
ORIGINAL RESEARCH
published: 14 December 2021

doi: 10.3389/fnbot.2021.744031

Frontiers in Neurorobotics | www.frontiersin.org 1 December 2021 | Volume 15 | Article 744031

Edited by:

Fabio Bonsignorio,

Heron Robots, Italy

Reviewed by:

Wen Qi,

Politecnico di Milano, Italy

Antonio Chella,

University of Palermo, Italy

*Correspondence:

Garrett E. Katz

gkatz01@syr.edu

Received: 19 July 2021

Accepted: 16 November 2021

Published: 14 December 2021

Citation:

Katz GE, Akshay, Davis GP, Gentili RJ

and Reggia JA (2021) Tunable Neural

Encoding of a Symbolic Robotic

Manipulation Algorithm.

Front. Neurorobot. 15:744031.

doi: 10.3389/fnbot.2021.744031

Tunable Neural Encoding of a
Symbolic Robotic Manipulation
Algorithm

Garrett E. Katz 1*, Akshay 1, Gregory P. Davis 2, Rodolphe J. Gentili 3 and James A. Reggia 2

1Department of Electrical Engineering and Computer Science, Syracuse University, Syracuse, NY, United States,
2Department of Computer Science, University of Maryland, College Park, MD, United States, 3Department of Kinesiology,

University of Maryland, College Park, MD, United States

We present a neurocomputational controller for robotic manipulation based on the

recently developed “neural virtual machine” (NVM). The NVM is a purely neural recurrent

architecture that emulates a Turing-complete, purely symbolic virtual machine. We

program the NVM with a symbolic algorithm that solves blocks-world restacking

problems, and execute it in a robotic simulation environment. Our results show that

the NVM-based controller can faithfully replicate the execution traces and performance

levels of a traditional non-neural program executing the same restacking procedure.

Moreover, after programming the NVM, the neurocomputational encodings of symbolic

block stacking knowledge can be fine-tuned to further improve performance, by applying

reinforcement learning to the underlying neural architecture.

Keywords: neurosymbolic architectures, robotic manipulation, reinforcement learning, policy optimization,

explainable AI

1. INTRODUCTION

Effective manipulation requires tight integration of low-level motor control and high-level
reasoning. In robotics and AI, high-level reasoning is usually implemented using symbolic
methods, such as automated first-order logic and back-tracking search (Russell and Norvig, 2002;
Ghallab et al., 2004), whereas low-level motor control uses sub-symbolic methods such as neural
networks (Gentili et al., 2015; Levine et al., 2016).

Integrating symbolic reasoning with sub-symbolic robotic control, also known as “Cognitive
Robotics” (Levesque and Lakemeyer, 2008), is a long-standing challenge and active research
area. Symbolic methods make it straightforward for human engineers to specify declarative and
procedural knowledge and goals, but do not readily handle raw sensorimotor data, adapt to
changing environments, or learn from experience to improve performance. The situation with
neural networks and other sub-symbolic control methods is reversed. Hence, there is a need for
robotic systems that tightly integrate both methodologies and leverage the best of both worlds.

Programmable neural networks (Verona et al., 1991; Neto et al., 2003; Eliasmith and Stewart,
2011; Bošnjak et al., 2017; Katz et al., 2019; Davis et al., 2021) comprise one potential approach
to building such systems. These are neural networks whose dynamics can emulate execution
of human-authored source code. Typically, each symbol in the source code is represented by
a dedicated pattern vector of neural activity, and different layers of neurons represent different
registers and memory slots in the symbolic machine being emulated. A mathematical construction
then converts the source code to an equivalent set of synaptic weight values that are assigned
to the neural network, analogously to a “compilation” process. Finally, one runs the resulting

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2021.744031
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2021.744031&domain=pdf&date_stamp=2021-12-14
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:gkatz01@syr.edu
https://doi.org/10.3389/fnbot.2021.744031
https://www.frontiersin.org/articles/10.3389/fnbot.2021.744031/full

Katz et al. Tunable Neurosymbolic Robotic Manipulation

network activation dynamics, and changing pattern vectors in the
various neural layers correspond one-to-one with changes in the
emulated symbolic machine state during program execution.

In a robotics context, a human operator can write a symbolic
program for a manipulation task, and then “compile” this
program into an equivalent programmable neural network
instance. This can be viewed as a sophisticated form of weight
initialization that encodes prior declarative and procedural
knowledge. The benefit is that this prior knowledge could be
used as inductive bias and fine-tuned over time to improve
performance, by applying sub-symbolic learning techniques
to the underlying neural network as it interacts with the
environment. As opposed to training black-box neural networks
from scratch, this may produce more explainable AI systems, due
to the encoded prior knowledge used as a starting point.

In this paper, we test this approach using a programmable
neural network model called the “Neural Virtual Machine”
(NVM), which is asymptotically Turing-complete as layer size
grows (Katz et al., 2019). We program the NVM to control the
PoppyTM Ergo Jr robotic manipulator (Lapeyre et al., 2014) in
a PyBullet (Coumans and Bai, 2021) simulation environment.
The code for all experiments is open-source and available
online.1 Our focus in this paper is not state-of-the-art low-
level motor control, nor is it state-of-the-art high-level planning.
Rather, it is state-of-the-art methodology for integration of
symbolic and sub-symbolic aspects of roboticmanipulation using
programmable neural networks. To that end, we employ a simple
block stacking task and planning algorithm. This avoids the finer
points of motor control and automated planning research, when
considered separately, that are not germane to our study.

2. BACKGROUND

2.1. Block Stacking
Block stacking is a classic problem domain in AI and robotics
(Nilsson, 1980; Russell and Norvig, 2002; Ghallab et al., 2004),
where the goal is to rearrange stacks of blocks into a target
configuration by picking up or putting down blocks, one
at a time. Despite the simplicity of the problem statement,
computing an optimal sequence of pick-up and put-down actions
is computationally complex. Gupta and Nau (1991) show that a
common formalization of optimal blocks-world planning is NP-
hard, due to a situation they call “deadlock” in which two (or
more) blocks cover each other’s goal positions. Another well-
known issue in block stacking and other planning domains is
“Sussman’s anomaly,” in which premature resolution of one sub-
goal may prevent another sub-goal from being achieved without
undoing the first (Sussman, 1973). Many sophisticated planners
avoid these issues and perform well on block stacking in the
average case.

If one is not concerned with optimal block stacking, one
can achieve the goal in a slower but straightforward way: first
unstack every block until all blocks are flat on the tabletop,
and then stack blocks back up into the desired arrangement.

1https://github.com/garrettkatz/poppy-muffin/tree/master/pybullet/tasks/

pick_and_place

This procedure avoids Sussman’s anomaly because it does not
prematurely stack one block on another until after all blocks are
laid out on the table. Since our focus here is integrating symbolic
and neurocomputational robotic control, rather than optimal
planning at the purely symbolic level, we adopt this simpler but
sub-optimal block stacking procedure.

2.2. Programmable Neural Networks
The question of how neural networks (including the human
brain) can support cognitive-level symbolic processing is a long-
standing research problem. One approach to this problem aims
to “compile” symbolic source code into a set of equivalent
neural network weights, such that running the resulting network
dynamics effectively emulates execution of the source code.
We refer to such models as “programmable neural networks.”
Examples from the past several decades include (Verona et al.,
1991; Gruau et al., 1995; Neto et al., 2003; Eliasmith and
Stewart, 2011), which often use local representation (i.e., one
neuron represents one program variable) and/or static weights
that do not change after “compilation” time. More recent
approaches often use modern deep learning tools and gradient-
based optimization to obtain the weights from training examples
(Graves et al., 2016; Reed and De Freitas, 2016; Bošnjak et al.,
2017), and employ model architectures that are “hybrid” (not
purely neural) or otherwise biologically implausible.

Programmable neural networks are one potential route
to cognitive robotics, because they can represent symbolic
knowledge but are also amenable to sub-symbolic processing.
An early example of neural network control in manipulation
tasks comes from Dehaene and Changeux (1997), who used local
representation and hand-crafted weights to perform the Towers
of London stacking task. More recently, Aleksander (2004) used
a neural network to generate mental imagery of a plan to restack
blocks, although no robotic manipulation was included. A recent
deep learning approach by Xu et al. (2018) is capable of robotic
imitation learning, although it wraps neural components in a
symbolic top-level control algorithm.

