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Abstract: With aging, cerebrovascular diseases can occur more often. Stroke cases involve hemiplegia,
which causes difficulties in performing activities of daily living. Existing rehabilitation treatments
are based on the subjective evaluation of the therapist as the need for non-contact care arises; it is
necessary to develop a system that can self-rehabilitate and offer objective analysis. Therefore, we
developed rehabilitation tools that enable self-rehabilitation exercises in a virtual space based on
haptics. Thirty adults without neurological damage were trained five times in a virtual environment,
and the time, number of collisions, and coordinates were digitized and stored in real time. An
analysis of variance (ANOVA) of the time and distance similarity changes revealed that as the
number of rounds increased, no changes or increases occurred (p > 0.05), and the collisions and paths
were stable as the training progressed (p < 0.05). ANOVA showed a high correlation (0.90) with a
decrease in the number of crashes and time required. It was meaningful to users when performing
rehabilitation training more than four times and significantly impacted the analysis. This study
analyzed the upper limb and cognitive rehabilitation of able-boded people in three-dimensional
space in a virtual environment; the performance difficulty could be controlled through variations in
rehabilitation models.

Keywords: haptics; stroke; virtual reality; upper limb; rehabilitation; kinematics

1. Introduction

Paralysis is a state in which the nerves innervating the muscles lose their function,
without changes in the form, resulting in limb numbness or the inability to move. Paralysis
can be divided into sensory paralysis and motor paralysis, which occur when there is a
disorder in any part of the exercise path from the motor center of the brain to the peripheral
nerve and muscle fiber. Upper limb paralysis can result from different causes of brain
damage, of which stroke is the most common [1]. Fifty percent of stroke survivors remain
impaired, and most patients suffer from hemiplegia [2-5]. Typical clinical symptoms after
stroke include hemiplegia and problems with activities of daily living (ADLs) [6,7]. Minor
dysfunction limits one’s daily life, negatively affecting the quality of life with after-effects,
including depression [8]. Furthermore, the recovery from these effects is slow and difficult.
Previous studies have reported that the upper limb function is decreased in recovered
patients [9,10]. Post-stroke patients experience severe stress owing to the gap between
previous independence and health and the current dependence on others for ADLs. Thus,
mediation is required to provide psychological stability and enable physical rehabilita-
tion [11-13]. Existing upper limb rehabilitation methods must be implemented repeatedly
over a long period, and rehabilitation is expensive and time-consuming. Furthermore,
the treatment is based on a subjective evaluation by a therapist [14,15]. Stroke patients
are evaluated by a neurological physiotherapist in clinical practice, and rehabilitation is
performed using a proprioceptive neuromuscular facilitation, BOBOTH, Brunnstrom, or
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Rood approach [16,17]. However, under-experienced therapists cannot analyze a patient’s
condition and are unable to receive and process feedback from therapists and patients [18].
These problems have led to the development of low-cost, high-efficiency rehabilitation
treatments using digital media, such as virtual reality (VR) and augmented reality [19,20].
Clinical rehabilitation using robots has been shown to be efficacious in both acute and
chronic patients, and improves function and daily movements [21]. A rehabilitation treat-
ment system developed for objective and quantitative evaluation training using VR showed
that tactile and vibration feedback improved neuroplasticity [22-26]. Haptic, a human-
computer interaction (HCI) technology, provides users with information acquired by touch
in virtual, augmented, and real environments [27,28]. The device can present virtual forces;
therefore, it can be used by physical and occupational therapists for rehabilitation ther-
apy. The haptic is capable of active resistance in the active range of motion mode. This
provides the minimum amount of force necessary to satisfy the prescribed motion, which
can be resisted by the user’s opposing force, thereby increasing the muscle strength, and
increasing the coordination of the eyes and arm muscles. Therefore, it can be applied in
rehabilitation [26,29].

