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Summary points

• Translational and clinical pharmacology are the state-of-the-art tools used by drug

developers to efficiently move compounds and regimens through all drug development

phases. Tuberculosis drug and regimen development, though, has traditionally under-

utilized these modern, model-based drug development approaches, despite the urgent

need to understand major pharmacological aspects not only of the new candidates but

also of existing drugs.

• Translational platforms that include drug combinations are critical and should encom-

pass data from multiple preclinical drug development tools (in vitro and in vivo models)

to select the best regimens to be moved forward into clinical development.

• Quantitative pharmacokinetic (PK)–pharmacodynamic (PD) approaches should be

incorporated into all phases of drug development and be used for selection of optimal

dose and schedule, assessment of drug–drug interactions, and dose determination in

key populations including pregnant women, children, and people living with HIV.

Quantitative pharmacology models should further be utilized for clinical trial design

using clinical trial simulations.

• Microbiology determinants such as precisely assessed minimum inhibitory concentra-

tions (MICs) as well as quantitative longitudinal cultures integrated with PK-PD assess-

ment will substantially inform and enhance all phases of drug development.

• Commitment of all stakeholders, data sharing, and resource investment are required for

development and utilization of these tools, which are necessary for successful TB regi-

men development.
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Introduction

Application of clinical pharmacology best practices is essential to the efficient and rational

development of drugs. In general, knowledge gained about exposure–response relationships in

preclinical models aids drug and dose selection in human studies, and biomarkers and phar-

macokinetic (PK) data one collects in early to middle drug development can be used to predict

the dose and treatment response of promising therapeutics in definitive phase 3 trials. The

essentiality of sound clinical pharmacology in tuberculosis (TB) drug and regimen develop-

ment is heightened by unique challenges in assessing drugs for this disease—aspects of the

organism’s biology, the variability in lung pathology, uncertainties about how to link treatment

outcomes seen in preclinical models with those seen in humans (which thwarts preclinical–

clinical translational work), the lack of predictive early clinical biomarkers, and the high

variability in treatment response across patients and populations (Fig 1). In TB disease, Myco-
bacterium tuberculosis (M.tb) bacilli are detected in necrotic granulomas, large cavities with

liquefied contents, and intracellularly within macrophages. We believe that drugs must access

each of these compartments to achieve cure in patients [1]. We also believe that TB drugs and

regimens must kill bacilli in different metabolic states, from actively multiplying to semidor-

mant [2,3]. Both in vitro and in vivo preclinical models are leveraged to assess the clinical util-

ity of new TB drugs and drug combinations. These models vary both in their ability to assess

efficacy relative to the shifting metabolic states of M.tb infection and in their ability to recapit-

ulate human disease. Still, two models are proving to be highly informative. The mouse model

of infection has been invaluable in selecting rank-ordered drug combinations, whereas the

Fig 1. Schema of preclinical and clinical pharmacology studies important for TB drug and regimen development. By phase of development, in green are the

questions to be addressed, in blue are the tools to use to answer the questions, and in red are the outputs. ADME, absorption, distribution, metabolism, excretion;

DDI, drug–drug interaction; Dz, disease; MIC, minimum inhibitory concentration; PBPK, physiologically based PK; PD, pharmacodynamic; Ph2A, phase 2A;

Ph2B/C, phase 2B and C; Ph3, phase 3; PK, pharmacokinetic; TB, tuberculosis; y.o., year-olds.

https://doi.org/10.1371/journal.pmed.1002842.g001
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now-validated in vitro pharmacodynamic (PD) system (IVPDS, or “hollow fiber model” for

TB) has significantly improved our understanding of the PK drivers of treatment response in

various growth and physiologic states [4,5]. In the IVPDS, an elaborate system of dialysis-like

tubing allows the investigator to reproduce human-like concentration–time curves and see

how different PK profiles affect killing of bacilli that are living in the system. Dose-fraction-

ation studies, for example, can be carried out, and one can determine whether a drug’s activity

is time dependent or, rather, concentration dependent. Or one can test a drug’s activity when

the organism is nutrient starved, in log-phase growth, or intracellular. Whereas these models

are informative, there remain gaps in our ability to bridge preclinical and clinical data using

modern translational quantitative modeling [6]. There are also gaps in our ability to link surro-

gate end points in early-phase clinical trials (namely, longitudinally collected sputum cultures)

and clinically relevant end points of treatment failure, relapse, and death in later-phase trials

[7,8]. The identification of accurate tools that identify those patients who are unlikely to

achieve cure with shortened regimens (specifically, patients with a disease phenotype that is

“hard to treat”) would have immense value to both clinical trialists and TB clinicians [9]. The

TB clinical pharmacology field has the opportunity to apply state-of-the-art quantitative phar-

macology tools to bridge preclinical and clinical data more effectively and to enhance learning

across the continuum of clinical development [9–13]. In this paper, based on discussions

occurring at a WHO workshop held in March 2018, we describe our views on best practices

for incorporating translational, PK-PD, and microbiologic assessments into drug development

[14].