2.3. Contributions
In this paper, we present a programmable neural network
approach capable of encoding symbolic procedural knowledge
for block stacking, and executing the encoded block stacking
algorithm on a simulated robotic manipulator. Unlike past
programmable neural networks, ours uses a purely neural
architecture, distributed representations, and dynamic weights
that change during both program “compilation” and program
execution. Whereas past work also focuses only on compilation
or only on learning, we demonstrate that our model supports
both: it can compile human-authored procedural knowledge
into initial network weights, but also refine that knowledge
by fine-tuning the weights on the basis of experience and
reinforcement signals.

Our programmable neural network used here is an updated
version of our recently proposed “Neural Virtual Machine”
(NVM) architecture (Katz et al., 2019). The following section
provides the requisite background information needed to
understand the NVM and how we use it here.

Frontiers in Neurorobotics | www.frontiersin.org 2 December 2021 | Volume 15 | Article 744031

https://github.com/garrettkatz/poppy-muffin/tree/master/pybullet/tasks/pick_and_place
https://github.com/garrettkatz/poppy-muffin/tree/master/pybullet/tasks/pick_and_place
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

2.4. The Neural Virtual Machine
The NVM is a programmable neural network that emulates a
virtual, symbolicmachine. The virtual machine (VM) can execute
programs written in a minimalistic, assembly-like language.
There is also a non-neural, reference implementation of this
virtual machine, which we will call the RVM. The RVM is a
purely symbolic implementation of the VM, so it does not suffer
from numerical issues faced by neurocomputational systems.
Therefore, RVM execution traces serve as a “gold standard,”
against which the NVM can be compared for testing and
validation purposes.

The top-level NVM workflow is shown in Figure 1. First, a
user provides a desired NVM configuration, including layer sizes
and any application-specific layers and connections (Figure 1A).
A “blank” (not yet programmed) NVM instance is automatically
constructed with the desired configuration and appropriate
initial weights W. Then, the user can supply source code for
one or more programs in the VM assembly language. Distinct,
random patterns of neural activity are assigned to represent
different symbols appearing in the source code. Each program
is then “compiled” by the NVM assembler into a weight
update 1W that encodes the program and is applied to the
NVM instance.

A compiled program can be executed by running the recurrent
NVM dynamics (Figure 1B). The NVM neural network state at
each time-step is in one-to-one correspondence with the VM
machine state that it represents. Each virtual machine register
has a corresponding neural layer, and the layer’s activity pattern
represents the symbol currently stored in the register.

The assignments of activity patterns to symbols are stored
in a bidirectional lookup table called a “codec,” because it can
“encode” a symbol by looking up its assigned pattern, or “decode”
a pattern by looking up the symbol it represents (Figure 1C). The
codec can be used at any point to encode and inject symbolic
input, or extract and decode symbolic output.

We provide more detail on the symbolic VM, and then
the neural network that emulates it, in the following two
sections. Later, section 3.3 provides a concrete example of an
NVM execution trace to illustrate how the various layers and
weights work together to emulate a full program relevant to
block stacking.

2.4.1. The Reference VM

The RVM contains a set of registers and a set of directed
connections between those registers. Each register can hold one
symbol at a time. A symbol currently held in a register r is
denoted vr. There can be multiple connections between the same
pair of registers, and self-connections from a register to itself.
Each connection operates like a rewritable, key-value lookup
table, where symbols can be used as keys or values. Given a
connection C from a source register q to a destination register
r, two fundamental operations can be performed:

• Storage of a key-value pair: C[vq]← vr
• Recalling a value from its key: vr← C[vq]

Storing a new key-value pair in a connection will overwrite
any previously stored pair with the same key. Connections have
similar semantics to mapping types in high-level programming
languages, such as dictionaries in Python, except that they are
bound to specific pairs of registers. The connection C above can
only store a new key-value pair if the key and value are currently
in q and r, respectively. Likewise, it can only recall a value for
the key currently in q, and the value it recalls will overwrite the
content of r.

VM connections can be used to store domain-specific
mapping data (e.g., mapping blocks to their locations), but they
can also be used in more versatile ways to implement generic
assembly language constructs. The simplest example is copying
data between registers. If a connection between registers maps
each possible symbol v to itself, i.e., C[v]= v, then recall in the

FIGURE 1 | Top-level NVM workflow. (A) The user configures a blank NVM instance and then compiles one or more assembly source programs into weight updates.

(B) Running the recurrent NVM dynamics produces network states in one-to-one correspondence with the emulated virtual machine states. (C) At any point the user

may employ a lookup table called a “codec” to convert between layer activity patterns and the symbols they represent, in order to inspect the emulated machine state

or supply input.

Frontiers in Neurorobotics | www.frontiersin.org 3 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

connection will copy the current symbol in the source register to
the destination register.

A more complex but powerful example is representing
random-access memory, with reading, writing, pointer
arithmetic, and pointer reference/dereferencing. This can
be achieved with two registers and four connections, as shown
in Figure 2. Symbols in one register, called pt in the figure,
represent memory address pointers. The pt register functions
like a read-write head. Symbols in the other register, called r
in the figure, represent generic symbols that can be written
to/read from memory, or to/from which pointers can be
referenced/dereferenced. As shown in the figure, each memory
operation can be implemented by specific storage or recall
operations in the appropriate connections. In more detail:

• Pointer increments use a connection Cinc from pt to itself.
If the ith memory address is represented by a symbol mi, and
Cinc[mi] = mi+1 for each i, then recall in Cinc increments
the current pointer in pt. Similarly, decrements use another
self-connection Cdec in which Cdec[mi] = mi−1.
• Memory reading and writing uses the connection Cpt,r from
pt to r. The storage operation Cpt,r[vpt]←vr writes the
symbol in r to the memory address in pt, and the recall
operation vr←Cpt,r[vpt] reads a symbol from the memory
address in pt into register r.
• Pointer de/reference uses the reverse connection Cr,pt, from
r to pt. Storage will associate the current symbol in r with
the current address in pt (pointer reference), and recall will
dereference the current symbol in r, restoring its associated
address in pt.

The foregoingmechanisms are not limited to programmer-facing
heap memory. They can also be used for program memory with
instruction pointers, and stack frame memory for sub-routine
calls with stack pointers. Therefore, VM connections are a quite
general abstraction that supports random-access memory and
non-sequential program execution.

2.4.2. The Neural VM

The NVM is a purely neurocomputation implementation of
the reference VM described above. Each register is represented
by a layer of neurons, each possible symbol is represented by
a distinct, dedicated pattern vector, and each connection is
represented by an associative weight matrix. The overall network
is recurrent, so neural activities in each layer and synaptic
weights in each connection change over time. The current

activity pattern in a layer represents the current symbol in the
corresponding register.

The connection recall operation, vr ← C[vq], is
implemented by one time-step of associative recall with the
corresponding weight matrix:

v(t+1)r = σ (W
(t)
C v(t)q), (1)

where v(t) and W(t) denote neural activity vectors and weight
matrices at time-step t, and σ is a suitable element-wise
activation function (see Equation 5 below). The connection
storage operation, C[vq] ← vr, is implemented by one time-
step of associative learning in the corresponding weight matrix:

W
(t+1)
C =W

(t)
C +1W

(t)
C (2)

1W
(t)
C = H(W

(t)
C , v(t)q , v(t)r) (3)

where 1W
(t)
C is a one-shot, fast weight update to W

(t)
C . This

weight update 1W
(t)
C is a function H of the current connection

weights and activities in source and destination layers. The
NVM uses the following “fast store-erase learning rule” for the
function H:

H(W, x, y) = (y−Wx)x⊤/N, (4)

where x represents the key, y represents the value, x⊤ denotes
transpose, and N is the number of neurons in pattern x. This
learning rule combines Hebbian and anti-Hebbian terms (Hebb,
1949) to simultaneously add new key-value associations and
overwrite old ones when appropriate.