Specifically, haptic and virtual reality-based rehabilitation therapy maximizes the
user’s sense of immersion within a low-cost and safe environment, allowing users to
perform self-rehabilitation exercises [30,31]. In addition, haptic-based systems can be used
for rehabilitation based on the Rood approach. Rood therapy, which provides adequate
stimulation and enables reflexive motor induction, makes motor engram acquisition possi-
ble [32]. It also creates indelible memories through a simulation (promotion) and activates
the brain through thousands of iterations, based on neuroplasticity theory [33-35].

Range of motion (ROM) is a method used by clinicians to check the health condition
of the joint and improve the range of motion, affecting the qualitative characteristics of
active motion [36]. The double-curved shoulder arc (Fit to Function Therapy, NY, USA)
(http:/ /newsite fittofunctiontherapy.com (accessed on 1 April 2021)) form (Figure 1) used
in upper limb rehabilitation is a rehabilitation tool that can check active movement through
abnormal conversion behavior and increase the performance difficulty through multiple
transformations [37,38]. However, tools that can be analyzed objectively analyzed during
the rehabilitation in a virtual environment are currently being developed. Therefore, there
is an urgent need for non-contact diagnosis and rehabilitation to expand the medical accessi-
bility, and research on the development of rehabilitation tools capable of self-rehabilitation
exercise is urgently needed [39,40]. This work seeks to develop rehabilitation tools that
enable self-rehabilitation training and analysis through haptics via rendering and a rehabil-
itation model modified by a double-curved shoulder arc form to the virtual environment. It
was intended to conduct basic research with able-bodied people to verify the reliability of
the tool and present appropriate criteria through analysis and methods that could identify
the process of rehabilitation change.

Figure 1. Traditional rehabilitation; double-curved shoulder arc.
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2. Materials and Methods
2.1. System Design
2.1.1. Haptics

The coaching system, used video-based motion recognition and motion tracking, and
provided subject feedback. Haptic is a coaching device used for virtual reality or remote
rehabilitation and is detected by a sensor [41]. In addition, the two-way force provides
feedback, and a vibration and texture are used to maximize the user’s senses [42].

In this study, a three degrees of freedom (3DOF) haptic device (3D Touch Controllers,
Novint Falcon, NM, USA) for translational motion was used. There are a maximum of
3DOF joint motions in the body [43,44]. The user was moved using a haptic probe. In this
case, x, y, and z coordinates were obtained in real time, and the user’s position was tracked
within a three-dimensional (3D) virtual space using the OpenHaptics-based Chai3D API
written in C++. A 3D model rendered in a virtual space creates a mathematical model
that can be reproduced in space. A 3D object is represented by a 3D line through the
rendering process and can have a texture and volume similar to those of a real object. The
3D model was created using the Auto Desk Inventor (Professional 2016, Autodesk, CA,
USA) (Figure 2).

[ o

Figure 2. Upper limb rehabilitated by catching the haptic probe and passing through the three-
dimensional rehabilitation model.

Based on the algorithm presented in Figure 3, the model was developed to calcu-
late and provide feedback on the forces occurring in the virtual space when the haptic
interaction point of the haptic probe, which is controlled by the user, collides through
the movement inside the rehabilitation model through the haptic probe. The system was
designed to count the number of crashes that occurred off the normal travel path. By
measuring the time from the entrance of the rehabilitation model to the exit, we received
feedback on the time taken for rehabilitation, identified the pathways, and visualized the
shortest distance through the model. The obtained coordinates were used to graph the
paths in 2D and 3D using MATLAB (Matrix Laboratory MathWorks 2018, MathWorks,
MA, USA).

2.1.2. Pre-Processing

Three preprocessing steps were applied to identify changes in performance through
the location coordination of the rehabilitation system, which was applied five times: (i) a
principal component analysis (PCA); (ii) normalization; and (iii) warping.

High-dimensional data processing makes it difficult to properly express the meaning
of the data owing to the exponential increase in observation and memory usage, which
is called the curse of dimensionality [45]. A PCA best describes changes in multivariate
analysis data based on an eigenvector in statistics to return high-dimensional data to low-
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dimensional data (dimensionality reduction) [46—-48]. In this study, the covariance matrix X
was obtained by Equation (1) for raw data A, which are x, y, and z values stored in real time.
Here, T is the linear transformation, and 7 is the number of columns. Subsequently, the
eigenvalues A and eigenvector a of the covariance matrix were calculated and internalized
with the original data X to extract the characteristics that appeared during the rehabilitation
while preserving the three-dimensional data as much as possible.

