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Special Issue "Impact of environmental pollution and stress on redox signaling and oxidative 
stress pathways" 

Within the last decades, the global burden of disease (GBD) has 
shifted from communicable, maternal, perinatal, and nutritional causes 
to non-communicable diseases such as atherosclerosis or metabolic 
disease [1,2]. Genome-wide association studies aimed to identify the 
genetic risk factors underlying non-communicable diseases in order to 
explain their genetic (familial) predisposition in large populations. More 
recently, there was a change of this dogma due to the increasing evi
dence that genetic (familial) predisposition for non-communicable dis
eases may be outcompeted by environmental risk factors, also reflected 
by the statement of G.A. Bray “The genetic background loads the gun, 
but the environment pulls the trigger” [3], also put forward by F. Collins, 
the director of the NIH. Based on these recent scientific advances, a new 
research field was defined by the term “exposome” [4], which comprises 
the changes of our endogenous biochemical systems by life-long envi
ronmental/behavioral exposures and our social environment as well as 
the associated health effects [5,6]. 

There is increasing evidence that environmental stressors such as air 
pollution, noise and mental stress may facilitate the development of 
chronic non-communicable disease [7,8]. Recent reports of the Lancet 
Commission on Pollution and Health [9], the World Health Organization 
[10] and the Global Burden of Disease Study [11,12] reported that 
environmental risk factors significantly contribute to the global burden 
of disease. All forms of pollution together caused 9 to 12.6 million 
deaths in 2015 and 2012 [9,10], respectively, reflecting 16–20% of total 
mortality worldwide and representing a higher number of annual deaths 
than estimated for smoking. These numbers will rather increase than 
decrease since most recent mathematical models using geographic 
pollution and health data predict almost 9 million deaths attributable to 
air pollution alone [13,14]. Of note, air pollution was identified as the 
leading health risk factor in the physical environment, followed by 
water/soil pollution and occupational exposures by (in)organic parti
cles, heavy metals, pesticides and other chemicals [9], however 
neglecting the non-chemical environmental health risk factors mental 
stress, noise, light exposure and climatic changes. Epidemiological data 
suggest that environmental risk factors are associated with higher risk 
for cardiovascular, metabolic and mental disease including hyperten
sion, heart failure, myocardial infarction, diabetes, arrhythmia, stroke, 
neurodegeneration, depression and anxiety disorders (e.g. for noise see 
Refs. [15,16]). The mechanisms underlying environmentally triggered 
non-communicable disease are not fully understood but may comprise 
increased stress hormone release (cortisol, adrenaline, noradrenaline), 
oxidative stress and inflammation leading to adverse health effects. 

With the present Special Issue, we want to highlight the redox 
biology and oxidative stress underlying cardiovascular, neurological 

and immunological disorders in response to environmental risk factors 
and the existing research gaps (including a definition and discussion of 
the usefulness of oxidative stress biomarkers in this context [17]). We 
also put emphasis on emerging mechanisms based on dysregulation of 
the circadian clock, the microbiome, epigenetic pathways and cognitive 
function by environmental stressors. Several articles within this Special 
Issue thematically cover chemical environmental stressors such as air 
pollution [18–20], nano/microplastic particles [21], other toxic envi
ronmental chemicals (e.g. heavy metals or pesticides as well as airborne 
secondary toxicants) [22–24] and the behavioral risk factor waterpipe 
smoking [25]. We also put emphasis on articles highlighting biochem
ical mechanisms that explain the adverse health effects of non-chemical 
environmental stressors such as UV-induced damage [20,26], traffic 
noise exposure [27,28] and mental stress [29,30]. 

