF levels 
and improved anxiety-like behavior following alcohol 
consumption in rats (Fig. 1) [238]. Ethanol exposure 
decreased BDNF and enhanced miR-206 expression in 
different mice brain structures, including the medial 
prefrontal cortex, central amygdala, and hippocampus 
(Fig. 1) [239]. Induction of miR-206 expression and its 
modulation of BDNF after prolonged brain exposure to 
ethanol could alter the synaptic plasticity implicated 
in the cognitive control of alcohol consumption and 
lead to alcohol dependence [240]. In an investigation 
of brain tissue of alcohol-dependent rats, a significant 
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alteration of miR-101b and BDNF expression has been 
reported [241]. Overexpression of miR-30a-5p in asso-
ciation with reduced levels of BDNF in the medial pre-
frontal cortex can play an important role in the transi-
tion from moderate to excessive alcohol intake (Fig. 1) 
[242]. Furthermore, ketamine-induced neural death 
and toxicity are accompanied by miR-375 upregulation 
that directly downregulates BDNF expression in hESC 
(Fig. 1) [94]. miR-206 downregulates BDNF levels in 
both neuronal cell culture in vitro and the hippocampus 
in vivo (Fig. 1) [243]. The interaction between miR-206 
and BDNF expression in the nucleus accumbens has been 
suggested to control the reconsolidation of cocaine-asso-
ciated memory [244]. Overexpression of miR-495 and 
its direct effect on BDNF value in the nucleus accum-
bens has been observed after acute cocaine administra-
tion in mice (Fig. 1) [245]. Alterations of miR-212 may 
regulate cocaine intake through the modulation of stri-
atal CREB and MeCP2 signaling; which consequently 
decreases BDNF protein levels and decrease the motiva-
tional effects of cocaine (Fig. 1) [246–248]. Moreover, 
changes in miR-124, miR-181a, and let-7d as well as 
BNDF values in the mesolimbic dopaminergic system 
are implicated in a complex feedback loop with cocaine-
induced plasticity [249].

PTSD

In a mouse model of PTSD, a strong reduction of miR-
15a-5p, miR-497a-5p, miR-511-5p, and let-7d-5p levels in 
the medial prefrontal cortex were correlated with two key 
PTSD-related genes, FKBP5 and BDNF (Fig. 1) [250]. In 
another study on a rat model, it was suggested that miR-
132 is involved in PTSD and led to the reduction of BDNF 
expression through MeCP2. The application of its antagomir 
can improve anxiety behavior and upregulates MeCP2 and 
BDNF (Fig. 1) [251]. Furthermore, rats exposed to stress 
exhibited enhanced miR-142-5p values in the amygdala, 
which was accompanied by a reduction in levels of Npas4, 
an activity-regulated transcription factor. The inhibition of 
miR-142-5p in these rats reduced anxiety-like behaviors and 
enhanced Npas4 and BDNF expressions (Fig. 1) [252].

Bipolar Disorder

An investigation of 288 patients with bipolar disorder 
revealed that interaction between miR-206 and BDNF 
polymorphism increases the risk for bipolar disorder 
and treatment response to various drugs [253]. Further-
more, it has been shown that the expression of peripheral 
miR-7-5p, miR-221-5p, and miR-370-3p are correlated 
to BDNF levels in 98 patients with bipolar patients 
(Fig. 1) [254]. Lithium is the major medication for mood 

stabilizing in bipolar disorder, which exhibits neuropro-
tective effects. Experiments on lithium pretreated SH-
SY5Y human neuroblastoma cells provide evidence that 
lithium significantly decreases the expression of miR-
34a, which is correlated with BDNF and anti-apoptotic 
protein BCL2 levels (Fig. 1) [255].

Conclusion

A series of experimental and clinical studies yields 
promising results suggesting the pivotal roles of NTs 
and miRNAs interactions in the pathophysiology of 
various neuropsychological disorders. Understanding 
how NTs and miRNAs interactions modulate pathologi-
cal processes in different brain disorders helps design 
novel diagnostic and therapeutic approaches. Modula-
tion of several brain-specific miRNAs could alter the 
expression and function of different NTs and vice versa. 
Changes in NTs and miRNAs expression and function 
contribute to brain hyperexcitability in epileptic patients, 
neurodegenerative processes in patients with AD, PD, 
HD, or ALS, demyelination in patients with MS, and 
perturbation in neural circuits and neurotransmitters in 
patients with different psychological disorders. On the 
other hand, alterations in NTs and miRNAs interactions 
could regulate neuronal and synaptic hyperexcitability, 
exert neuroprotective effects, promote myelination, and 
improve cognitive and behavioral impairment. Future 
studies are required to discover the exact mechanism of 
interplay between NTs and miRNAs in physiological and 
pathological conditions.
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