
RESEARCH Open Access

Exploiting bounded signal flow for graph
orientation based on cause-effect pairs
Britta Dorn1, Falk Hüffner2*, Dominikus Krüger3, Rolf Niedermeier2 and Johannes Uhlmann2

Abstract

Background: We consider the following problem: Given an undirected network and a set of sender-receiver pairs,
direct all edges such that the maximum number of “signal flows” defined by the pairs can be routed respecting
edge directions. This problem has applications in understanding protein interaction based cell regulation
mechanisms. Since this problem is NP-hard, research so far concentrated on polynomial-time approximation
algorithms and tractable special cases.

Results: We take the viewpoint of parameterized algorithmics and examine several parameters related to the
maximum signal flow over vertices or edges. We provide several fixed-parameter tractability results, and in one
case a sharp complexity dichotomy between a linear-time solvable case and a slightly more general NP-hard case.
We examine the value of these parameters for several real-world network instances.

Conclusions: Several biologically relevant special cases of the NP-hard problem can be solved to optimality. In this
way, parameterized analysis yields both deeper insight into the computational complexity and practical solving
strategies.

Background
Current technologies [1] like two-hybrid screening can
find protein interactions, leading to protein-protein
interaction (PPI) networks, but cannot decide the direc-
tion of the interaction. This can be complemented by
gene knock-out experiments which constitute a way to
determine causal relations in these networks, thus pro-
viding additional information on possible directions of
information flow in them [2]. Given a list of so-called
cause-effect pairs, the challenge consists in deducing an
orientation of the PPI network which takes into account
the causal relations of as many of these pairs as possible.
Medvedovsky et al. [3] formalize this in terms of a graph
theoretical problem as follows.

Problem Formalization

Let G = (V, E) be an undirected graph. An orientation →
G

of G is a directed graph →
G = (V, �E) obtained from G by

replacing every undirected edge {u, v} Î E by a directed
one, i. e., either by (u, v) Î �E or by (v, u) Î �E. Let P ⊆

V × V be a set of ordered source–target pairs, which we
sometimes refer to as “signals”. In order to distinguish
pairs from edges or arcs, we use the notation [a, b] Î P
to denote the pair starting in a and ending in b. We say
that a pair [a, b] Î P is satisfied by a given orientation
→
G if there exists a directed path from a to b in →

G. The
central problem considered in this work is to find an
orientation of a given graph maximizing the number of
satisfied pairs. As pointed out by Medvedovsky et al. [3],
we can assume that the given graph is a tree: it is clearly
optimal to orient the edges of a cycle to form a directed
cycle, and hence one can repeatedly contract a cycle to
a single vertex, obtaining a tree. Note that this process
will always produce the same tree independent of the
order of contractions, since two vertices will be merged
eventually if and only if they are in the same bridge
block, where a bridge block is a connected component
of the graph that is obtained by deleting all bridges
(edges whose deletion increases the number of con-
nected components). Further, bridge blocks can be
found in linear time [4,5]. Thus, formalized as a decision
problem, MAXIMUM TREE ORIENTATION is defined
as follows.

* Correspondence: falk.hueffner@tu-berlin.de
2Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Berlin,
Germany
Full list of author information is available at the end of the article

Dorn et al. Algorithms for Molecular Biology 2011, 6:21
http://www.almob.org/content/6/1/21

© 2011 Dorn et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:falk.hueffner@tu-berlin.de
http://creativecommons.org/licenses/by/2.0


Maximum Tree Orientation (MTO)
Input: An undirected tree T, a set P of ordered pairs of
vertices of T, and an integer k ≥ 0.
Question: Is there an orientation of T such that at

most k pairs in P are not satisfied?
We also consider the weighted version, called

WEIGHTED MAXIMUM TREE ORIENTATION (W-
MTO), where every pair [a, b] Î P is associated with a
rational weight ω([a, b]) ≥ 0, and the goal is to maxi-
mize the sum of weights of the satisfied pairs. Through-
out this work, n denotes the number of vertices in the
given MTO instance, if not stated otherwise.
As sketched before, MTO is motivated from the infer-

ence of causal relations in biological networks [6,7] such
as PPI networks, but it also has applications in the con-
text of communication networks, where several one-way
connection request pairs are given. Since each link
between two network nodes can only be used in one
direction, one has to orient the links in such a way that
as many communication requests as possible can be
fulfilled.

Previous Work
MTO was introduced by Medvedovsky et al. [3]; they
showed that the problem is NP-complete even when
the underlying tree is a star (that is, a diameter-two
tree) or a tree with maximum vertex degree three.
Moreover, they provided a cubic-time algorithm for
MTO restricted to paths. Seeing MTO as the task to
maximize the number of satisfied pairs, Medvedovsky
et al. also provided polynomial-time approximation
algorithms with approximation factor 1/4 in the case
of stars and O(1/log n) in the case of general n-vertex
trees. The latter approximation factor was recently
improved to O(log log n/log n) by Gamzu et al. [8],
who furthermore extended the studies of MTO to
“mixed graphs” where some of the edges are already
oriented based on causal relations known in advance.
Besides these theoretical investigations, Medvedovsky
et al. [3] also provided some experimental results
based on a yeast PPI network and some synthetic data.
Silverbush et al. [9] recently formulated a polynomial-
size integer linear program for the generalization of
mixed graphs and did some experiments with it. Also
recently, Gitter et al. [10] considered graph orientation
with the objective of maximizing the weight of all
satisfied paths between sources and targets with length
at most some constant k. They used approximation
algorithms to discover pathways in biological networks.
In an earlier work, Hakimi et al. [11] studied the spe-
cial case of MTO where the list of pairs to be satisfied
contains all possible pairs; they developed a quadratic-
time algorithm for this case.

Our Contributions
We mainly continue and complement previous work on
MTO [3,8] by starting a parameterized and multivariate
complexity analysis of MTO. That is, we try to better
understand the border between tractable and intractable
cases of MTO while sticking to optimal (instead of
approximate) solutions. In particular, our focus is on the
“amount of signal flow” over vertices and edges, respec-
tively, and how this influences the computational com-
plexity of MTO.
• We show that W-MTO can be solved in

O(2mv · |P| + n4) time on an n-vertex tree, where mv

denotes the maximum number of connecting paths
(one-to-one corresponding to the input vertex pairs)
over any tree vertex. In other words, W-MTO is fixed-
parameter tractable with respect to the parameter mv.
• We introduce the concept of cross pairs and show

that cross-pair-free instances of W-MTO can be solved
in quadratic time, as a corollary also improving the
cubic-time algorithm of Medvedovsky et al. [3] for
MTO on paths to quadratic time.
• We additionally show that W-MTO is fixed-para-

meter tractable with respect to the parameter qv which
is the maximum number of cross pairs over any vertex;
namely, it can be solved in O(2qv · n2 · qv) time.
• Shifting the focus from “maximum vertex signal

flow” to “maximum edge signal flow”, we show a sharp
complexity dichotomy: W-MTO can be solved in linear
time if no tree edge has to carry more than two signals,
but if this maximum edge signal flow is three, MTO
already becomes NP-hard.
• Finally, we briefly discuss some practical aspects of

exactly solving the so far very few considered real-world
instances and conclude that these can be already solved
to optimality within milliseconds (via at least three dif-
ferent strategies). However, we also make the point that
with the future availability of further real-world data,
our new algorithms could be of significant practical rele-
vance beyond so far known or straightforward
approaches.