1. Airborne chemical pollutants 

Gangwar & Rajagopalan provide an update to what extent air 
pollution constituents (with emphasis on particulate matter) are taken- 
up into the organism, triggering inflammation and oxidative stress 
pathways and finally leading to adverse health outcomes with respect to 
lung and cardiovascular diseases [18]. The authors also provide a 
tabular overview concerning related animal as well as human studies 
and conclude with a brief overview on the mitigation of air pollution and 
how to fill research gaps in the scientific field of air pollution. Ferrara & 
Valacchi present new data on additive effects of UV irradiation in 
combination with ozone and/or diesel engine exhaust on oxidation and 
inflammation pathways in human skin explants [20]. The authors 
established that the combination of different stressors may have additive 
effects on most of the investigated markers, with a central role of the aryl 
hydrocarbon receptor. They also provide evidence for the protective 
potential of antioxidant cosmeceuticals. Ziegler & P€oschl report about 
the increased pro-inflammatory potential of nitrated α-synuclein, heat 
shock protein 60 and high-mobility-group box 1 protein, which are 
relevant in neurodegenerative and cardiovascular diseases, by 
measuring the activation of the Toll-like receptor 4 in cultured human 
monocytes (THP-1) [19]. The authors employed nitrated proteins as a 
model of damage-associated molecular patterns that arise upon reaction 
of endogenous proteins with nitrogen oxide radicals from air pollution 
or peroxynitrite generated by immune cells in response to stimulation by 
solid particulate matter. Hu & Palic provide an overview on nano/
microplastic particle induced health effects with mechanisms relying on 
oxidative stress and inflammatory pathways that interestingly show 
similarities to the toxic effects of air pollution particles [21]. The authors 
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prepared their overview in the format of Adverse Outcome Pathways 
(AOPs) based on key events, which is also used by public health orga
nizations and the OECD guidelines, presenting a complete tabular 
overview on key events, adverse health outcomes and toxicological 
endpoints in different organisms. 

2. Other environmental chemical pollutants 

Zheng & Aschner summarize the pathophysiology of heavy metals, 
pesticides and airborne secondary toxicants with emphasis on oxidative 
and electrophilic activation of the nuclear factor erythroid 2-related 
factor 2 (NRF2) [22]. The authors also highlight other 
pollutant-triggered redox and electrophilic signaling pathways (e.g. 
PTP1B, PTEN, HSP90 and epigenetics). Miguel & Espinosa-Diez provide 
an overview on the regulation of non-coding RNAs (e.g.microRNAs) by 
UV irradiation and a large number of environmental chemicals such as 
polychlorinated biphenyl (PCB), bisphenol, heavy metals, particulate 
matter, asbestos and pesticides [23]. The authors created tables of the 
health effects of different pollutants on non-coding RNA regulation, 
their target genes and associated health effects. Vogel & 
Haarmann-Stemmann discuss the role of the aryl hydrocarbon receptor 
(AHR) for pollution mediated stress responses and inflammation with 
emphasis on polycyclic aromatic hydrocarbons (PAHs) and persistent 
organic pollutants (POPs), e.g. as contained in airborne particulate 
matter [24]. The authors describe in detail how AHR activation can lead 
to reactive oxygen species (ROS) formation and what role the interaction 
with other targets such as xenobiotic-responsive elements, cytochrome 
P450 enzymes, glutathione S-transferase, NRF2, nuclear factor-κB and 
others play for pollution response. Badran & Laher summarize the 
adverse health effects of waterpipe (shisha) smoking via oxidative stress 
induction with a detailed discussion of the toxic constituents specific for 
waterpipe smoke and their pathobiochemical potential [25]. The au
thors also highlight the impact of these toxic compounds as central 

players of oxidative stress leading to antioxidant and inflammatory re
sponses in different organs and describe their association with oxidative 
stress markers in human and animal studies. 

3. Physical and mental environmental stressors 

Kremslehner & Gruber present original data on a rapid activation of 
glucose-6-phosphate dehydrogenase (G6PD) by acute UV irradiation, 
representing a novel metabolic stress adaptation process by switching to 
the pentose phosphate pathway (measured by MS/MS metabolomics), 
which was also mimicked by metformin treatment [26]. The activation 
of G6PD by acute UV challenges correlates with DNA damage responses 
(γH2AX) and cell damage pathways in skin equivalent models of 
cultured primary keratinocytes and skin biopsies, but was abnormal 
upon chronic UV irradiation. The other work on the adverse effects of 
UV irradiation was already described above [20]. Steven & Münzel show 
new data on the additive adverse effects of aircraft noise exposure and 
pre-existing arterial hypertension in mice upon infusion with 
angiotensin-II and noise exposure for 7 days [28]. The authors demon
strate that in a hypertension model characterized by increased ROS 
formation (2-hydroxyethidium by HPLC), increased markers of oxida
tive stress (4-hydroxynonenal) and inflammation (CD68, VCAM-1, in
terleukins), impaired nitric oxide signaling (eNOS S-glutathionylation, 
plasma nitrite, pSer1177-eNOS, pVASP), endothelial dysfunction and 
high blood pressure that all these parameters are further aggravated by 
aircraft noise in the aorta, heart and brain in the presence of both risk 
factors. Daiber & Münzel summarize the mechanisms of adverse redox 
signaling and oxidative stress pathways initiated by traffic noise expo
sure that ultimately lead to neuronal stress responses (via the limbic 
system (amygdala) and the HPA axis), uncoupling and dysregulation of 
endothelial and neuronal nitric oxide synthase (eNOS and nNOS) as well 
as impaired nitric oxide signaling [27]. The authors explain how noise 
induces neuroinflammation, cerebral oxidative stress and release of 