¥ = cov(X) = %AAT 1)

Subsequently, the category of the data was transformed by Equation (2) into [0, 1] to
minimize data duplication and reduce its impact on the relative size [49,50].

A— Amin

- 2
Amax - Amin ( )

Normalization(Anew) =

The lengths of the normalized datasets were bound to vary from one person to another.

A 1:1 convergence is difficult when vectors differ in length; therefore, the sequence of the

two time series to be compared was intended to be matched. Here, X = (x1, x2,- -+ , Xm)

and Y = (y1, y2,- - - ,yn) were defined, the Euclidean distances were obtained, and the
warped vector was obtained through Equations (3) and (4) [51].

W=wy, wy, - ,wmmax(m,n) < K<m+m-—1 3)

Warped vector(x, y) = min( 4)
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Figure 3. Design scheme of the proess to assess motor ability by providing force feedback and storing
collision data within the model during rehabilitation in real time.

2.2. Evaluation

In this study, the Euclidean distance (ED) and Manhattan distance (MD) were used to
analyze the similarity through the distance between two vectors expressed in n-dimensions
to observe the difference from the first results of the same person after using the rehabili-
tation system five times. In addition, we analyzed the similarity with the dynamic time
warping (DTW) method, which is a distance-based similarity measurement commonly
used in a time series. It is also intended to analyze whether the two vectors have a linear
relationship through cosine similarity (CS) and correlation coefficient (CC), which are
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methods of measuring the similarity based on the angles that they form. The similarities
were analyzed using MATLAB software. We wanted to verify the hypothesis by setting
it as null and void the idea that the change in performance will increase or be equal to
the number of applications. The confidence interval of the ANOVA was set at 95% using
Minitab software (version 19, Minitab, Inc., State College, PA, USA); it was used to verify
the hypothesis of the distance similarity analyzed earlier and the significant difference
between the number of collisions and the time required in the experiments conducted by
30 subjects. Tukey’s post hoc test was used to analyze the correlation between the number
of crashes and the time required to complete the course.

2.2.1. Subjects

This study was conducted after receiving approval from the Research Ethics Review
Committee(1040875-202009-BM-068) and 10 min of prior explanation of experiments, con-
sent descriptions, etc., to the participants. Experiments were performed five times every
30 s and took a total of 15 min. A total of 30 healthy people in their 20 s (22.6 &= 2.37 years)
who were not diagnosed with neurological impairment participated in this study. Before
starting the training program, the participants were verbally instructed to move from
the entrance to the exit. The time taken to complete the course and crash records were
not mentioned.

2.2.2. Euclidean Distance

The ED, a measure well suited to the meaning of the actual distance, is a measure of
the shortest direct route election between two vectors using Equation (5) [52,53].

©)

2.2.3. Manhattan Distance

The MD is also called a taxicab geometry and is the concept of substituting coordinates
for cities. In other words, the idea is that, in real cities, when moving from the start point
to the arrival point, the shortest distance must be recalculated based on the roads and any
blocks because they are not accessible, similar to calculating ED [53]. These expressions are
given by Equation (6):

k
MD =) |x; —yil (6)
i=1

2.2.4. Dynamic Time Warping

DTW is used to compare the similarities between two time-series patterns at different
speeds [54]. By matching the positions between two time-series datasets, DTW can be
flexibly compared and properly matched against distorted vectors [55,56]. For two time-
series graphs, each m, n in length, i.e, X = (x1, xp,- -+ ,xp) and Y = (y1, Y2, ,Yn),
distance d of two vectors is calculated as (x; — yj)z and filled using a warping matrix.
Subsequently, to find the smallest among the previous values, and to determine the warping
path, the optimal path navigation is determined through Equation (7), which is centered
on the value at the top right.