It has been shown that these recall and storage rules perfectly
replicate the semantics of a symbolic key-value lookup table, as
long as certain conditions are met (Katz et al., 2019). Specifically,
distinct key symbols must be represented by orthogonal pattern
vectors with ±1 elements. Such sets of patterns vectors can
be computed via Sylvester’s Hadamard matrix construction
(Sylvester, 1867). In the presence of small noise or accumulating
round-off error over time, we can ensure that ±1 patterns are
preserved with the element-wise activation function

σ (a) = tanh(a)/ tanh(1), (5)

which has stable fixed points at a = ±1.

FIGURE 2 | Representing random-access memory operations with storage and recall gating patterns in NVM connections. Boxes denote register layers. Block

arrows and explosion symbols indicate recall and storage, respectively, in connections between layers. The performed (ungated) operation and the layers involved are

shown in black. Adapted from Katz et al. (2019). (A) Increment. (B) Decrement. (C) Read. (D) Write. (E) Reference. (F) Dereference.

Frontiers in Neurorobotics | www.frontiersin.org 4 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

When the VM (and NVM) execute a program, not all
connections should be storing and recalling simultaneously. Only
a small subset of connections should be storing or recalling
at a given time, as illustrated in Figure 2. Moreover, when a
register r has multiple incoming connections, recall should
happen in only one of them at a time. In the NVM, this is
implemented viamultiplicative gating. One dedicated layer called
gts is responsible for this gating mechanism. The gts layer
has two gate neurons per connection, one that gates recall and
one that gates storage. A gate neuron value of 1 indicates that
the operation occurs, and a value of 0 indicates that it does
not. Gating patterns are not used as keys and hence are not
subject to the orthogonal ±1 restriction. Mathematically, the
foregoing equations are revised to incorporate multiplicative
gating as follows:

v(t+1)r = σ

∑

C,q∈Cr

u
(t)
C W

(t)
C v(t)q

 (6)

for gated recall, and for gated storage:

W
(t+1)
C =W

(t)
C + ℓ

(t)
C 1W

(t)
C , (7)

where Cr is the set of all incoming connections and source layers

to destination layer r, and u
(t)
C and ℓ

(t)
C are the gate values for

associative recall and learning, respectively, in a given connection
C. When these gates are zero, there is effectively no recall or
storage in the associated connection. The gate values are precisely
the corresponding neuron values in gts, i.e.,

[..., u
(t)
C , ..., ℓ

(t)
C , ...] = v

(t)
gts. (8)

The gate layer determines the currently executing instruction.
It has one incoming connection called exe, from a dedicated
source layer ipt that represents the current instruction pointer.
The instruction pointer is incremented every time-step to
advance through a program, using its own self-connection called
inc. Each address in program memory is treated as a distinct
symbol represented by a distinct activity pattern in ipt, denoted
0ipt, 1ipt, 2ipt, etc. The gate layer evolves according to the
same associative recall rule as all other layers, except with a
different activation function σgts:

v
(t+1)
gts = σgts

(

W
(t)
exev

(t)
ipt

)

(9)

(the recall gate neuron for exe is always 1, and there are no other
incoming connections to gts). For σgts we used an element-
wise step function to produce gate values in {0, 1}. In effect,
the exe connection remembers which instruction (i.e., gating
pattern) is stored at each address in program memory.

A sequence of instructions (i.e., a program) is “compiled”

into the NVM by properly initializing W
(0)
exe and W

(0)
inc before

program execution begins, so that the proper sequence of
instruction pointer addresses and gating operations occurs. Like
other connections, these weights are also calculated using the fast

store-erase rule, but unlike other connections, they are calculated
before (not during) program execution, and their associative
learning gates are always 0 during program execution.

Several other dedicated layers and connections are included
in the NVM architecture to support sub-routine calls and
conditional branching. In this paper we introduce new
implementations of these NVMmechanisms that are streamlined
from the original versions in Katz et al. (2019). Sections 3.2 and
3.3 describe these new implementations in detail, in the context
of robotic block stacking. First, it will be helpful to formalize the
version of block stacking we consider in this work.

3. METHODS

3.1. Block Stacking Task
Similar to the classical “blocks world” domain in automated
planning (Nilsson, 1980), we consider a block stacking task in
which a set of cubic blocks that are initially stacked in one
configuration must be restacked in a new configuration. We
predefine seven base locations on which blocks may be stacked
into towers, and limit each tower to at most three blocks, as
shown in Figure 3A. Whereas, Figure 3A illustrates all possible
locations occupied by blocks, our experiments are limited to
problem instances with at most seven blocks, stacked in a random
configuration, as shown in Figure 3B. This ensures enough base
positions on the ground to put every block if needed. One such
random configuration is used as initial state, and another as
goal state. The robot’s objective is to repeatedly pick and place
blocks until the actual final state matches the goal state. Even
with a perfect high-level plan, low-level motor control errors
are possible, as shown in Figure 3C. We use the failure case in
Figure 3C as a running example, although other types of failures
are also possible as shown in Figure 4.

Each possible block, tower base, and location has its own
symbol. The seven block symbols are denoted b0 through b6, and
seven tower base symbols are denoted t0 through t6. A location
symbol of the form (k,h) denotes the hth level of the kth tower,
where k ∈ {0, ..., 6} and h ∈ {0, 1, 2} (numbered left-to-right and
bottom-to-top). For example, in Figure 3B, the yellow and black
blocks are b1 and b6, and they are stacked on tower base t6. The
locations of b1 and b6 are (6,1) and (6,0), respectively. Each
block is considered unique; they are not interchangeable in the
state or goal descriptions.

States and goals are represented symbolically by a small set of
discrete, partial functions: above, right_of, next, loc_of,
obj_at, and goal. Their semantics are as follows:

• above[(k,h)] is the location directly above (k,h),
namely (k,h+ 1).
• right_of[(k,h)] is the location directly to the right of
(k,h), namely (k+ 1,h).
• next[tk] is the tower base directly to the right of tk,

namely tk+1.
• loc_of[bn] is the location of block bn, i.e., some location

symbol (k,h) which depends on the current state.
• obj_at[(k,h)] is the block at location (k,h), i.e., some

block symbol bn which depends on the current state.

Frontiers in Neurorobotics | www.frontiersin.org 5 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

FIGURE 3 | The block stacking environment. (A) All possible locations occupied by blocks. (B) One state with a typical number of blocks. (C) Three video frames of

failed grasping, with time increasing from left to right. The robot intends to pick up the red block, but also accidentally lifts the green block off of the black block,

causing it to fall on the ground nearby.

FIGURE 4 | Additional failure cases. (A) The cyan block is released in an unstable position and drops due to gravity. (B) The gripper moves and knocks the red block

from its goal position immediately after releasing it. (C) Three video frames where the gripper moves to pick up the cyan block and knocks it in the process.

• goal[bn] is the block that should be stacked directly on
top of bn in the goal state, i.e., some other block symbol bm
(m 6= n) that depends on the current goal.

We refer to these partial functions as “mappings.” They have
the same semantics as mapping data structures in a high-level
programming language, such as HashMaps in Java or dictionaries
in Python (hence the square bracket notation). The first three
mappings are constant across all states, since the set of possible
locations is fixed. The next two are specific to a given state and
describe which blocks are at which locations. The last is specific
to a given problem instance and describes the goal state. A special
symbol nil is returned by these mappings whenever they are
evaluated outside their domains (for example, right_of at a
right-most location).

As described earlier, a sub-optimal but simple procedure to
reach the goal state is to first unstack every tower, so that every
block is at a base position, and then restack blocks according to
the desired towers in the goal state. To study symbolic and sub-
symbolic integration in neurocomputational robotic control, we
will program this procedure into the NVM.

3.2. Block Stacking With the NVM
For the block stacking task, we configured the NVM as shown in
Figure 5. The boxed registers in the right half of the figure are
not specific to block stacking: they are core NVM components
needed to execute any program in any application (this is

a streamlined version of the NVM with fewer registers than
used by Katz et al., 2019). To reduce clutter in the figure,
the multiplicative gating effects of gts on all connections in
the architecture are not shown. Sub-routine calls/returns and
stack increments/decrements, described in more detail below,
use the connections call, ret, push, and pop, respectively,
in conjunction with a stack pointer register spt. A special flag
register called jmp, in conjunction with the rin connection to
ipt, supports conditional branching.