Preliminaries, Basic Facts, and Simple
Observations
For ease of presentation, for a W-MTO instance (T, P,
ω), we always assume that ω([s, t]) = 0 for all pairs s, t
Î V with [s, t] ∉ P. Moreover, subsequently mostly
referring to MTO, the presented concepts and defini-
tions clearly apply to W-MTO as well. Note that in a
tree T = (V, E), for each ordered pair [a, b] of vertices,
there exists a uniquely determined path connecting
these vertices. We will therefore often write the path
defined by the pair [a, b] when we refer to the unique
path in the tree starting in vertex a and ending in vertex

Dorn et al. Algorithms for Molecular Biology 2011, 6:21
http://www.almob.org/content/6/1/21

Page 2 of 12



b, or talk about pairs and paths interchangeably. Some-
times, we also talk about paths in the tree which do not
necessarily correspond to pairs. We denote the undir-
ected path connecting vertices v and w in T by pathT (v,
w). Moreover, Pv: = {[s, t] Î P | v Î V (pathT (s, t))}
denotes the set of paths passing through a vertex v (note
that this includes paths of which v is an endpoint). An
MTO instance is called rooted if the underlying tree T is
rooted. In a rooted tree T = (V, E), if vertex a Î V is an
ancestor of vertex b Î V, then we use the notation a ≺
b. The subtree of T rooted at v Î V is denoted Tv.
Let (T = (V, E), P) be an MTO instance, and let x, y Î

P be two pairs. We say that x conflicts with y if there
exists no orientation of T for which both x and y are
satisfied. From an n-vertex MTO instance, we build a so
called conflict graph in which each vertex corresponds
to an input pair of the MTO instance, and where there
is an edge between two pairs if and only if they conflict
with each other. More formally, given an MTO instance
(T = (V, E), P), the corresponding conflict graph Gc(T,
P) is defined Gc(T, P):= (P, Ec) where Ec : = {{u, v} | u, v
Î P ∧ u conflicts with v}.
The computation of the conflict graph can be done in

Θ(n4) time. It clearly cannot be done faster, because up
to O(n4) conflicts are possible. To achieve the desired
bound, we thus need to decide in constant time whether
two pairs conflict with each other. This is done using an
appropriate data structure and two simple observations:
First, in a rooted tree, least common ancestors (LCAs)
can be calculated in constant time after some linear
time preprocessing [12]. Second, two pairs are in con-
flict if and only if their paths run in different directions
through an edge incident on the lower one of the two
LCAs of the two pairs. Clearly, for an orientation of (T,
P), in Gc there are no edges (that is, conflicts) between
the vertices corresponding to the satisfied source–target
pairs, and hence the vertices corresponding to the non-
satisfied source–target pairs form a vertex cover for Gc,
that is, a vertex set V’ ⊆ P such that for every edge e Î
Ec at least one endpoint of e is in V’. This yields the fol-
lowing useful observation.
Proposition 1. Finding a minimum-weight vertex

cover in the conflict graph Gc(T, P) one-to-one corre-
sponds to determining a minimum-weight set of pairs
that cannot be satisfied in (T, P).
It is generally assumed that the fact that a problem is

NP-hard implies that there is no algorithm that finds an
optimal solution and has running time bounded by a
polynomial of the size of the input. Parameterized com-
plexity is a two-dimensional framework for the analysis
of computational complexity [13-15]. One dimension is
the input size n, and the other one is the parameter
(usually a positive integer). A problem is called fixed-
parameter tractable (fpt) with respect to a parameter x

if it can be solved in f(x) ⋅ nO(1) time, where f is a com-
putable function only depending on x. If a problem is
fixed-parameter tractable with respect to x, we can hope
for efficient optimal solutions as long as the parameter
is not too large. Due to Proposition 1 we can immedi-
ately conclude that MTO and W-MTO are fixed-para-
meter tractable with respect to the parameter “number
of pairs” p, since the conflict graph has p vertices and
we can find a minimum-weight vertex cover by trying
all possibilities in 2p ⋅ nO(1) time. Further, since mini-
mum-weight vertex covers can be found in O(1.379k+
kn) time [16], we have fixed-parameter tractability with
respect to the parameter “number of unsatisfied pairs”,
and if all weights are at least one, also with respect to
the parameter “total weight of unsatisfied pairs”.
Tree-decomposition-based algorithms have been suc-

cessfully applied in the area of computational biology,
for instance, in the context of structure–sequence align-
ment [17]. Informally speaking, the treewidth [15] mea-
sures the “tree-likeness” of a graph, and a tree
decomposition is the “embedding” of a graph into a tree
depicting the tree-like structure of the graph.
We recall the following definitions from literature

[18]: A tree decomposition of a graph G = (V, E) is a
pair 〈{Xi|i ∈ I},T 〉, where each Xi is a subset of V called
bag, and T = (I, F) is a tree with node set I and edge set
F. The following must hold:
1.

⋃
i∈I Xi = V ;

2. for every edge {u, v} Î E, there is an i Î I such that
{u, v} ⊆ Xi; and
3. for all i, j, l Î I, if j lies on the path between i and l

in T, then Xi ∩ Xl ⊆ Xj.
The width of 〈{Xi|i ∈ I},T 〉, is max{|Xi| | i Î I} - 1.

The treewidth of G is the minimum width over all tree
decompositions of G.

Methods and Results
Bounded Signal Flow Over Vertices
In this subsection, we investigate how the vertex-wise
structure of the source–target pairs influences the com-
putational complexity of MAXIMUM TREE ORIENTA-
TION. More specifically, first we consider the parameter
mv denoting the maximum number of source–target
paths passing through a vertex. We show that MTO can
be solved in O(2mv⋅ |P| + n4) time. In other words,
MTO is fixed-parameter tractable with respect to the
parameter mv. Motivated by this positive result, we
explore in more depth the structure of the source–target
paths that pass through a vertex. To this end, we intro-
duce the concept of “cross pairs” and show that for
cross-pair-free instances MTO can be solved in O(n2)
time. Informally speaking, an instance is cross-pair-free
if the input tree can be rooted such that for each
source–target pair one endpoint is an ancestor of the

Dorn et al. Algorithms for Molecular Biology 2011, 6:21
http://www.almob.org/content/6/1/21

Page 3 of 12



other one. Then, for a rooted MTO instance a cross pair
is a source–target pair such that none of its endpoints is
the ancestor of the other endpoint. By refining the sol-
ving strategy for cross-pair-free instances, we show that
MAXIMUM TREE ORIENTATION can be solved in
O(2qv · n2 · qv) time, where qv denotes the maximum
number of cross pairs passing through a vertex.
All algorithms in this subsection are based on

dynamic programming, and, hence, since source–target
pair weights can easily be incorporated, extend to W-
MTO.
Parameter “Maximum Number of Pairs Per Vertex”
Here, we show that W-MTO is fixed-parameter tract-
able for the parameter mv denoting the maximum num-
ber of source–target pairs passing through a vertex. To
this end, we prove in Theorem 1 that we can construct
in polynomial time a tree decomposition of the conflict
graph of treewidth at most mv. Recall that (weighted)
MTO is equivalent to (weighted) VERTEX COVER on
the conflict graph (see Proposition 1). Thus, the running
time follows by the fact that (weighted) VERTEX
COVER can be solved in O(2twn) time, given a tree
decomposition of width tw [15].
Theorem 1. On n-vertex trees, WEIGHTED MAXI-