DTW(1, 1) = d(1, 1)
DTW(1, j) =d(1, j) +d(1, k—1), 2<j<n
DTW(i,1) = d(i, 1) +d(i—1,1),2<i < m )
D(i—1,j—1)
DTW(i, j) = d(i, j) + min D(i—1,j) ,2<j<n2<i<m
D(i,j—1)
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2.2.5. Cosine Similarity

The CS is the similarity of two vectors, which can be obtained using the cosine angle
between two vectors, with a value of 1 if the two vectors are in the same direction and —1 if
it is opposite, and the closer the value is to 1, the higher the similarity [57]. The expression
of the cosine similarity between the two vectors X = (x1, x2,- -+ ,Xn), Y = (Y1, Y2, - , Yn)
is the same as in Equation (8).

X-Y Yk Xy,

XA B, (v

CS(0) = ®)

2.2.6. Correlation Coefficient

The CC, an indicator of the degree and direction of the relationship between variables,
is expressed as a value between —1 and 1. The closer the value is to zero, the lower the
correlation, and the closer it is to —1 or 1, the higher the correlation. A static correlation of
the direction of increase or decrease is defined as 4+, and a negative correlation between
the direction of increase or decrease is defined as — [58,59]. When there are two time-series
graphs X = (x1, x2,- -+ ,Xp) and Y = (y1, Y2, - - ,Yn), the correlation coefficient is given
by Equation (9).

Yy (xi — ) (4 —7)

\/Zz 1 xz_x \/21 1 yz

©)

3. Results

Datasets preprocessed using PCA were preserved at an average rate of approximately
99.7%.

3.1. Visuality
3.1.1. Time Taken and the Number of Collisions

Figure 4a shows the treatment model in a 3D virtual space. The data expressed at
this time were raw data without preprocessing. In Figure 4b, the XZ axis identifies the
x-axis travel path of the haptic probe. Figure 4c shows the YZ axis used to check the
path of travel along the y-axis, and Figure 4d shows the YX axis used to check the path
of the z-axis. Figures 5 and 6 show the data obtained from five rehabilitation training
sessions of one of the subjects sequentially from the top. Figure 5a shows the movement
coordinates of the probe on a 3D graph, providing a visual indication of the path. Using
a haptic probe, hand tremors causing collisions and difficult movements were captured
when passing through the inside of the model. In addition, the gap shown in the 3D graph
was narrow when it was difficult to move the probe using the upper limbs. In addition, as
the sessions progressed, the gap between the sessions was greater than the first, as more
rapid movements became possible. Figure 5b shows vector values over time. The vector
value of the section in all time axes stabilized as the rotation progressed.

Figure 6 shows the path of the x, y, and z-axes identified by the directions of the arrows
and numbers indicated in Figure 4. Figure 5 shows representative sequential rehabilitation
data. The x-axis of the probe in the first row, the y-axis of the probe in the second row,
and the z-axis in the third row are identified. Movements were unstable until the third
rehabilitation session, and the direction changed dramatically and tended to be overly
skewed in the on-direction. However, the number of crashes in four and five rehabilitation
sessions decreased with repeated learning.

3.1.2. Similarity

In the pre-processed dataset, the x-coordinates can show the characteristics of tremors
in which the subject approaches or moves away from the subject in the model when
applying the system. The y-coordinates are from the side of the moving position from start
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to end, and the z-coordinates can show the characteristics of the upward and downward
tremors in the model.

Z V4

(a) (b)

() (d)

Figure 4. (a) Three-dimensional rehabilitation model rendered in virtual space, and view of the
model along the (b) XY axis, (¢) YZ axis, and (d) XZ axis in a two-dimensional plane.

1st gnd 3rd 4th 5th

Z axis
§ W&
Z axis
\
\
Z axis
N
"
Z axis
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\
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(b)

Figure 5. Three-dimensional paths of the probe and sequentially displayed time vector graphs: (a) 3D paths of the probes in
turn and (b) sequentially displayed time vector graphs. The 3D path graphs shows the collision points and movements. The
collision and time decrease as the rehabilitation progresses.
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Figure 6. These graphs are a 2D representations of the paths of movement stored in three dimenScheme.