Fig. 1. Exposure to environmental risk factors (¼external exposome) leads to changes of central biochemical pathways with associated health impact. The central 
biochemical pathways comprise stress hormone release (cortisol and catecholamines), production of reactive oxygen species by mitochondria and NADPH oxidase in 
activated immune cells, inflammation with tissue infiltration of activated immune cells and oxidative damage in different organs. Since classical health risk factors 
share similar pathomechanisms, people with existing classical health risk factors or disease (e.g. diabetes or hypertension) may experience additive adverse health 
effects upon exposure to environmental risk factors. HPA, hypothalamic-pituitary-adrenal axis; SNS, sympathetic nervous system; NOX-2, phagocytic NADPH oxidase 
(isoform 2); ROS, reactive oxygen species. Modified from [31] with permission according to the terms of the Creative Commons CC BY license. © 2019 The Authors. 
British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society. 
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stress hormones, and how this neuronal activation translates to 
noise-induced cardiovascular dysfunction (via crosstalk of neuronal 
stress hormones with vasoconstrictor pathways) and damage (via acti
vation of the phagocytic NADPH oxidase and inflammatory pathways). 

Ghaemi & Michal provide an overview on the molecular mechanisms 
triggered by psychosocial stress with special emphasis on the role of the 
amygdala, a crucial structure of the fear-defense system [30]. The au
thors discuss different interaction nodes of mental and oxidative stress, 
the crosstalk with the sympathetic nervous system, preventive thera
peutic interventions, and highlight recent neuroimaging data explaining 
the translation of increased metabolic amygdala activity to systemic 
inflammation and cardiometabolic diseases. Li & Xia summarize the 
health effects of loneliness and social isolation via stress response 
pathways (cortisol and catecholamines) and induction of inflammation 
as well as oxidative stress [29]. The authors explain how chronic psy
chosocial stress is strongly linked to cardiovascular diseases and high
light the central role of cerebral oxidative stress for activation of the 
HPA axis and the sympathetic nervous system. 

4. Concluding note 

Environmental stressors share common pathophysiological path
ways centered on stress hormone signaling, oxidative stress and 
inflammation (Fig. 1) [7], which will make it almost impossible to 
discriminate between exposure to different environmental stressors 
within ongoing and future large-scale exposome studies. Oxidative stress 
and inflammation also represent major pathomechanisms causing car
diovascular, neurodegenerative and metabolic diseases. Accordingly, an 
overlap of these central pathways is indicative of additive/synergistic 
adverse biochemical effects in response to environmental, lifestyle and 
traditional health risk factors leading to aggravated pathogenesis of 
non-communicable diseases in a bonfire fashion [8]. Accordingly, P. 
Ghezzi proposes a classification of oxidative stress biomarkers (type 
0–4), discusses their usefulness as direct and indirect read-outs of the in 
vivo footprints of environmental risk factors and whether these bio
markers may represent therapeutic targets or just represent innocent 
bystanders [17]. Considering the accumulation of environmental risk 
factors in big cities and large urbanized areas (e.g. noise, air pollution 
and psychosocial stress), the health problems and disease burden asso
ciated with the sum of these environmental stressors may even outper
form all previous estimations. At the end, we would like to thank all the 
authors for their valuable contributions and we hope that they will 
stimulate new ideas and scientific discussion. 
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