MUM TREE ORIENTATIONis solvable in O(2mv⋅ |P| +
n4) time, where mv denotes the maximum number of
source–target pairs passing through a vertex.
Proof. First, we show how to construct a tree decompo-

sition of width mv of the conflict graph in polynomial
time. Let (T = (V, E), P) denote an MTO instance and let
Gc = (P, Ec) denote the associated conflict graph. The
basic idea is that we can use T as the underlying tree of a
tree decomposition of Gc = (P, Ec). More specifically, the
tree decomposition is given by 〈{Pv | v Î V}, T〉 for all v
Î V. Recall that Pv denotes the set of source–target pairs
passing through v. Observe that each vertex p Î P of the
conflict graph appears exactly in the bags Xv for all v Î V
(pathT(p)). Moreover, note that if two source–target pairs
p = [s, t] and p’ = [s’, t’] are in conflict (and hence are
adjacent in the conflict graph), then pathT (s, t) and
pathT (s’, t’) have at least one edge and thus at least two
vertices in common. Hence, every edge of the conflict
graph is contained in at least one of the Xv’s. Thus, all
conditions of a tree decomposition are fulfilled. More-
over, the width of this tree decomposition is clearly mv -
1. The conflict graph, the sets Pv, and the tree decompo-
sition can be computed in O(n4) time. Thus, the overall
running time follows by the fact that WEIGHTED VER-
TEX COVER can be solved in O(2tw |P|) time, given a
tree decomposition of width tw of Gc [15].
Cross Pairs
In Theorem 1, we have shown that W-MTO is fixed-
parameter tractable with respect to the parameter mv. In

the following, will strengthen this result by showing that
W-MTO is fixed-parameter tractable with respect to the
parameter “number of a special type of source–target
pairs (the so-called cross pairs) passing through a ver-
tex”. The idea is to identify a “trivial” (that is, polyno-
mial-time solvable) special case of the problem and then
to investigate instances that are close to these trivial
instances, their closeness measured in terms of a certain
parameter which is referred to as distance from triviality
[19,20].
In the following, we will always consider rooted trees.

Informally speaking, a cross-pair-free instance only con-
tains source–target pairs whose corresponding paths are
directed either towards the root or towards the leaves,
but do not change their direction. Cross-pair-free
instances of W-MTO are of special interest since they
constitute our “trivial instances”.
Definition 1. Let (T = (V, E), P, ω) be an instance of

W-MTO where T is a rooted tree. A source–target pair p
= [a, b] Î P is called cross pair if neither a is an ances-
tor of b nor b an ancestor of a. An instance of W-MTO
is called cross-pair-free if T can be rooted such that P
does not contain any cross pairs.
Cross-pair-free Instances
Now, we devise a dynamic-programming-based algo-
rithm solving W-MTO in quadratic time on cross-pair-
free instances.
Theorem 2. On n-vertex trees, WEIGHTED MAXI-

MUM TREE ORIENTATIONfor cross-pair-free instances
with given root can be solved in O(n2) time.
Proof. Algorithm. We present a dynamic programming

algorithm with quadratic running time solving a cross-
pair-free W-MTO instance (T = (V, E), P, ω) with root
r. For the presentation of the algorithm, we use the fol-
lowing notation. For v Î V, let Tv be the subtree of T
rooted at v. For all v, w Î V with v ≺ w (that is, v is an
ancestor of w) let Tv

w denote the subtree of T induced by
Vv

w := V(Tw) ∪ V(pathT(v, w)).
For ease of presentation, let Vw

w := V(Tw). Moreover,
let Pv

w := {[s, t] ∈ P|s, t ∈ Vv
w}. That is, Tv

w is the tree con-
sisting of the path pathT (v, w) and the subtree Tw

rooted at w, and Pv
w are the pairs with both endpoints in

Tv
w. Finally, the weight of an orientation �Tv

w of (Tv
w, Pv

w) is

the sum of the weights of the pairs in Pv
w satisfied by �Tv

w.
The algorithm maintains an n × n dynamic program-

ming table S, containing for each v, w Î V with v ≺ w
or v = w the two entries S(v, w) and S(w, v). The goal of
the dynamic programming procedure is to fill S in
accordance with the following definition.
For all v, w Î V with v ≺ w, entry S(v, w) is the maxi-

mum weight of an orientation of (Tv
w, Pv

w) among all
orientations of (Tv

w, Pv
w) orienting the path between v

and w from v to w (that is, away from the root).

Dorn et al. Algorithms for Molecular Biology 2011, 6:21
http://www.almob.org/content/6/1/21

Page 4 of 12



Analogously, S(w, v) is the maximum weight of an
orientation of (Tv

w, Pv
w) among all orientations of (Tv

w, Pv
w)

orienting the path between v and w from w to v (that is,
towards the root). Note that in the case v = w we have
that S(v, v) is the weight of an optimal orientation of
the subtree rooted at v.
Next, we describe how our algorithm computes the

entries of S in accordance with this definition. The
weight of an optimal orientation of (T, P) can then be
found in S(r, r).
To compute the entries of S, visit all vertices w Î V in

a bottom-up traversal. Then, for each w consider all ver-
tices v Î V with v = w or v ≺ w and set (omit the sum if
w is a leaf):

S(v, w) := A(v, w)

+
∑

u is a child of w

max
{
S(u, w), S(v, u) − A(v, w)

}
, (1)

S(w, v) := A(w, v)

+
∑

u is a child of w

max
{
S(w, u), S(u, v) − A(w, v)

}
. (2)

Herein, A (v, w) denotes the sum of the weights of the
source–target pairs with both endpoints on pathT (v, w)
that are satisfied when orienting the path between v and
w from v to w, that is,

A(v, w) := ω({[s, t] ∈ P|
s, t ∈ V(pathT(v, w)) ∧ s ≺ t}).

(3)

Analogously, A (v, w):= ω ({[s, t Î P | s, t Î V (pathT
(v, w)) ^ t ≺ s}). Moreover, for ease of presentation we
assume that A (v, v) = 0.

Correctness
For the correctness of the algorithm note the following.
For a leaf w and an ancestor v of w, the tree Tv

w is iden-
tical to the path pathT (v, w). Hence, the sum of the
weights of pairs that can be satisfied by orienting the
path either from v to w or from w to v is A(v, w) and A
(w, v), respectively. Next, consider the case that w is an
inner vertex and let v be an ancestor of w. Moreover, let
u1,..., ul denote the children of w. We argue that the
maximum weight of an orientation of (Tv

w, Pv
w) orienting

the edges on pathT (v, w) towards w equals

A(v, w) +
�∑

i=1

max
{
S(ui, w), S(v, ui) − A(v, w)

}
, (4)

and, hence, S(v, w) is computed correctly. To this
end, consider a maximum-weight orientation �Tv

w of
(Tv

w, Pv
w) orienting the edges on pathT (v, w) towards w.

If, for a child ui, �Tv
w contains the arc (ui, w), then the

contribution of the source–target pairs in Pv
w with at

least one endpoint in Tui to the weight of �Tv
w is S(ui, w);

note that no source–target pair of Pv
w with exactly one

endpoint in Tw
ui is satisfied by �Tv

w, and thus the contri-
bution of these pairs is S (ui, w) (a smaller contribu-
tion would contradict the optimality of �Tv

w). Moreover,

if for a child ui the oriented tree �Tv
w contains the arc

(w, ui), then it follows by a similar argument that the
contribution of the paths in Pv

w with at least one end-
point in V(Tui ) is S(v, ui) - A(v, w). The only difference
is that the contribution of the source–target pairs with
both endpoints in V (pathT (v, w)) is already consid-
ered in the above formula, and, hence, must be sub-
tracted from S(v, ui).
Running time. For the running time bound, we show

that A can be computed in O(n2) time in a preproces-
sing step. Then, the overall running time is clearly
bounded by

O

(∑
v∈V

∑
w∈V

degT(w)

)
= O

(∑
v∈V

n

)
= O(n2), (5)

since ∑wÎV degT (w) = 2(n - 1) in trees. Clearly for v, w
Î V with v ≺ w the matrix entries A(v, w) and A(w, v)
can be computed by setting

A(v, w) := ω([v, w]) + A(v, y) + A(x, w) − A(x, y) (6)

and

A(w, v) := ω([w, v]) + A(w, x) + A(y, v) − A(y, x), (7)

where x is the neighbor of v and y is the neighbor of
w on pathT (v, w). This assumes, however, that all the
entries of A for pairs with distance l - 1 are known
before computing the entries of the pairs with distance
l. This can be ensured by using a queue (first-in-first-
out data structure) as follows. For the computation of A,
first, for all edges {v, w} Î E with v ≺ w set A(v, w):=
ω([v, w]) and A(w, v):= ω([w, v]) (let ω([s, t]):= 0 if [s, t]
∉ P) and append the pair (v, w) at the tail of the queue.
After each edge has been processed, proceed as follows.
Until the queue is empty, let (x, w) denote the next ele-
ment at the head of the queue and let v denote the par-
ent of x and let y denote the parent of w in T (if x = r
remove (x, w) from the head position of the queue and
do nothing else). It is easy to verify that the entries for
the pairs (x, w) and (v, y) have already been computed
and, hence, can be used to compute A(v, w) and A(w, v)
as described above. Finally, we remove (x, w) from the
head position of the queue and append (v, w) at the tail
of the queue. Clearly, for every pair v, w of vertices with
v ≺ w, we need a constant number of operations to
compute the two table entries A(v, w) and A(w, v),
resulting in an overall running time bound of O(n2).