Table 1 shows a descriptive statistics comparing the similarity between the first perfor-
mance and the second, third, fourth, and fifth time series. In the case of distance similarity,
it can be seen that the average distance of the x-axis is greater than that of the y-axis, for
which it is believed to be more difficult to recognize the depth of the space than the height.
In addition, for an angle-based similarity, the average was high (x avg.: 0.95, y avg.: 0.97,
z avg.: 0.98), and the correlation was strongly positive (x avg.: 0.77, y avg.: 0.87, z avg.:
0.98) [60], indicating the relevance of the two time series.

3.2. Statistics
3.2.1. Time Taken and the Number of Collisions

For the number of collisions showing significant differences (p = 0.00), there was a
large difference in the number of collisions (Table 2). The results of post-analyses conducted
to verify the significant differences in the number of collisions between the first few rounds
compared to the first found showed significant differences from the fourth to the fifth time
series, with an average 2.85-fold decrease (Table 3).
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Table 1. Mean and standard deviation of the similarity verification results between time series.

Warped Vectors Similarity x y z
ED 327 £2.54 224 +2.34 0.59 + 0.59
MD 54.81 £ 53.76 39.20 £ 62.20 592 +748
land?2 DTW 17.02 4+ 23.88 10.31 £ 26.35 0.72 +£1.78
CSs 0.95 £ 0.04 0.98 + 0.02 0.99 + 0.00
CC 0.79 £0.13 0.88 + 0.10 0.98 + 0.02
ED 2.66 £2.10 2.30 +2.07 0.70 + 0.61
MD 41.70 £ 49.14 36.13 £ 50.00 6.29 £7.86
land 3 DTW 11.37 £ 17.41 9.25 £ 19.96 0.86 + 1.58
Cs 0.94 £ 0.06 0.97 £ 0.50 0.99 £ 0.00
CcC 0.75+£0.13 0.87 £ 0.10 0.98 + 0.02
ED 298 +2.54 2.04 +1.48 0.61 + 0.61
MD 50.00 £ 55.20 30.84 £ 33.54 571775
1and 4 DTW 15.13 + 22.46 6.31 + 8.79 073 +£1.77
CS 0.94 £ 0.08 0.98 + 0.04 0.99 £+ 0.00
CcC 0.75+0.15 0.88 £ 0.09 0.98 £ 0.02
ED 2.88 £ 2.58 2.35 £ 1.55 0.08 + 0.77
MD 51.60 £ 67.50 36.50 £ 42.66 7.35+9.21
1land 5 DTW 14.74 + 25.34 790 + 13.14 1.23 £2.19
CS 0.96 £ 0.04 0.98 + 0.03 0.99 + 0.00
CC 0.79 £0.15 0.85 + 0.09 0.98 + 0.03

Table 2. Differences in the number of collisions that occurred during a rehabilitation process depend-
ing on the sequence in which they were conducted.

df F
Between Groups 4 6.47 *
Within Groups 145
149

¥p<0.05.

Table 3. Results of post-analysis analyzed by round when looking at the difference in the number
of collisions per route; there was a significant difference in the fourth and fifth rounds compared to
the first.

Rounds (I) Rounds (J) Mean Difference (I — J)

0.56
1.60
273*
3.00 *

—0.56
1.03
2.16*
243*

—1.60
-1.03
1.13
1.14

—2.73*%
—-2.16*
—-1.13
0.26

N

DLW NRFR| GBRNRFR| O & W | bk w
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Table 3. Cont.
Rounds (I) Rounds (J) Mean Difference (I — J)
1 —3.00 *
5 2 —2.43*
3 —1.40
4 —0.26

*p <0.05.

Comparison and analysis of the mean at each time point showed no significant
differences (p = 0.32) (Table 4). However, the correlation between the change in the number
of timescale collisions and the mean change in time was 0.09, and the time required
decreased as the number of crashes decreased (Table 5).