The user can configure the NVM with one or more identical

general-purpose registers (in this work we used two), denoted

collectively by regk in the figure. The connections labeled mov,
between regk and other layers, are responsible for copying data
between registers. The put connection is similar, but used to put

literal symbols appearing in the assembly code into a register
(hence the connection from the instruction memory pointer
ipt). Register data can also be stashed on the stack and restored
later, via the stash connection.

The registers in the left half of Figure 5 are specific to block

stacking, and communicate with the right half via bidirectional

connectivity between obj, loc, and each regk. Object symbols
like tk and bn, representing tower bases and blocks, are held in

obj (but only one symbol can be held at a time). Likewise, loc
holds location symbols. The connections between these layers
store the corresponding symbolic mappings from section 3.1
(loc_of, obj_at, etc.), as labeled.

Frontiers in Neurorobotics | www.frontiersin.org 6 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

FIGURE 5 | The NVM architecture used for block stacking. Boxes are register layers and line arrows are connection weight matrices, each labeled with their

mnemonic. Recall and storage in all connections are gated by gts (gating interactions not shown). Program inputs, consisting of the initial and goal state descriptions,

are supplied via initial weights in the obj_at, loc_of, and goal connections. Program outputs, consisting of joint commands, are produced in the jnt layer.

In principle, one could avoid these additional problem-
specific connections, by using generic heap memory pointers
and registers like those in the original NVM (Katz et al., 2019).
The trade-off is that one would need to implement the key-
value lookup tables for loc_of, obj_at, etc. in heap memory
using NVM assembly code, leading to larger layer sizes and more
time-steps of emulation.

The input to the stacking procedure is the state- and goal-
specific symbolic information, i.e., the key-value pairs in the
loc_of, obj_at, and goal connections. Different block
stacking problem instances will involve different key-value pairs
in these connections. This symbolic information is converted to
synaptic weight values in the corresponding NVM connections,
by applying one step of fast store-erase learning to each key-value
pair in the mapping at the start of the episode, before running
the NVM. Therefore, the sub-symbolic inputs to the NVM are
not vectors of initial neural activity, but in fact matrices of initial
synaptic weights in these three connections.

The output layer of the NVM is the jnt register layer, which
has one real-valued neuron per robotic joint. The vector in
this layer changes over time as the NVM emulates the stacking
procedure. At any given time-step, it is used as vector of target
joint angles for position control. Since the contents of jnt are
never used as keys, they are not subject to the orthogonal ±1
restriction, and the activation function for jnt is the identity
function, which facilitates real-valued joint angle output.

Individual pick-and-place actions are based on a pre-defined
set of end-effector target poses; four per location. Each target
pose has a dedicated symbol that can be recalled in the tar
register. These poses serve as waypoints during grasp and release
motions: perched above the location with gripper open (po), at
the target location with gripper open (to), at the target with
gripper closed (tc), or perched above with gripper closed (pc).
The corresponding connections are used to select one of these
four poses at the current location in loc. For each pose at each
location, PyBullet’s built-in inverse kinematics routine was used
to pre-compute target joint angles that reach the pose. The result
is a key-value mapping in which keys represent end-effector
poses, and values are corresponding joint angle vectors. This

key-value mapping is stored in the NVM ik connection from
the tar register to jnt.

As described earlier, we use a simple two-phased procedure to
restack blocks into their goal configuration. First all towers are
unstacked in top-down order, moving blocks to free unoccupied
tower base positions. Second, all blocks are stacked into their
goal positions, one tower at a time, in bottom-up order.
This procedure is summarized in high-level pseudocode in
Figure 6. All loops are implemented recursively by processing
the current location or block, and then invoking a recursive
call on the next location or block as appropriate. Two outer
loops (unstack_all and stack_all) iterate over towers,
and two inner loops (unstack_from and stack_on) iterate
over blocks within those towers. Onemore loop (free_spot) is
used to find the next available free spot on the ground, searching
for unoccupied tower bases from left to right. NVM assembly
does not support input or output variables in sub-routine calls,
so we reimplemented this pseudocode in logically equivalent
but more verbose assembly code that used registers instead of
input/output variables, and one sub-routine for each method
defined in the pseudocode.

3.3. Block Stacking Execution Trace
This section provides more details on the neurocomputational
NVM implementation using an example “execution trace,” i.e.,
the NVM state at each time-step as it emulates the assembly code
for the stacking algorithm.We focus on thefree_spotmethod
of the pseudocode in Figure 6, which includes a sub-routine
call and conditional branching, to illustrate how these core
functionalities are supported by the NVM in the context of block
stacking. In this work, we implement conditional branching at
the assembly code level, as explained below. This avoids the
specialized connectivity and learning rules used for conditional
branching in the original NVM (Katz et al., 2019).

The block stacking assembly program is shown (in part) in
Figure 7A. Lines 38–39 put the left-most location in loc and
then initiate the recursive free_spot sub-routine, defined
on lines 8–20. Lines 9–12 return immediately if the current
location is free, and lines 13–16 return immediately if the

Frontiers in Neurorobotics | www.frontiersin.org 7 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

FIGURE 6 | The restacking procedure pseudocode in Python-like syntax. loc=(0,0) and base=t0 are default input values in an initial recursive call. These are

implemented in assembly by moving the symbol into a designated register before calling the routine. The “move ... to ...” commands were implemented by

moving a sequence of end-effector poses into the tar register and recalling the corresponding joint angles via the ik connection.

right-most location has been reached. Otherwise, lines 17–20
recursively process the remaining locations before returning.
Here, conditional branching uses a “return if nil” instruction
rin, which immediately returns from the sub-routine where it
is executed, but only when the nil symbol is present in the flag
register jmp.

The rin instruction is implemented by lines 1–7. This code
is non-user-facing “firmware” that is compiled when the NVM
instance is first constructed, and exposed to the user only via
the rin instruction. When nil is present in jmp, the rin
instruction calls the sub-routine on lines 4–7; otherwise it calls
lines 1–3. The latter is a no-op which simply returns (ret on
line 2), but the former pops an additional stack frame, so that
it returns to the line where rin’s caller was called (e.g., 39), not
where rin was called (e.g., 11).

Proper emulation requires several associations stored in
various connections when execution begins, including but not
limited to those in Figure 7B. The inc self-connection on
instruction pointer register ipt associates each address in
program memory with its successor, to support “incrementing”
the instruction pointer during sequential code execution.
Similarly, push and pop associate each address in stack memory
with its successor and predecessor to support incrementing and
decrementing the stack pointer. The call connection associates
each line that calls a sub-routine with the starting address of
the sub-routine, to support non-sequential execution of sub-
routine calls. The rin connection from the flag register jmp to
ipt supports conditional non-sequential execution, depending
on the content of jmp, by associating nil with the yes_nil
sub-routine, and all other symbols with the not_nil sub-
routine. Every pair of registers has a mov connection to support

copying data between registers, which associates each symbol
with itself (the same symbol can be represented by different
activity patterns in different layers). Lastly, obj_at associates
each location with the object stored there. In this example,
we assume that location (0,0) is currently unoccupied, and
therefore associated with nil.