Dorn et al. Algorithms for Molecular Biology 2011, 6:21
http://www.almob.org/content/6/1/21

Page 5 of 12



Note that if the root of a cross-pair-free W-MTO
instance is not known, it can be calculated in O(n|P|)
time by trying all roots and then checking for each pair
if the least common ancestor is one of the two
endpoints.
As an immediate consequence of Theorem 2, we can

improve the cubic-time algorithm for MTO on paths by
Medvedovsky et al. [3] to quadratic time. Herein, we use
that every path rooted at one of its endpoints results in
a cross-pair-free instance of MTO.

Corollary 1
WEIGHTED MAXIMUM TREE ORIENTATIONon n-
vertex paths can be solved in O(n2) time.

Parameter “Maximum Number of Cross Pairs
Passing Through a Vertex”
Next, we show that W-MTO is fixed-parameter tract-
able with respect to the parameter qv by extending the
dynamic programming algorithm for cross-pair-free
instances. Formally, qv is defined as follows. For a rooted
W-MTO instance (T = (V, E), P) with root r, let Q
denote the set of cross pairs. Moreover, for v Î V let Qv

:= Pv ∩ Q be the set of cross pairs passing through v.
With respect to the root r the maximum number qv(r)
of cross pairs passing through a vertex is given by max-

vÎV |Qv|. Then, qv is the minimum value of qv(r) over all
possible choices r to root T.
Theorem 3. On n-vertex trees, WEIGHTED MAXI-

MUM TREE ORIENTATIONwith given root can be
solved in O(2qv ⋅ qv ⋅ n2) time, where qv denotes the max-
imum number of cross pairs passing through a vertex.
Proof. The basic idea of the algorithm is to incorporate

the cross pairs by trying for every vertex all possibilities
to satisfy the cross pairs passing through this vertex. To
this end, we extend the matrix S by an additional
dimension. As a consequence, the dynamic program-
ming update step becomes significantly more intricate.
Let (T = (V, E), P, ω) be a rooted W-MTO instance

with root r. For the presentation of the algorithm we
use the same notation as in the proof of Theorem 2. In
addition, we employ the following definitions. Let w Î
V. A possibility to satisfy the cross pairs in Qw is repre-
sented by a coloring cw : Qw ® {0, 1}, meaning that a
cross pair q Î Qw must be satisfied iff cw(q) = 1. Let Cw

denote the set of all 0/1-colorings of Qw. Note that
|Cw| = 2|Qw|. To incorporate the cross pairs, for every v,
w Î V with v ≺ w or v = w and for every coloring cw,
the dynamic programming table S contains two entries
S(v, w, cw) and S(w, v, cw). Informally speaking, S(v, w,
cw) denotes the maximum weight of an orientation of Tv

w
under the assumption that all cross pairs q Î Qv with cw
(q) = 1 are “satisfiable” and the edges in pathT (v, w) are
oriented from v towards w. Entry S(w, v, cw) is defined

analogously, but here we assume that the edges in pathT
(v, w) are oriented from w towards v. For a precise
description, we use the following notation. Clearly, we
are interested only in colorings cw of Qw such that any
two cross pairs q, q’ Î Qw with cw(q) = cw(q’) = 1 are
not in conflict. We call such a coloring locally feasible.
Moreover, we extend the notion “feasible” as follows. As
informally described above, we distinguish the two cases
that the edges on pathT (v, w) are oriented
(1) from v to w (for entry S(v, w, cw)), or
(2) from w to v (for entry S(w, v, cw)).
For the case (1), a locally feasible coloring cw is called

feasible if for each cross pair [s, t] Î Qw with cw([s, t]) =
1 orienting the edges on pathT (v, w) from v to w and
the edges on pathT (s, t) from s to t is simultaneously
possible. Analogously, a locally feasible coloring cw is
feasible for case (2) when orienting the edges on pathT
(s, t) from s to t does not contradict the orientation of
the edges on pathT (v, w) from w to v.
For a coloring cw of Qw, we must ensure that in the

considered orientations of (Tv
w, Pv

w) all cross pairs q Î
Qw with cw(q) = 1 are satisfiable. Therefore, we call an
orientation of (Tv

w, Pv
w) consistent with a cross pair [s, t]

Î Qw (note that [s, t] ∈ P\Pv
w is allowed) if the common

edges of Tv
w and pathT (s, t) are oriented from s to t.

Finally, we call an orientation of (Tv
w, Pv

w) consistent with
a coloring cw of Qw if the orientation is consistent with
each cross pair q Î Qw with cw(q) = 1.
With these notations, we can formally define the

meaning of the entries of S. For every two vertices v, w
Î V with v ≺ w or v = w and for every 0/1-coloring cw
Î Qw the entry S(v, w, cw) is -∞ if the coloring cw is not
feasible for case (1). Otherwise, S(v, w, cw) denotes the
maximum weight of an orientation of (Tv

w, Pv
w) among all

orientations of (Tv
w, Pv

w) fulfilling the following con-
straints:

• the edges on pathT (v, w) are oriented from v to w,
and
• the orientation is consistent with cw.

This definition ensures that the orientation is not con-
flicting with the realization implied by the coloring cw
and the fixed orientation of pathT (v, w). The entry S(w,
v, cw) is defined analogously with the difference that
here we assume that the edges on pathT (v, w) are
oriented from w to v. Note that the cross pairs having
only one endpoint in Tv

w are not contained in Pv
w, and

hence do not contribute to the weight of an orientation
of (Tv

w, Pv
w). Observe that maxcr∈Cr S(r, r, cr) is the maxi-

mum weight of an orientation of the whole instance (T,
P, ω) since Tr

r = T and we build the maximum over all
colorings of the cross pairs in Qr. Next, we provide a
strategy to compute the entries of S in accordance with

Dorn et al. Algorithms for Molecular Biology 2011, 6:21
http://www.almob.org/content/6/1/21

Page 6 of 12



this definition. In the update step, we need to adjust the
tables of a vertex w with the tables of its children.
Doing so, we have to ensure that we only consider col-
orings that are not contradictory to each other. Let cu
denote a coloring of Qu and cw denote a coloring of Qw.
We use cu|cw to denote that cu and cw agree in the col-
oring of the cross pairs in Qu ∩ Qw, that is, for all q Î
Qu ∩ Qw it holds that cu(q) = cw(q). Finally, let WLCA(w,
cw) denote the sum of the weights of the cross pairs [s,
t] Î Qw with cw([s, t]) = 1 that have w as their least
common ancestor.
For the computation of S, visit each vertex w Î V in a

post-order traversal of T. For each w consider all vertices
v Î V with v ≺ w or v = w. Moreover, let u1, ..., ul denote
the children of w (if w is not a leaf). Then, for each color-
ing cw Î Cw, set S(v, w, cw):= -∞ if cw is infeasible for case
(1), otherwise set (omit the sum if w is a leaf)

S(v, w, cw) := A(v, w) + WLCA(w, cw)

+
�∑

i=1

M(ui, v, w, cw)
(8)

where

M(ui, v, w, cw) := max{
max{S(v, ui, cui ) − A(v, w) : cui ∈ Cui , cui |cw},
max{S(ui, w, cui ) : cui ∈ Cui , cui |cw}}.