Table 4. There was no significant difference in the time spent conducting rehabilitation by round.

df F
Between Groups 4 1.17
Within Groups 145
149

Table 5. Average changes in the number of collisions and time spent were highly correlated, indicating
that more than four rehabilitation attempts are recommended.

. Number of
Time Spent Collisions
Time spent Correlation coefficient 1 0.90 *
Number of collisions  Correlation coefficient 0.90 * 1

TP <0.05.

3.2.2. Similarity

Figure 7 shows a box plot of the ANOVA results for ED, MD, DTW, CS and CC
(p > 0.05). The x-axis requires spatial recognition horizontal to the ground, whereas the
scatter size of the y-axis, which indicates the total travel path in space, and that of the z-axis,
which requires vertical spatial recognition, shows that the perceived tremor values are
concentrated and that the deviation of the target is insignificant.
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Figure 7. Analysis of the similarity between the two time series vectors, ED, MD, DTW, CS and CC in turn: (a) x, (b) y,

(c) z axes.

4. Discussion

Motion paralysis occurs when there is a disorder in any part of the movement path
from the motor center of the brain to the peripheral nerves and muscle fibers. Among
them, upper limb paralysis is the most common disorder after a stroke, for which var-
ious treatment methods have been proposed, including rehabilitation exercise therapy
through initial collaboration with rehabilitation medicine to prevent future effects and help
relieve paralysis symptoms and restore motor function through repeated rehabilitation
exercises [36]. However, the existing rehabilitation exercise was conducted through a sub-
jective judgement of the occupational therapists. Thus, it is problematic when quantitative
and objective evaluations are not carried out. In addition, the need for non-contact diagno-
sis and treatment has emerged to deal with the financial burden of repeated and lengthy
rehabilitation training [39,40]. Therefore, rehabilitation of psychological and motor therapy
through digital media, such as virtual reality and augmented reality, is emerging [37].
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Virtual reality allows the input and output of information from various objects in
a three-dimensional virtual space, and reverse-tactile information helps to realistically
recognize various environments and increase user immersion. Moreover, virtual reality
technology is in the spotlight for applications in rehabilitation because it can create in-
dividual environments and perceptual stimuli that motivate patients while preserving
the potential to interact with real environments, including the patients [38]. However,
the spatial cognitive abilities of virtual reality also require time for able-bodied adults
to adapt to multiple activities. In addition, the cognitive ability and analysis methods
for three-dimensional space and the evaluation criteria for various rehabilitation tools
are ambiguous; therefore, basic research on each tool is urgently needed. In this study;,
rehabilitation tools and analysis methods for analyzing haptic-based active upper extremity
movements were presented, and basic research was conducted by analyzing cognitive
abilities in the three-dimensional space of able-bodied adults.

In this study, a total of five rehabilitation evaluations were conducted using subjects in
their 20 s (22.6 &+ 2.37 years) with no neurological damage at intervals of 30 s. Subsequently,
the hypothesis was verified after visualizing the change in the time and number of collisions
and the distance similarity using the data stored in real time.

As shown in Figures 5a and 6, the tremors on the paths of x, y, and z were significantly
reduced in the fifth round compared with the first round. At this point, the x-axis shows
the movement of the haptic probe of the subject inside and outside of the target, the y-axis
shows the path from beginning to end, and the z-axis shows the characteristics when the
haptic probe moves up and down. The movement in and out of a space indicates that
the depth of the space is level with the ground and differs from subject to subject based
on use. Conversely, the z-axis shows the difference between vertical surfaces within a
space. It can be interpreted that the abnormal values shown in Figure 7a,c are caused by
the lack of recognition of the depth of space. The y-axis with which the path of movement
can be viewed is ideal to move from left to right, but if reversed by a collision during
rehabilitation, if the space of the curve is not understood and if the understanding of the
time of termination is insufficient, a zigzag path will appear. Thus, as shown in Figure 7b,
there were more anomalies along the x-axis. The interpretation of the x, y, and z-axes is
also associated with hypothesis verification. As the number of uses increases, the cognitive
skills of the user in the space are improved, particularly when rehabilitation tools are
applied more than four times. Over time, however, the null hypothesis was not rejected,
resulting in a significant or equal change in time. This means that there was time variability
in each subject of the study. The results in Figure 5b indicate that, although the time
appears to decrease, this is not the case for many of the subjects studied. Finally, it can be
concluded that the spatial cognitive ability of the subjects is not directly related to time,
but the correlation results in a reduction in the number of tremors and collisions from the
fourth round or higher.