Figure 7C shows the register contents and gating patterns
at 10 consecutive time-steps, starting from some time t when
line 39 is executed. In this example, since the left-most
location is unoccupied, there is no recursion after the first
call to free_spot, which immediately returns after the rin
instruction on line 11 invokes the yes_nil branch on lines 4–7.
In more detail, the time-steps proceed as follows:

• t + 0: Associative learning in the ret connection saves the
current instruction pointer, 39ipt, at stack memory address
0spt, and associative recall in push increments the stack
pointer. Recall in call updates the instruction pointer non-
sequentially to line 8ipt, where the free_spot sub-routine
begins, due to the previously stored call associations in
Figure 7B.
• t+1: Recall in inc advances the instruction pointer to the first

instruction of free_spot.
• t + 2: Recall in obj_at retrieves nil from location (0,0),

indicating a free spot.
• t+3: Recall in mov copies nil from obj into the flag register

in preparation for conditional branching.
• t + 4: Similar to sub-routine calls, the rin instruction saves

the current instruction pointer on the stack (via storage in the
ret connection) and increments the stack pointer (viapush).
Associative recall in the rin connection non-sequentially

Frontiers in Neurorobotics | www.frontiersin.org 8 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

FIGURE 7 | Example NVM execution trace. (A) Assembly source code being emulated. (B) Initial associations stored when execution begins. (C) Gating patterns on

the relevant layers and connections (same format as Figure 2) for 10 consecutive time-steps. The associations currently stored in Wret are shown below each

time-step.

Frontiers in Neurorobotics | www.frontiersin.org 9 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

updates ipt to line 4ipt, due to nil being present in jmp
and the previously stored rin association in Figure 7B.
• t + 5: inc advances ipt to the first instruction of the
yes_nil firmware routine.
• t+6, 7: Two steps of recall in pop decrement the stack pointer,

discarding two stack frames.
• t + 8: There is no instruction on line 7, but this line’s program

memory address in ipt is still used as a key in the exe
connection to the gate layer gts. With the stack pointer
updated from the previous time-step, associative recall in the
ret connection can now be ungated to retrieve 39ipt, the
program address where free_spot was originally called.
• t + 9: inc advances ipt past line 39 now that the
free_spot sub-routine call is complete.

If (0,0) were not free, a non-nil block symbol would have
moved into jmp, and lines 1–3 would have executed with only
one stack pop instead of two. As a result, the ret instruction on
line 2 would have returned to line 11 in free_spot rather than
line 39, and the search for a free spot would have continued.

We also note that some assembly-level instructions require
two or more gating patterns at the neuro-computational level,
such as the ret on line 6 that also needed the blank line 7 in
time-step t + 8. These additional program addresses are inserted
automatically by the NVM assembler so that the user does not
need to explicitly add them or reason about them.

3.4. Validation Metrics
After programming the block-stacking NVM as described
above, we empirically validated the effectiveness of the full
neurorobotic system using the PyBullet simulation environment.
All experiments were performed on an 8-core Intel i7 CPU with
32GB of RAM.

To validate the NVM, we compared it against the non-neural,
purely symbolic reference implementation of the VM (RVM),
whose execution traces serve as a “gold standard.” We used
a large set of problem instances, with total number of blocks
ranging from three to seven. For each total number of blocks,
500 independent trials were conducted. In each trial, a random
problem instance was generated, with distinct start and goal
states. Then the NVM and RVM were each invoked to perform
the restacking procedure on the problem instance.

Each initial state and goal in each trial were randomly
generated as follows. First, seven empty towers were initialized,
one for each base position. Then, blocks were placed on towers
one at a time. For each block, its destination tower was chosen
uniformly at random from those that did not already contain
three blocks, to limit the maximum tower height to three.
We chose this method for simplicity, although the resulting
distribution of random states is not necessarily uniform. In future
work it may be possible to adapt more sophisticated blocks-world
sampling methods to our version of block stacking, e.g., Slaney
and Thiébaux (2001), to guarantee a truly uniform distribution
of states.

The NVM and RVM were both executed on each problem
instance, and their performance was compared using three
metrics. The first metric is the total number of “ticks,” i.e., the

number of machine cycles in the RVM and the number of time-
steps in the NVM’s recurrent dynamics before completion of the
procedure. Since the NVM is intended to perfectly emulate the
RVM, the tick counts should be identical for both.

The second metric is total time elapsed during execution,
measured in seconds. This metric is loosely correlated with tick
counts, but is not exactly the same, since some ticks ungate
more connections than others and require more matrix-vector
multiplications.

The thirdmetric measures how far the actual final state is from
the goal state, at the symbolic level. We refer to this metric as
“symbolic distance.” Specifically, we count the number of block
pairs (b, b′) where b′ is supposed to be on top of b in the
goal state, but is not on top of b in the actual final state. Small
noise in the spatial block positions is ignored, as long as the on-
top relation is respected. Letting (xb, yb, zb) denote the spatial
coordinates of a block b, as reported by PyBullet at the end of
the simulation, we compute the on-top relation as follows:

on-top(b) = argmin
b′

zb′

subject to zb < zb′

max(|xb − xb′ |, |yb − yb′ |) < s/2

(10)

where s is the side-length of a block. If there is no b′ satisfying
these constraints, we conclude that nothing is on top of b. In
other words, we list all blocks (if any) whose (x, y) coordinates
are sufficiently close to that of b, and select the one whose vertical
z-position is closest to (but not below) that of b.

We also quantified low-level motor control mistakes mid-
way through an episode by defining the following “movement
penalty” ρ(τ) at step τ of the PyBullet physics simulation:

ρ(τ) =
∑

n

||ṗ
(τ)
bn
|| · ||p

(τ)
bn
− p

(τ)
gripper||, (11)

where p
(τ)
bn
= (x

(τ)
bn

, y
(τ)
bn

, z
(τ)
bn

) is the spatial position of block bn at

step τ , ṗ
(τ)
bn

is its velocity, and p
(τ)
gripper is the position of the gripper

(i.e., the point directly in between the two finger-tips where a
grasped block should be centered). This formula only penalizes

blocks that are moving and not gripped, since ||ṗ
(τ)
bn
|| = 0 for

stationary blocks, and ||p
(τ)
bn
− p

(τ)
gripper|| ≈ 0 for a block that is

properly gripped, even if it is moving along with the gripper.
Simulation steps are distinct from NVM/RVM tick counts,

because multiple steps of physics simulation are performed after
sending each joint command. Letting τt denote the physics
simulation step at tick t of the NVM, we computed a total
movement penalty ρ̂(t) associated with the tth joint command
by aggregating the sub-sequence of movement penalties accrued
while the joint command is simulated:

ρ̂(t) =

τt+1
∑

τ=τt

ρ(τ). (12)

Frontiers in Neurorobotics | www.frontiersin.org 10 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

3.5. Training Process
We conducted the foregoing empirical validation to confirm
whether the NVM can properly encode the symbolic information
in the RVM, and duplicate its performance. However, there
is little reason to simply duplicate what is already possible
symbolically, especially given the computational overhead
(matrix-vector multiplication, etc.) in the NVM. The main
benefit of the NVM is that its neural implementation is amenable
to sub-symbolic learning techniques. This motivated us to
test whether reinforcement learning (RL) during an additional
“practice” phase could boost the NVM’s performance, using the
connectionmatrices “compiled” from the RVM as a sophisticated
form of weight initialization. We used vanilla policy gradient
(VPG) optimization (Williams, 1992; Sutton and Barto, 2018), a
classic RL technique, to fine-tune the “compiled” NVM weights.
The objective was to minimize the expected symbolic distance at
the end of a trial. The expectation was taken with respect to the
same random distribution of problem instances used to generate
data in section 3.4, except that the number of blocks and bases
was fixed at five for computational expediency.

To train the NVM with VPG, we must formalize it as a
stochastic policy. The NVM can be viewed as a function

{W
(T)
C }, {v

(T)
r }, ..., {W

(t)
C }, {v

(t)
r }, ..., {W

(1)
C }, {v

(1)
r } =

NVM({W
(0)
C }, {v

(0)
r })

where the sets {W
(t)
C } and {v

(t)
r } range over all connections and

registers, respectively. The inputs to this function are the initial
weights and activities at t = 0, and the outputs are all subsequent
weights and activities computed by the NVM recurrent dynamics
(Equations 6 and 7), until a time T when the episode terminates.
In particular, some of this function’s outputs are the joint angle

targets v
(t)
jnt at each time-step which are used to direct the

robot. To make the policy stochastic, we use v
(t)
jnt as the mean

of a multivariate Normal distribution, and sample actual joint
commands θ (t) from that distribution:

θ (t) ∼ N (v
(t)
jnt, ǫ

2I), (13)

where I is the identity matrix and ǫ is a small scalar (for
simplicity, each joint angle is sampled independently with small
variance). We fixed ǫ at 0.0174 rad ≈ 1◦, which was found to
yield a reasonable balance of exploration and exploitation.