(9)

and S(w, v, cw):= -∞ if cw is infeasible for case (2),
otherwise set (omit the sum if w is a leaf)

S(w, v, cw) := A(w, v) + WLCA(w, cw)

+
�∑

i=1

M(ui, w, v, cw)
(10)

where

M(ui, w, v, cw) := max{
max{S(ui, v, cui ) − A(w, v) : cui ∈ Cui , cui |cw},
max{S(w, ui, cui ) : cui ∈ Cui , cui |cw}}.

(11)

Herein, A is defined exactly as in the proof of Theo-
rem 2.
Correctness. For the correctness, we argue that for v,

w Î V with v ≺ w and for a coloring cw Î Cw that is
feasible for case (1), the maximum weight of an orienta-
tion of (Tv

w, Pv
w) consistent with cw that orients the

edges on pathT (v, w) from v to w is

A(v, w) + WLCA(w, cw) +
∑�

i=1 M(ui, v, w, cw), and, hence,
S(v, w, cw) is computed correctly. To this end, first con-
sider the case that w is a leaf. Then, Tv

w is identical to
pathT (v, w) and Qw = ∅. Hence, in this case exactly the
source–target pairs [s, t] ∈ P\Pv

w with s ≺ t are satisfied
whose total weight per definition is A(v, w). Second,

consider the case that w is an internal vertex with chil-
dren u1, ..., ul. Moreover, let �Tv

w be an optimal orienta-
tion consistent with cw that orients the edges on pathT
(v, w) from v to w. Assume that this orientation contains
for a child ui the arc (ui, w). Then, with respect to w
and ui, the subgraph of �Tv

w induced by the vertices in Vw
ui

is an orientation of Tw
ui consistent with a coloring cui that

clearly agrees with cw. Thus, the contribution of ui to
the weight of �Tv

w is the maximum S(ui, w, cui ) over all

cui ∈ Qui that agree with cw. Similarly, if �Tv
w contains the

arc (w, ui) for a child ui, the subgraph of �Tv
w induced by

the vertices in Vw
ui is an orientation of Tw

ui consistent with
a coloring cui that clearly agrees with cw. Thus, the con-
tribution of the pairs in Pv

w with at least one endpoint in
Tui is the maximum of S(v, ui, cui ) − A(v, w) over all
cui ∈ Cui that agree with cw (here, we have to subtract
the number of satisfied pairs with both endpoints on
pathT (v, w) that are already accounted for by the term
A(v, w) in (8)). Finally, observe that the contribution of
the cross pairs q in Pv

w with cw(q) = 1 for which w is the
least common ancestor are not taken into account in
the contributions of the ui’s. This is done by the term
WLCA in (8). The argumentation for the correctness of
the computation of S(w, v, cw) follows analogously.

Running time. Next, we analyze the running time. We
use the following notation and implementation details.
For w Î V let Qw = {pw

1 , . . . , pw
nw

}. A coloring cw : Qw ®
{0, 1} is realized by a tuple (c1, . . . , cnw ) ∈ {0, 1}nw with
cw(pw

i ) = ci for all 1 ≤ i ≤ nw. Moreover, the dynamic pro-
gramming table S is realized by two tables Sup

v,w and Sdown
v,w

for every pair v, w Î V with v ≺ w or v = w with an entry
for every coloring c ∈ {0, 1}nw where Sup

v,w(c) = S(w, v, c)
and Sdown

v,w (c) = S(v, w, c). The table A is computed exactly
as in the proof of Theorem 2 in O(n2) time in a prepro-
cessing step. Moreover, note that after O(n) preproces-
sing time, least common ancestors of the source–target
pairs can be found in constant time [12].
To prove the running time, we show that for every pair

v, w with v ≺ w or v = w the computation in (8) and (10)
can be done in O(2qv · qv · degT(w)) time. We focus on
the computation of (8). The running time analysis for
(10) follows by the same arguments. The crucial observa-
tion is that the summands in the sum in (8) are indepen-
dent of each other in the sense that the determination of
the maximum for one child ui (the computation of M(ui,
v, w, cw)) does not depend on the decision made for a dif-
ferent child. Hence, for the computation of the entries of
Sdown

v,w proceed as follows. Consider each child u of w one
after another. Let Qw = {q1, . . . , qs, q′

1, . . . , q′
x} and

Qu = {q1, . . . , qs, q′′
1, . . . , q′′

y }, that is, {q1, ..., qs} = Qw ∩ Qu.

The crucial point is that we assume that the tables Sup
w,u

Dorn et al. Algorithms for Molecular Biology 2011, 6:21
http://www.almob.org/content/6/1/21

Page 7 of 12



and Sdown
v,u are sorted in lexicographical order of the color-

ings {0, 1}nu. This ensures that the colorings of u that
agree with a coloring c ∈ {0, 1}nw are ordered consecu-
tively in Sup

w,u and Sdown
v,u . Since the tables Sup

w,u and Sdown
v,u

contain each at most 2qv entries, the sorting can be
achieved in time O(2qv ) using bucket sort. Then, for each
fixed v, w, and u all the values M(v, w, u, c) can be com-
puted in O(2qvqv) time in one iteration over Sup

w,u and

Sdown
v,u and, hence, for all children of w the running time is
bounded by O(2qv · qv · degT(w)). Thus, the overall run-
ning time is bounded by

O

( ∑
v,w∈V

2qv · qv · degT(w)

)
= O(2qvqvn2), (12)

since O(∑wÎV degT (w)) = O(n) in trees.

Bounded Signal Flow Over Edges
Let me be the maximum number of paths that pass
through an edge. We consider MTO instances where me

is limited. We show that the problem is linear-time sol-
vable for me ≤ 2, but NP-hard for me ≥ 3, thereby estab-
lishing a dichotomy on the complexity of MTO with
respect to me.
For the polynomial-time algorithm, we employ the fol-

lowing lemma.
Lemma 1. If me ≤ 2, then the treewidth of Gc(T, P) is

at most two.
Proof. We make use of the following characterization

of graphs of treewidth at most two [21]. A graph has
treewidth at most two if it can be reduced to the empty
graph by the exhaustive application of the following
data reduction rules:
(1) deleting vertices of degree 0 or 1,
(2) deleting a degree-2 vertex whose two neighbors are

adjacent, and
(3) adding an edge between the two neighbors of a

degree-2 vertex v if the neighbors are non-adjacent, and
subsequently deleting v.
We show that if me ≤ 2, then in the conflict graph Gc

(T, P) we can find a vertex to which one of the above
rules applies. Further, we show that the modified smaller
conflict graph is still a conflict graph of some MTO
instance. Thus, the claim follows by induction.
Clearly, if Rule (1) or (2) applies to a vertex v in the

conflict graph, then we can just delete the correspond-
ing pair in the MTO instance, and the conflict graph of
the resulting MTO instance is identical to the graph
that results by deleting v.
Next, we show that if neither Rule (1) nor Rule (2)

applies, then we can find a vertex v in the conflict graph
to which Rule (3) applies. To this end, let (T, P) with T
= (V, E) denote an MTO instance and assume that T is

rooted at an arbitrarily chosen inner vertex r. Moreover,
among all vertices that are the least common ancestors
of a pair in P, let x be one with maximum distance to
the root r (that is, a deepest least common ancestor).
We distinguish two cases based on whether x is an end-
point of a pair with both endpoints in Tx.
First, consider the case that x is the endpoint of a pair