In addition, the number of collisions can be described as a result of a change in
distance similarity depending on the number of rounds compared to the beginning, which
is the result of a tremor. An example of the change in the distance of a vector shows
that the electron has a large rate of change in its distance between each point, compared
with two vectors having the same start and end points and two vectors having the same
shaking condition. As a result of this study, the null hypothesis that there will be the
same large difference between the two vectors was adopted in Figure 7; although the
mean changes in the x, y, and z-axes were not constant, the mean increased compared
to the first and fourth rounds on the x-axis, meaning that there would be a significant
change in the spatial recognition of the inside and outside when the rehabilitation was
repeated four times. The y-axis decreased until four iterations and then increased after
five iterations. In addition, given that the path was different from the first time when was
repeated five times, the opposite situation on the ideal path was reduced by the fifth times,
which means that the opposite situation (zigzag movement) on the ideal path was reduced,
and the values were concentrated owing to the small spread. Finally, as the results of the
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z-axis indicate, the mean increased when compared with the first and third rounds and
the first and fifth rounds, which means that there was a significant change in the spatial
cognitive abilities above and below when the process was repeated three times and five
times. In conclusion, the changes in the number of collisions, time, and distance similarity
can produce meaningful results in at least four training sessions and can be analyzed.

In this study, compared to subjective evaluations of therapeutic performance by re-
habilitation specialists and rehabilitation therapists, experimental measurements of the
resistance, track speed, and location error due to unnecessary forces allow for the dig-
italization of data for more objective performance and treatment evaluations. Existing
rehabilitation methods have shown that physical therapy conducted based on a thera-
pist’s subjective judgment can be analyzed and evaluated objectively through haptic-based
rehabilitation receptors called muscle spindles and Golgi tendon organs [61]. Therefore,
they can be used as a treatment to reduce muscle tension and enhance stability through
haptic-based stretching movements. In addition, physical therapy, such as strong stim-
ulation and tendon compression, is applied to the affected area, which stimulates the
Pacinian corpuscle, thus reducing muscle tension [62]. This study will allow therapists
to correct patient misbehavior and provide feedback on repetitive activities. In addition,
visual, auditory, and olfactory stimulation of the brain nerves relieves myopia tension
and enhances stability, integrates the senses, and restores function [63]. Moreover, virtual
reality movements are shown on a screen to express the image of the haptic probe moving
on with its own on, and problems are solved by interacting with the tasks that appear on
the screen, creating user motivation [64]. In this study, the patients were able to recognize
their physical abilities objectively, understand the progress of their recovery, and evaluate
their visible physical abilities.

5. Conclusions

Based on the double-curved shoulder arc form, which is rehabilitation tool to check
an active movement, we developed a tool to analyze self-rehabilitation exercise through
haptic device and rehabilitation change processes. As a basic study analyzing the three-
dimensional cognitive ability of the rehabilitation environment applied in a virtual world
by selecting an able-bodied person as a target, it was possible to visually identify the
changes in time, number of collisions, and distance similarity according to the rotation, and
it was found that a meaningful analysis is possible only after at least four training sessions.
The results of this study indicate that, the level of difficulty in terms of performance is
thought to be controllable through a future transformation of the rehabilitation model, and
the approach can be used in occupational therapy. In addition, as a basis for the Rood
approach, it is possible to provide repetitive feedback and accumulate data accordingly,
which can be utilized as big data. Furthermore, the system will be used in clinical and
rehabilitation sites to manipulate the perceived use, perceived case of use variables in
the technology acceptance model, and external variables to analyze the interaction with
technology, user attitudes, and behavior.
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