For VPG we also require a reward function. One natural
candidate is to use symbolic distance at the end of an episode,
multiplied by −1 so that smaller distances translate to higher
rewards. However, we found that a single reward signal at the end
of the episode is too sparse for effective learning. Intermediate
rewards throughout the episode were critical for VPG to properly
assign credit to the specific joint motions responsible for failure,
such as that shown in Figure 3C. For this purpose we also
incorporated the per-tick movement penalties (Equation 12).
Letting dsym denote the symbolic distance at the end of an
episode, the complete reward function is:

r(t) =

{

−ρ̂(t) for t < T

−ρ̂(t) − dsym for t = T
. (14)

As explained in section 3.2, W
(0)
loc_of, W

(0)
obj_at, and W

(0)
goal

encode the initial and goal states specific to a given problem
instance. We view these three matrices collectively as the “state
observation” provided to the NVM policy. All other initial
weights at t = 0 could be used as trainable parameters of
the policy. However, we found that NVM program execution
is highly sensitive to connection weights used for program
instruction memory (right half of Figure 5). Perturbations to
these connection weights resulted in episodes where program
execution devolved completely, so that no joint commands (and
hence reward signals) were generated. Therefore, we limited
trainable parameters � to all other stacking-specific connections
in the left half of Figure 5, namely:

� = {W
(0)
next,W

(0)
right,W

(0)
above,W

(0)
to ,W

(0)
tc ,W

(0)
po ,W

(0)
pc ,W

(0)
ik}

(15)

Since W
(0)
next, W

(0)
right, and W

(0)
above all encode symbolic

information describing the block-stacking environment, this still
allowed the NVM to refine its encoding of some symbolic block-
stacking knowledge.

Using the foregoing setup, we trained the NVM with VPG
for 64 training iterations. In each iteration, we sampled P =
16 random problem instances. For each problem instance, we

encoded the initial state and goal in W
(p,0)
loc_of, W

(p,0)
obj_at, and

W
(p,0)
goal, where p ∈ {1, ..., P} indexes the problem instance. We

then ran the NVM dynamics to generate a sequence of Tp joint

vectors, v
(p,t)
jnt, where t ∈ {1, ...,Tp} indexes the NVM ticks. Next,

we ran N = 16 independent episodes for each problem instance.
Each episode used its own independent randomly sampled

trajectory of joint commands, θ (p,t,n) ∼ N (v
(p,t)
jnt, ǫ

2I), where
n ∈ {1, ...,N} indexes the episode. Each episode was simulated
in PyBullet to generate a corresponding sequence of rewards
r(p,t,n). To reduce variance of the policy gradient estimate, we used
rewards-to-go R(p,t,n), and averaged the per-tick rewards-to-go as
a baseline b(p,t,n) (Sutton and Barto, 2018):

R(p,t,n) =

Tp
∑

k=t

r(p,k,n) (16)

b(p,t) =
1

N

N
∑

n=1

R(p,t,n) (17)

These quantities were used to estimate the gradient of expected
reward with respect to all trainable parameters �, according to
the policy gradient theorem (Williams, 1992):

∇�E

[

∑

t

r(t)

]

≈

1

P · N

P
∑

p=1

N
∑

n=1

Tp
∑

t=1

(R(p,t,n) − b(p,t))∇� logϕ(θ (p,t,n) | v
(p,t)
jnt, ǫ

2I),

(18)

where ϕ(· |µ,6) is the probability density function of N (µ,6).
We used PyTorch (Paszke et al., 2019) to evaluate ∇� logϕ by

Frontiers in Neurorobotics | www.frontiersin.org 11 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

backpropagating through all time-steps and layers, except the
gate layer, since σgts used a non-differentiable step function. �
was updated using the resulting gradient value in conjunction
with the Adam optimizer (Kingma and Ba, 2015), with a learning
rate of 0.0005 and default values for all other hyper-parameters.

4. RESULTS

4.1. Empirical Validation
Our results confirmed that NVM and RVM tick counts are
identical (Figure 8A), serving as a sanity check that the NVMwas
operating correctly. As expected, problem instances with more
blocks require more ticks to execute the complete restacking
procedure (Figure 8B).

The NVM and RVM were also highly correlated on execution
time (Figure 8C), although the absolute runtime in seconds was
substantially higher for the NVM (Figure 8D). Unlike its non-
neural counterpart, each tick of the NVM involves a large number
of matrix operations, so higher runtimes are to be expected.
The average RVM clock rate (i.e., ticks per second) was roughly
2,143 Hz. The average NVM clock rate, roughly 465 Hz, was
much lower, but still reasonable for near-real-time control of a
robotic system.

Figure 9A confirms that the NVM performed comparably
to the RVM, as measured by symbolic distance. Both versions
encountered difficulty as the number of blocks increased. This
is expected, as more blocks tend to introduce more chances for
low-level motor control mistakes.

Figure 9B plots the individual and cumulative movement
penalties during an entire representative episode. The large spike
around simulation step 250 corresponds to the problematic grasp
shown in Figure 3C. In that example, the green block is supposed
to remain stationary while the red block is lifted, but it is moving
while not gripped, leading to a large movement penalty.

4.2. Improving NVM Performance With
Sub-symbolic Fine-Tuning
After validation, we used the reinforcement learning procedure
in section 3.5 to fine-tune the symbolic knowledge encoded
in the initial NVM weights and check whether performance
improved. Five identical, independent runs of the entire learning
process were conducted to gauge reproducibility. A typical run
is shown in Figure 10A, demonstrating that the NVM can
successfully improve its performance through additional practice
and reinforcement. To check whether all trainable connections
were learning, including W

(0)
next, W

(0)
right, and W

(0)
above, we

FIGURE 8 | Computational performance of the NVM and RVM. (A) Scatter plot of ticks used by the RVM vs. NVM, across all block counts. Each data-point is an

independent trial. (B) Box plot of the tick distributions (identical for NVM and RVM) for different numbers of blocks. (C) Scatter plot of runtime in seconds (s) for the

RVM vs. NVM, showing different block counts with different markers. Each data-point is an independent trial. To de-clutter the plot, we only show 10 out of 500

independent trials for each block-count, sub-sampled uniformly at random. (D) Histogram of marginal runtime distributions for the RVM (white bars) vs. NVM (gray

bars), irrespective of block count.

FIGURE 9 | Block stacking performance of the RVM and NVM. (A) Violin plots of symbolic distance between actual final state and goal. At each block count (x-axis),

we show one violin for the RVM and another for the NVM, as indicated in the legend. The violin plot shows the distribution of symbolic distances over all 500 trials for a

given number of blocks. (B) Individual (left vertical axis, solid black line) and cumulative (right vertical axis, dashed black line) movement penalties during a failed

episode. The spike around simulation step 250 corresponds to the problematic grasp in Figure 3C.

Frontiers in Neurorobotics | www.frontiersin.org 12 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

measured ||W
(i)
C − W

(0)
C ||∞ for each training iteration i and

trainable connection C, where the max-norm || · ||∞ is the
maximum absolute value over all matrix entries. As shown in
Figure 10B, more learning occurs in connections close to the
jnt output layer, but other trainable connections experience
some degree of optimization. The largest change was in tc, the
connection responsible for closing a gripper at its target location.
This is to be expected since the gripper interacts most with the
blocks during the actual grasping motion. More interestingly, the
above connection changed almost as much as the other layers,
suggesting that the network was refining its encoding of on-top
relationships to improve performance.

We investigated this further by inspecting performance
on the failed problem instance from Figure 3C, before and
after training. Figure 11 shows visually that after training, the
NVM correctly avoided misplacement of the green block while
grasping the red one. The spatial trajectories of the end-
effector, when using the RVM vs. the trained NVM, are shown
in Figure 12A. It is apparent that the largest change after
training is in the vertical direction, corroborating the change
observed in above. In particular, magnifying the trajectories
around the problematic grasp point (Figure 12B) illustrates that

the trained NVM positioned the gripper slightly higher when
picking up blocks, which explains how it avoided accidental
interaction with the green block. Accordingly, Figure 12C

confirms that movement penalties were reduced during the
successful execution after training.