[s, t] Î P with s, t Î V (Tx). Let y be the child of x that
is contained in the path between s and t. Observe that
by the choice of x there is no pair with both endpoints
in Ty. Hence, for every pair that is in conflict with [s, t],
the corresponding path contains the edge {x, y}. Thus,
since me = 2, the pair [s, t] is in conflict with at most
one other pair, and therefore the corresponding vertex
has degree at most one in the conflict graph: a contra-
diction to the fact that neither Rule (1) nor (2) apply.
Second, consider the case that x is not an endpoint of

any pair with both endpoints in V(Tx). Moreover, let p
= [s, t] Î P be an arbitrarily chosen pair with s, t Î V
(Tx). Let y1 and y2 denote the two children of x such
that (without loss of generality) s Î V (Ty1) and t Î V
(Ty2). Let v[s,t] denote the vertex of Gc corresponding to
[s, t]. First, note that by the assumption that Rule (1)
does not apply, v[s,t] has degree at least two. Moreover,
by the choice of x there is no pair with both endpoints
in V (Ty1) or in V (Ty2). Thus, every pair that is in con-
flict with [s, t] uses either the edge {x, y1} or the edge {x,
y2}. Thus, since me ≤ 2 and degGc

(v[s,t]) ≥ 2, there are
exactly two pairs p’ = [s’, t’], p’’ = [s’’, t’’] Î P that are in
conflict with [s, t]. Assume without loss of generality
that t’ Î V (Ty1) and s’’ Î V (Ty2) (see Figure 1 for an
illustration). Since Rule (2) does not apply to v[s,t], we
can assume that p’ and p’’ are not in conflict with each
other. Hence, Rule (3) can be applied to v[s,t]. Let G′

c
denote the graph that results by first making the two
neighbors of v adjacent and subsequently deleting v. It
remains to show how to transform the MTO instance

x

y1 y2

s tt′ s′′ t′′

s′

x

t′′

y′s′

Figure 1 Applicability of reduction. Left: Illustration of the
structure for a deepest least common ancestor x of the pairs as
described in the proof of Lemma 1. The dashed lines represent the
paths between the endpoints of a pair. If [s, t] is in conflict with two
other pairs, then these pairs must be conflicting with [s, t] in the
edges {x, y1} and {x, y2} since x a deepest least common ancestor.
Right: Illustration of the replacement of the subtrees rooted at y1
and y2 by a single vertex y’. Note that (s’, y’) and (y’, t’’) are in
conflict.

Dorn et al. Algorithms for Molecular Biology 2011, 6:21
http://www.almob.org/content/6/1/21

Page 8 of 12



such that the conflict graph of the new instance is iden-
tical to G′

c. To this end, consider the MTO instance that
results by deleting the vertices in V (Ty1) ∪ V (Ty2),
removing the pairs [s, t], [s’, t’], and [s’’, t’’] and subse-
quently adding a vertex y’, making y’ adjacent to x, and
adding the pairs [s’, y’] and [y’, t’’] (see Figure 1 for an
illustration). Clearly, [s’, y’] and [y’, t’’] are in conflict.
Moreover, since only the pairs p, p’, and p’’ have end-
points in V (Ty1) ∪ V (Ty2), this transformation does not
change the conflicts with the other pairs. Further, we
have that me ≤ 2 in the resulting MTO instance.
Since width-two tree decompositions can be con-

structed in linear time [21] and weighted VERTEX
COVER can be solved in linear time on graphs with
constant treewidth [15], this yields linear-time solvability
for WEIGHTED MAXIMUM TREE ORIENTATION
with me ≤ 2.
Theorem 4. If me ≤ 2, then WEIGHTED MAXIMUM

TREE ORIENTATIONcan be solved in linear time.
Proof. To be able to determine the path between a pair

[s, t] in O(n) time, we root the tree arbitrarily and calcu-
late in linear time a data structure that allows least com-
mon ancestor queries in constant time [12]; the path
can then be found by going upwards from s and t until
hitting their least common ancestor, and then joining
the two partial paths. We then construct the conflict
graph by marking for each path the corresponding
edges with the pair and the direction, and then register-
ing a possible conflict for each tree edge. Since there
can be only linearly many markings and conflicts, the
construction takes O(n) time. A tree decomposition of
width two can then be found in linear time [21], and, as
mentioned above, solving weighted VERTEX COVER on
a graph with treewidth at most two takes only linear
time, too [15].
We can further prove that for me ≥ 3, MTO is NP-

hard even on stars, that is, on trees where all leaves are
attached to the same vertex. The proof is by reduction
from MAXDICUT.
Theorem 5. MAXIMUM TREE ORIENTATIONon

stars with me ≥ 3 is NP-complete.
Proof. As Medvedovsky et al. [3] pointed out, the NP-

hard MAXDICUT problem, defined as follows, can be
reduced to MTO on stars.

MAXDICUT
Given a directed graph G = (V, A) and a nonnegative
integer k, is it possible to find a subset of vertices C
⊆ V such that there are at least |A| - k arcs (v, w) Î
A with v Î C and w ∉ C?

From a MAXDICUT instance (G = (V, A), k), one
constructs an equivalent MTO instance (T = (V’, E), P,
k) by setting V’:= V ∪ {r}, E := {{v, r} | v Î V}, and P :=

A, where r ∉ V is a new root vertex [3]. Clearly, if a
MAXDICUT instance has maximum degree three, then
it reduces to an MTO instance with me ≤ 3. Thus, it
remains to show that MAXDICUT with maximum
degree three is NP-hard. (Unfortunately, there seems to
be no apt reduction from the undirected version MAX-
CUT, which is NP-hard for maximum degree three
[22].)
MAXDICUT can also be formulated as the problem to

delete up to k arcs to obtain a graph where every vertex
is only startpoint or only endpoint of arcs. We can char-
acterize such graphs by a forbidden substructure con-
sisting of three vertices u, v, w connected by the arcs (u,
v) and (v, w) (the arcs (u, w) and (w, u) may or may not
be present). Thus, if we ignore graphs with multiple
arcs between two vertices, we have three forbidden
induced subgraphs on three vertices. In this way, MAX-
DICUT is similar to the TRANSITIVITY DELETION
problem [23], which given a directed graph, asks for up
to k arc deletions to make it transitive, that is, to fulfill
for all u, v, w Î V that (u, v) Î A ∧ (v, w) Î A ⇒ (u, w)
Î A. Transitive graphs are characterized by two of the
three forbidden subgraphs for MAXDICUT; the sub-
graph with {(u, v), (v, w), (u, w)} ⊆ A is not forbidden.
However, if we examine the directed graphs that are
produced in the reduction from 3-SAT that proves NP-
hardness of TRANSITIVITY DELETION [23, Sect. 3.1],
we notice that this substructure does not occur, and
cannot be created by arc deletions. Thus, solving
TRANSITIVITY DELETION and MAXDICUT on these
directed graphs is equivalent. Since the constructed
instances also have degree at most three, we obtain the
NP-hardness of MAXDICUT with maximum degree
three. It is easy to see that MTO is contained in NP, so
we obtain the claimed theorem.

Observations on Protein Interaction Networks
The goal in this section is to explore the space of practi-
cally meaningful parameterizations, here focusing on
biological applications. We first performed experiments
based on the same data as used by Medvedovsky et al.
[3]. The network is a yeast protein-protein interaction
network from the Database of Interacting Proteins (DIP)
[24], containing 4,737 vertices and 15,147 edges. The
cause-effect pairs were obtained from gene knockout
experiments by Yeang et al. [2] and contain 14,502
pairs. After discarding small connected components and
contracting cycles, we obtained a tree with 1,278 vertices
and 5,569 pairs. (These numbers differ slightly from the
ones stated by Medvedovsky et al. [3]. We do not use
the additional kinase-substrate data, which is only mean-
ingful to evaluate the orientations obtained, and which
requires an arbitrary parameter choice not documented
by Medvedovsky et al. [3].)

Dorn et al. Algorithms for Molecular Biology 2011, 6:21
http://www.almob.org/content/6/1/21

Page 9 of 12



The resulting tree is, as already observed by Medve-
dovsky et al. [3], very star-like: there is one vertex of
degree 1,151 and 1,048 degree-one vertices attached to
it. The remaining 229 vertices have degree 1 to 4. All
paths connecting cause-effect pairs pass through the
central vertex.
We first note that this MTO instance is actually fairly

easy to solve exactly. The Integer Linear Program (ILP)
by Medvedovsky et al. [3, Sect. 3.1] and VERTEX
COVER on the conflict graph solved by either an ILP or
a simple branching strategy with data reduction all solve
the instance in less than a second. More precisely, the
running times are 0.09 s, 0.02 s, and 0.13 s, respectively,
on a 2.67 GHz Intel Xeon W3520 machine, using GLPK
4.44 for the ILPs, and with the branching strategy
implemented in Objective Caml. The branching strategy
finds a vertex v of maximum degree and branches into
the two cases of taking v into the vertex cover or taking
all neighbors of v into the vertex cover. Before each
branch, degree-1 vertices are eliminated by taking their
neighbor into the vertex cover. The search in the second
branch is cut short when the accumulated vertex cover
is larger than that of the first branch.
Note that all three algorithms do not require the para-

meter k (number of unsatisfied pairs) as input, but will
determine the minimum k such that there is a solution.
The reason that these strategies work so well is prob-

ably due to the low value of the parameter k: only 77
cause-effect pairs cannot be satisfied. This limits the size
of the branch-and-bound tree that underlies all three
methods.
In Table 1, we examine several other parameters.

Since there are still pt = 5,569 pairs left after contracting
all cycles in the network, using this parameter for a
fixed-parameter algorithm seems infeasible. Unfortu-
nately, since all paths run through a single vertex, the
parameter mv is not any more useful. Only about 5% of
the pairs are cross pairs after the data reduction, so q is
already a more promising parameter. However, with a
value of q = 417, this parameter seems not very helpful.
Even if we eliminate pairs that do not conflict with any
other pairs, leaving only nc = 1,287 pairs, we still find at
least 306 cross pairs (parameter q’). Again, because all
paths run through a single vertex, considering cross
pairs per vertex does not help here. In summary, for
this particular instance the number of unsatisfiable pairs
k is clearly the most useful parameter.
To examine the effect of the sparseness of the input

instance on the various parameters, we investigated
another yeast protein interaction network assembled by
Nir Yosef from various sources (see references in [25]). In
this network, each edge is annotated with a probability of
interaction. Thus, by thresholding, we can obtain graphs
of different sparseness. The results are shown in Table 2.

We see that, here, the parameter k is not always a
clear winner. When the network becomes sparser, the
components that will be shrunk to a single vertex by the
cycle contraction will be smaller, leaving fewer pairs
with both endpoints on the same tree vertex, and
thereby increasing the number of potential conflicts.
Only for very high thresholds, the parameter becomes
small again, since then the original instance is already
much smaller. Still, all instances can be solved in less
than one second by the three algorithms mentioned
above, which exploit low values of k.
We also see that for denser graphs, the parameter

values based on the number of cross pairs are quite low,
e.g. q′

v = 3 for the whole graph. Thus, it seems likely
that these instances can be quickly solved by the algo-
rithm from Theorem 3, running in O(2q′

v · n2 · q′
v) time.

One possible explanation for the low value for these
parameters is that the networks exhibit a linear struc-
ture. For example, if each protein can be assigned a dis-
tance to the nucleus, and interactions mostly transport
information to or from the nucleus, then we would
expect to have only few cross pairs.
The parameter mv could be expected to be not too

high in biological networks, since otherwise this would
make the network less robust, since elimination of one
vertex would disrupt too many paths. However, one ver-
tex in the tree under consideration can actually corre-
spond to a very large component in the original graph,
which weakens this effect. Therefore, this parameter is
more useful in sparser graphs, where not too many
graph vertices are joined into a tree vertex. However, for
the given instances, it seems small enough to be
exploited only for fairly small instances, where other
parameters would give good results, too.

Table 1 Network parameters

Parameter Value

n Number of network vertices 4,654

m Number of network edges 15,104

p Number of pairs 14,155

nt Vertices in MTO instance 1,278

pt Number of pairs in MTO instance 5,569

n* Number of vertices in star 1,049

mv Max. number of pairs per vertex 5,569

me Max. number of pairs per edge 371

q Number of cross pairs 417

qv Max. number of cross pairs per vertex 417

q’ Number of cross pairs after data reduction 306

q′
v Max. number of cross pairs per vertex after data reduction 306

nc Number of vertices in conflict graph 1,287

mc Number of edges in conflict graph 4,626

k Number of unsatisfiable pairs 77

Values for various parameters for the protein interaction network instance
from Medvedovsky et al. [3].

Dorn et al. Algorithms for Molecular Biology 2011, 6:21
http://www.almob.org/content/6/1/21

Page 10 of 12



The parameter me could similarly be expected to be
low in sparse networks; however, the NP-hardness result
already for me ≥ 3 (Theorem 5) makes practical use of
this parameter unlikely.

Conclusions
We started a parameterized complexity analysis of
(WEIGHTED) MAXIMUM TREE ORIENTATION,
obtaining a more fine-grained view on the computa-
tional complexity of this NP-hard problem. In this line,
there are still several challenges for future investigations.
For instance, it is open whether MTO is fixed-parameter
tractable with respect to the parameter “number of
satisfied pairs” (n - k). Further, in the spirit of “distance-
from-triviality parameterization” [19,20] it would be
interesting to study the parameterized complexity of
MTO with respect to the parameter “number of all pos-
sible pairs minus the number of input pairs"–recall that
for parameter value zero MTO is polynomial-time solva-
ble [11]. MTO restricted to stars is still NP-hard, but
then at least one quarter of all input pairs can always be
satisfied [3]. Hence, it would be interesting to study
above guarantee parameterization [15,20] with respect
to the number of satisfied pairs. MTO can be translated
into a vertex covering problem (see Proposition 1) on a
graph class that is K4-free–this motivates to study
whether vertex covering on this graph class can be done
faster than on general graphs. Clearly, MTO brings
along numerous further parameters and parameter com-
binations which can make a more comprehensive multi-
variate complexity analysis [20] very attractive. Often, it
is desirable to not only list a single solution, but to enu-
merate all optimal solutions. Our dynamic-

programming-based algorithms seem suitable for this.
Following Gamzu et al. [8] and extending the studies for
MTO as pursued here to the more general case of
mixed graphs with partially already oriented edges is of
high interest. First steps in this direction have very
recently been undertaken by Silverbush et al. [9] and
Elberfeld et al. [26]. Finally, it seems promising to exam-
ine the parameters based on cross pairs in other net-
works such as communication networks, and to try to
exploit these parameters for other hard network
problems.

Acknowledgements
A preliminary version of this work appeared in the proceedings of the 1st
International ICST Conference on Theory and Practice of Algorithms in
(Computer) Systems (TAPAS ‘11), volume 6595 in Lecture Notes in Computer
Science, pages 104-115, Springer 2011.
JU and partly FH were supported by the Deutsche Forschungsgemeinschaft
(DFG), research project PABI (NI 369/7).
Major parts of the work were done while BD and DK were with the
Universität Tübingen, FH was with the Humboldt-Universität zu Berlin, and
RN and JU were with the Friedrich-Schiller-Universität Jena. We are grateful
to two anonymous referees whose insightful remarks helped to improve the
presentation of our work.

Author details
1Fakultät für Mathematik und Wirtschaftswissenschaften, Universität Ulm,
Ulm, Germany. 2Institut für Softwaretechnik und Theoretische Informatik, TU
Berlin, Berlin, Germany. 3Institut für Theoretische Informatik, Universität Ulm,
Ulm, Germany.