Improved NVM performance was not limited to the one
failure case shown in Figure 3C. Manual inspection showed that
the trained NVM also improved on other instances with the same
type of failure (displacing one block while grasping another),
as well as different types of failure (releasing a block in an
unstable position), as shown in Figure 13. Some failure types,
such as knocking over blocks at the top of the towers while
moving, were not fully addressed by the trained NVM. However,
as our results show, average performance did improve over the
entire problem distribution, which includes all failure cases. Since
training does not appear to have converged by iteration 64, it is
possible that additional training iterations would further improve
performance on all failure cases.

The foregoing performance improvements were reproducible,
as shown in Figure 14. All five independent repetitions of the
training experiment led to substantial improvement in average
reward (including movement penalties), as well as modest

FIGURE 10 | A representative VPG training run. (A) Each gray dot shows total reward in one episode of one training iteration. The solid black curve is average total

reward over all episodes in a given iteration. The dashed black curve shows average final symbolic distance (multiplied by −1), with movement penalties excluded.

Horizontal solid and dashed lines show respective values in the first iteration as a reference point. (B) Changes in each trainable weight matrix during training, relative

to initial weights, as measured by max norm. In the legend, the labels “tc,” “ik,” etc. are the names of each trainable weight matrix as described in the text. Changes

to the right and next weight matrices were non-zero but on the order of 10−7.

FIGURE 11 | Initial and final states on the failure case in Figure 3C. (A) The initial state of the problem instance. (B) The final state after RVM execution, with the green

block misplaced. (C) The final state after NVM execution, using the trained version of the NVM after additional reinforcement learning, with all blocks properly placed.

Frontiers in Neurorobotics | www.frontiersin.org 13 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

FIGURE 12 | Trajectories before (gray) and after (black) training, in the failure case from Figure 3C. (A) The trajectory of the end-effector relative to the blocks, in polar

coordinates. Polar angle is the angular distance in radians around the circular arrangement of tower bases. Dashed boxes show the possible block locations. (B) A

magnified portion of the end-effector trajectory. (C) Movement penalties before and after training.

FIGURE 13 | Same format as Figure 11 with a different failure case. After unstacking the red block in the initial state (A), the RVM releases the cyan block in an

unstable position and it falls due to gravity (B), but the trained NVM releases it in a stable position (C).

improvement in average final symbolic distance (excluding
movement penalties). Average symbolic distance did not show
dramatic improvement on an absolute scale, but it was already
fairly close to zero before training due to the reasonably effective
procedural knowledge compiled into the NVM. On a percentage
scale, training reduced symbolic distance by over 50% on average.
Each independent training run took roughly 2.5 h to complete on
our 8-core Intel i7 CPU workstation.

5. DISCUSSION

We have shown that a high-level symbolic procedure for
blocks world problems can be compiled into a purely neural
system, the NVM, to effectively control a simulated robotic
manipulator. The NVM precisely emulates the execution traces
of a non-neural reference implementation, and achieves a
“clock rate” near 465 Hz, which is suitable for robotic

control. Moreover, after programming the NVM with symbolic
knowledge, its performance can be further improved using
reinforcement learning on its sub-symbolic neural substrate. This
demonstrates that programmable neural networks supporting
symbolic processing, like the NVM, are a viable approach for
integrating high- and low-level robotic control.

In future work, this approach should be tested in more
natural environments than simulated block stacking. This
includes objects with more real-world relevance than blocks,
such as tools and household products. It also includes more
varied and complex tasks, such as assembly and maintenance
problems, or assisted living, disaster recovery, and robotic
surgery scenarios (Qi et al., 2021). Furthermore, the validation
should include physical robotic hardware in the real world,
more sophisticated (e.g., multi-fingered) end-effectors, and
other robotic form factors such as humanoids and other
mobile manipulators.

Frontiers in Neurorobotics | www.frontiersin.org 14 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

FIGURE 14 | Reproducible performance improvement on five independent training runs. (A) Average total rewards including movement penalties (solid curves), and

negative symbolic distance excluding movement penalties (dashed curves), during training. Each gray curve plots the per-iteration average over all episodes for one

independent training run. Each black curve is the average over all training runs. Horizontal solid and dashed lines show respective values in the first iteration as a

reference point. (B) Scatter plot of average total reward (black circles) and negative symbolic distance (white circles), in the first five vs. last five iterations of training.

There are two circles per independent training run, one black and one white. The dashed line corresponds to no change in performance.

Our present system is missing some important elements
which would be needed for implementation on a physical robot.
In particular, the system should be extended with closed-loop
feedback control and a robust sensing sub-system. The sensing
sub-system could include visual camera input, haptic feedback,
and proprioceptive information such as joint angles, velocities,
torques, and temperatures. The sensing sub-system would need
to be designed and trained in such a way that its output layer
activity is compatible with NVM layer activities. For example,
one could train a classifier to identify which object is present
in a given region of the visual field, and the classifier’s output
layer activity could be transformed via a single linear connection
into a ±1 pattern used by the NVM obj layer. This kind of
mechanism would maintain a purely neural system and transmit
location occupancy data from visual input to the NVM. One
could also add additional connections directly from the visual
system to the NVM jnt layer. This way, cognitive-level joint
directives coming from the NVM could be biased by lower-level
visual feedback. More work is needed to refine these ideas and
engineer an NVM-based controller for a physical robot.

Our present system also lacks several advanced automated
planning features such as conditional planning, and planning
with sensing, faults, and monitoring. Once a visual system is in
place to support sensing and monitoring, several such planning
features could be integrated by increasing the sophistication of
the procedural knowledge compiled into the NVM. That is, the
simplistic block stacking algorithm we programmed into the
NVM (Figure 6) could be replaced with a more general and
advanced planning algorithm that regularly checks sensory input
during execution and replans accordingly when needed.

One more limitation of the present work is the significant
computational expense and poor sample efficiency of the VPG-
based reinforcement learning. Since our primary goal was
to demonstrate that improvement with practice was possible,
we limited the training time for computational expediency,
but longer training could lead to larger performance boosts.
Furthermore, employing modern state-of-the-art robotic RL
techniques, such as PPO (Schulman et al., 2017) or SAC

(Haarnoja et al., 2018), will likely further improve performance
and efficiency, extending the NVM’s reach to more complex tasks
and robotic platforms.

Lastly, there are several opportunities to leverage the NVM’s
underlying neural implementation that should be explored
further. One possibility is to enhance its biological realism
in future design iterations, so that it can both inform, and
be informed by, biological neural systems (e.g., humans)
performing similar tasks. Given the connection between
backpropagation and more biologically plausible, gradient-free
contrastive Hebbian learning (Xie and Seung, 2003), gradient-
free analogs of policy optimization may be possible in the
NVM, especially considering that its fast-weight updates are
already Hebbian in nature. Another possibility is to explore the
NVM’s explainability in more depth. Despite its purely neural
substrate, the compatibility with human-readable declarative and
procedural knowledge may facilitate more interpretable robotic
behavior, potentially even after reinforcement-based fine-tuning.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

GK was the primary author of the manuscript and code in this
work. Akshay assisted with the implementation of the simulation
environment and proof-reading the manuscript. GD assisted
with the design of the NVM and proof-reading the manuscript.
RG and JR assisted with guiding the research direction and proof-
reading the manuscript. All authors contributed to the article and
approved the submitted version.

FUNDING

This work was supported by ONR award N00014-19-1-2044.

Frontiers in Neurorobotics | www.frontiersin.org 15 December 2021 | Volume 15 | Article 744031

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Katz et al. Tunable Neurosymbolic Robotic Manipulation

REFERENCES

Aleksander, I. (2004). Emergence from brain architectures: a new cognitive

science? Cognitive Processing 5, 10–14. doi: 10.1007/s10339-003-0

001-z

Bošnjak, M., Rocktäschel, T., Naradowsky, J., and Riedel, S. (2017). “Programming

with a differentiable forth interpreter,” in International Conference on Machine

Learning (Sydney, NSW: PMLR), 547–556.

Coumans, E., and Bai, Y. (2021). PyBullet, a Python Module for Physics Simulation

for Games, Robotics and Machine Learning. Available online at: https://pybullet.

org

Davis, G. P., Katz, G. E., Gentili, R. J., and Reggia, J. A. (2021). Compositional

memory in attractor neural networks with one-step learning.Neural Netw. 138,

78–97. doi: 10.1016/j.neunet.2021.01.031

Dehaene, S., and Changeux, J.-P. (1997). A hierarchical neuronal network

for planning behavior. Proc. Natl. Acad. Sci. U.S.A. 94, 13293–13298.

doi: 10.1073/pnas.94.24.13293

Eliasmith, C., and Stewart, T. (2011). “Nengo and the neural engineering

framework: connecting cognitive theory to neuroscience,” in Proceedings of the

Annual Meeting of the Cognitive Science Society (Boston, MA).

Gentili, R. J., Oh, H., Huang, D.-W., Katz, G. E., Miller, R. H., and Reggia, J. A.

(2015). A neural architecture for performing actual and mentally simulated

movements during self-intended and observed bimanual arm reaching

movements. Int. J. Soc. Robot. 7, 371–392. doi: 10.1007/s12369-014-0276-5

Ghallab, M., Nau, D., and Traverso, P. (2004). Automated Planning: Theory and

Practice. San Francisco, CA: Morgan Kaufmann Publishers.

Graves, A.,Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska,

A., et al. (2016). Hybrid computing using a neural network with dynamic

external memory. Nature 538:471. doi: 10.1038/nature20101

Gruau, F., Ratajszczak, J.-Y., and Wiber, G. (1995). A neural compiler. Theoret.

Comput. Sci. 141, 1–52. doi: 10.1016/0304-3975(94)00200-3

Gupta, N., and Nau, D. S. (1991). “Complexity results for blocks-world planning,”

in AAAI Proceeding (Anaheim, CA), 629–633.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). “Soft actor-critic:

Off-policy maximum entropy deep reinforcement learning with a stochastic

actor,” in International Conference on Machine Learning (Stockholm: PMLR),

1861–1870.

Hebb, D. O. (1949). The Organization of Behavior: A Neuropsychological Theory.

New York, NY: Wiley.

Katz, G. E., Davis, G. P., Gentili, R. J., and Reggia, J. A. (2019). A programmable

neural virtual machine based on a fast store-erase learning rule. Neural Netw.

119, 10–30. doi: 10.1016/j.neunet.2019.07.017

Kingma, D. P., and Ba, J. (2015). “Adam: a method for stochastic optimization,” in

ICLR (San Diego, CA).

Lapeyre, M., Rouanet, P., Grizou, J., Nguyen, S., Depraetre, F., Le Falher, A., et al.

(2014). “Poppy project: open-source fabrication of 3D printed humanoid robot

for science, education and art,” in Digital Intelligence 2014 (Nantes), 1–6.

Levesque, H., and Lakemeyer, G. (2008). Cognitive robotics. Found. Artif Intell. 3,

869–886. doi: 10.1016/S1574-6526(07)03023-4

Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-to-end training

of deep visuomotor policies. J. Mach. Learn. Res. 17, 1334–1373.

doi: 10.5555/2946645.2946684

Neto, J. P., Siegelmann, H. T., and Costa, J. F. (2003). Symbolic

processing in neural networks. J. Braz. Comput. Society 8, 58–70.

doi: 10.1590/S0104-65002003000100005

Nilsson, N. J. (1980). Principles of Artificial Intelligence. Palo Alto, CA: Tioga.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al. (2019).

“PyTorch: an imperative style, high-performance deep learning library,” in

Advances in Neural Information Processing Systems 32, eds H. Wallach, H.

Larochelle, A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Vancouver,

BC: Curran Associates, Inc.), 8024–8035.

Qi, W., Ovur, S. E., Li, Z., Marzullo, A. and Song, R. (2021). Multi-

sensor guided hand gestures recognition for teleoperated robot using

recurrent neural network. IEEE Robot. Autom. Lett. 6, 6039–6045.

doi: 10.1109/LRA.2021.3089999

Reed, S., and De Freitas, N. (2016). “Neural programmer-interpreters,” in ICLR

(San Juan).

Russell, S., and Norvig, P. (2002). Artificial Intelligence: A Modern Approach. New

York, NY: Pearson Education.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).

Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347.

Available online at: https://arxiv.org/abs/1707.06347

Slaney, J., and Thiébaux, S. (2001). Blocks world revisited. Artificial Intell. 125,

119–153. doi: 10.1016/S0004-3702(00)00079-5

Sussman, G. J. (1973). A computational model of skill acquisition (Ph.D. thesis).

Massachusetts Institute of Technology, Cambridge, MA, United States.

Sutton, R. S., and Barto, A. G. (2018). Reinforcement Learning: An Introduction.

Cambridge, MA: MIT Press.

Sylvester, J. J. (1867). Thoughts on inverse orthogonal matrices, simultaneous

sign successions, and tessellated pavements in two or more colours,

with applications to Newton’s rule, ornamental tile-work, and the theory

of numbers. Lond. Edinburgh Dublin Philos. Mag. J. Sci. 34, 461–475.

doi: 10.1080/14786446708639914

Verona, F. B., De Pinto, P., Lauria, F. E., and Sette, M. (1991). “A general

purpose neurocomputer,” in 1991 IEEE International Joint Conference on

Neural Networks (Seattle, WA: IEEE), 361–366. doi: 10.1109/IJCNN.1991.

170428

Williams, R. J. (1992). Simple statistical gradient-following algorithms

for connectionist reinforcement learning. Mach. Learn. 8, 229–256.

doi: 10.1007/BF00992696

Xie, X., and Seung, H. S. (2003). Equivalence of backpropagation and contrastive

Hebbian learning in a layered network. Neural Comput. 15, 441–454.

doi: 10.1162/089976603762552988

Xu, D., Nair, S., Zhu, Y., Gao, J., Garg, A., Fei-Fei, L., et al. (2018). “Neural task

programming: learning to generalize across hierarchical tasks,” in 2018 IEEE

International Conference on Robotics and Automation (ICRA) (IEEE), 1–8.

doi: 10.1109/ICRA.2018.8460689

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2021 Katz, Akshay, Davis, Gentili and Reggia. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 16 December 2021 | Volume 15 | Article 744031

https://doi.org/10.1007/s10339-003-0001-z
https://pybullet.org
https://pybullet.org
https://doi.org/10.1016/j.neunet.2021.01.031
https://doi.org/10.1073/pnas.94.24.13293
https://doi.org/10.1007/s12369-014-0276-5
https://doi.org/10.1038/nature20101
https://doi.org/10.1016/0304-3975(94)00200-3
https://doi.org/10.1016/j.neunet.2019.07.017
https://doi.org/10.1016/S1574-6526(07)03023-4
https://doi.org/10.5555/2946645.2946684
https://doi.org/10.1590/S0104-65002003000100005
https://doi.org/10.1109/LRA.2021.3089999
https://arxiv.org/abs/1707.06347
https://doi.org/10.1016/S0004-3702(00)00079-5
https://doi.org/10.1080/14786446708639914
https://doi.org/10.1109/IJCNN.1991.170428
https://doi.org/10.1007/BF00992696
https://doi.org/10.1162/089976603762552988
https://doi.org/10.1109/ICRA.2018.8460689
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Tunable Neural Encoding of a Symbolic Robotic Manipulation Algorithm
	1. Introduction
	2. Background
	2.1. Block Stacking
	2.2. Programmable Neural Networks
	2.3. Contributions
	2.4. The Neural Virtual Machine
	2.4.1. The Reference VM
	2.4.2. The Neural VM

	3. Methods
	3.1. Block Stacking Task
	3.2. Block Stacking With the NVM
	3.3. Block Stacking Execution Trace
	3.4. Validation Metrics
	3.5. Training Process

	4. Results
	4.1. Empirical Validation
	4.2. Improving NVM Performance With Sub-symbolic Fine-Tuning

	5. Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References