Authors’ contributions
All authors contributed more or less equally, RN initiating the study of MTO
under the viewpoint of multivariate complexity analysis and JU coming up
with the major algorithmic ideas which have been worked out in more
detail by DK. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Table 2 Thresholded network parameters

threshold n m p nt pt n* mv me q qv q’ q′
v nc mc k

0.000000 5385 39921 14393 799 2014 750 2014 59 7 7 3 3 115 292 17

0.154420 4530 35041 11522 747 2203 705 2203 298 27 27 20 20 475 1632 40

0.371369 4254 32135 10740 796 2443 749 2443 275 47 47 35 35 528 2424 46

0.573290 3871 27128 9445 777 2225 704 2225 268 32 32 13 13 140 311 32

0.573313 2546 8977 5279 638 2311 477 2310 208 252 252 151 151 561 2394 68

0.830093 2206 7136 4346 643 2206 449 2206 192 304 304 193 193 727 4017 83

0.886308 1407 3646 1607 441 787 260 785 45 106 106 88 88 311 1876 75

0.943001 1135 3069 920 361 464 195 463 32 57 57 42 42 179 801 44

0.954421 1039 2504 843 350 489 175 461 45 85 73 71 61 215 3001 81

0.957338 895 2060 681 304 405 119 375 39 64 54 58 50 240 3092 89

0.965986 874 2018 666 299 477 103 411 165 90 78 85 75 358 12284 110

0.984753 668 1676 312 206 163 95 162 20 7 7 6 6 55 222 15

0.989212 581 1322 188 192 167 69 161 86 24 24 24 24 141 1088 32

0.989233 307 681 71 121 70 32 66 36 21 21 11 11 52 219 7

0.990409 294 666 28 114 27 26 26 21 2 2 2 2 9 8 2

Parameters for the largest connected component of the protein interaction network assembled by Nir Yosef [25] with different thresholds for the edge
probability. The uneven gaps in the sizes of the instances are because many edges have identical weights.

Dorn et al. Algorithms for Molecular Biology 2011, 6:21
http://www.almob.org/content/6/1/21

Page 11 of 12



Received: 22 March 2011 Accepted: 25 August 2011
Published: 25 August 2011

References
1. Werther M, Seitz H, Eds: In Protein-protein interaction. Volume 110. Advances

in Biochemical Engineering/Biotechnology. Springer; 2008.
2. Yeang CH, Ideker T, Jaakkola T: Physical network models. Journal of

Computational Biology 2004, 11(2-3):243-262.
3. Medvedovsky A, Bafna V, Zwick U, et al: An algorithm for orienting graphs

based on cause-effect pairs and its applications to orienting protein
networks. In Proc 8th WABI. Volume 5251. LNBI, Springer; 2008:222-232.

4. Karzanov AV: Èkonomnyj algoritm nahoždeniâ bikomponent grafa [in
Russian: An efficient algorithm for finding the bicomponents of a
graph]. Trudy tret’ej zimnej školy po matematičeskomû programmirovaniu i
smežnym voprosam [Proceedings of the 3rd Winter School on Mathematical
Programming and Related Problems] Moscow Engineering and Construction
Institute (MISI); 1970, 343-347.

5. Tarjan RE: Depth-first search and linear graph algorithms. SIAM Journal on
Computing 1972, 1(2):146-160.

6. Alm E, Arkin AP: Biological networks. Current Opinion in Structural Biology
2003, 13(2):193-202.

7. Sharan R, Ideker T: Modeling cellular machinery through biological
network comparison. Nature Biotechnology 2006, 24:427-433.

8. Gamzu I, Segev D, Sharan R: Improved orientations of physical networks.
In Proc 10th WABI. Volume 6293. LNBI, Springer; 2010:215-225.

9. Silverbush D, Elberfeld M, Sharan R: Optimally orienting physical networks.
In Proc 15th RECOMB. Volume 6577. LNBI, Springer; 2011:424-436.

10. Gitter A, Klein-Seetharaman J, Gupta A, et al: Discovering pathways by
orienting edges in protein interaction networks. Nucleic Acids Research
2011, 39(4):e22.

11. Hakimi SL, Schmeichel EF, Young NE: Orienting graphs to optimize
reachability. Information Processing Letters 1997, 63(5):229-235.

12. Harel D, Tarjan RE: Fast algorithms for finding nearest common ancestors.
SIAM Journal on Computing 1984, 13(2):338-355.

13. Downey RG, Fellows MR: Parameterized Complexity Springer; 1999.
14. Flum J, Grohe M: Parameterized Complexity Theory Springer; 2006.
15. Niedermeier R: Invitation to Fixed-Parameter Algorithms. No. 31 in Oxford

Lecture Series in Mathematics and Its Applications, Oxford University Press;
2006.

16. Niedermeier R, Rossmanith P: On efficient fixed-parameter algorithms for
weighted vertex cover. Journal of Algorithms 2003, 47(2):63-77.

17. Song Y, Liu C, Huang X, et al: Efficient parameterized algorithms for
biopolymer structure–sequence alignment. IEEE/ACM Trans Comput
Biology Bioinform 2006, 3(4):423-432.

18. Bodlaender HL: A partial k-arboretum of graphs with bounded treewidth.
Theoretical Computer Science 1998, 209(1-2):1-45.

19. Guo J, Hüffner F, Niedermeier R: A structural view on parameterizing
problems: distance from triviality. In Proc 1st IWPEC. Volume 3162. LNCS,
Springer; 2004:162-173.

20. Niedermeier R: Reflections on multivariate algorithmics and problem
parameterization. In Proc 27th STACS. Volume 5. Leibniz International
Proceedings in Informatics, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik; 2010:17-32.

21. Arnborg S, Proskurowski A: Characterization and recognition of partial 3-
trees. SIAM Journal on Algebraic and Discrete Methods 1986, 7(2):305-314.

22. Yannakakis M: Edge-deletion problems. SIAM Journal on Computing 1981,
10(2):297-309.

23. Weller M, Komusiewicz C, Niedermeier R, et al: On making directed graphs
transitive. Journal of Computer and System Sciences 2011.

24. Salwinski L, Miller CS, Smith AJ, et al: The database of interacting proteins:
2004 update. Nucleic Acids Research 2004, , 32 Database: D449-D451.

25. Bruckner S, Hüffner F, Karp RM, et al: Topology-free querying of protein
interaction networks. Journal of Computational Biology 2010, 17(3):237-252.

26. Elberfeld M, Segev D, Davidson CR, et al: Approximation algorithms for
orienting mixed graphs. In Proc 22nd CPM. Volume 6661. LNCS, Springer;
2011:416-428.

doi:10.1186/1748-7188-6-21
Cite this article as: Dorn et al.: Exploiting bounded signal flow for graph
orientation based on cause-effect pairs. Algorithms for Molecular Biology
2011 6:21.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

Dorn et al. Algorithms for Molecular Biology 2011, 6:21
http://www.almob.org/content/6/1/21

Page 12 of 12

http://www.ncbi.nlm.nih.gov/pubmed/15285891?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12727512?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16601728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16601728?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21109539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21109539?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377443?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20377443?dopt=Abstract

	Abstract
	Background
	Results
	Conclusions

	Background
	Problem Formalization
	Maximum Tree Orientation (MTO)

	Previous Work
	Our Contributions
	Preliminaries, Basic Facts, and Simple Observations
	Methods and Results
	Bounded Signal Flow Over Vertices
	Parameter “Maximum Number of Pairs Per Vertex”
	Cross Pairs
	Cross-pair-free Instances


	Correctness
	Corollary 1
	Parameter “Maximum Number of Cross Pairs Passing Through a Vertex”
	Bounded Signal Flow Over Edges
	Observations on Protein Interaction Networks
	Conclusions
	Acknowledgements
	Author details
	Authors' contributions
	Competing interests
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