The importance of understanding PK-PD relationships by phase of

regimen development

Key uncertainties and questions regarding the use of clinical and translational pharmacology,

biomarkers, and microbiology in the evaluation of novel TB treatments are listed in Table 1.

Herein, we review these, focusing in on the implications relevant to each developmental phase.

Table 1. Key uncertainties and questions about the use of clinical and translational pharmacology, biomarkers,

and microbiology to advance TB treatments that were addressed at the WHO-sponsored workshop, advances in

clinical trial design for development of new TB treatments. (Adapted from [15]).

Topic Area Question

Clinical Pharmacology What is the importance of understanding PK-PD relationships by phase of

regimen development?

Pharmacometrics How does quantitative modeling and simulation integrate PK and microbiology-

based PD measures (e.g., MIC, bacterial burden as predictive covariates of

treatment response) to inform drug development decision-making, especially in

later stages of regimen evaluation?

Preclinical/Translational

Pharmacology

Can dynamic experiment-level in vitro assessments (i.e., HFS-TB) be integrated

with patient-level bacteriological data to improve quantitative clinical PK-PD

predictions and streamline model development?

Biomarkers What would be the most efficient framework for bacteriologically based

biomarker identification and characterization in clinical trials to enable

integration in modeling and simulation-based analyses?

Bacteriology Should quantitative PK-PD models describing relevant bacteriologically based

covariates be used to guide dose finding and dose optimization in key populations

during early development?

Drug Development How do we make use of PK-PD across clinical development phases to identify

pharmacology-guided drug regimens?

Abbreviations: HFS-TB, hollow-fiber in vitro pharmacodynamic system for assessing TB drugs; MIC, minimum

inhibitory concentration; PD, pharmacodynamic; PK, pharmacokinetic; TB, tuberculosis

https://doi.org/10.1371/journal.pmed.1002842.t001
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Preclinical drug development

Investigation of PK-PD properties of a candidate drug in the preclinical space is critical for

advancing new TB drugs and for building effective combination regimens with a clear ratio-

nale for contribution of each new agent. The combination of multiple new chemical entities

requires an enhanced understanding of PK-PD across the development paradigm and refined

understanding of penetration and mechanism of action within the granuloma. Several experi-

mental tools are utilized at the preclinical stage for new TB drug assessment, each providing

unique results that can be used synergistically for decision-making [16]. The European Medi-

cines Agency (EMA)-qualified in vitro hollow-fiber system generates PK-PD data that can be

used to refine in vivo animal experiments [16,17]. These in vitro data are integrated with data

from multiple in vivo models, which include acute, chronic, and relapsing BalbC (older, well-

validated standard mouse model) and Kramnik (newer model with more human-like pathol-

ogy) mouse models of infection as well as marmoset and rabbit models of disease [18,19]. All

of these models provide valuable information on the drug’s potential for microbiologic activity

and sterilization (killing of semidormant bacilli) but generate only limited PK-PD data [4,5].

Collectively, these data contribute to understanding spatial distribution of candidate drugs at

the site of action in the lung, PK-PD relationships for a single drug, contribution of an individ-

ual drug to the entire regimen, synergies of drugs within combinations, and potential for

shortening treatment duration. Systems pharmacology models or PK-PD–driven translational

platforms are essential in order to adequately assess the true potential of investigational regi-

mens. In the absence of PK-PD–driven translational data, regimens move into late-phase trials

with important uncertainties (about the real likelihood that a regimen will produce cure at

rates equal to or better than that of the standard-of-care regimen) that traditional microbio-

logic surrogate markers like sputum culture conversion cannot adequately address [6]. Fur-

ther, current lack of informative, translational biomarkers that are portable across TB clinical

drug development stages for regimen and dose optimization puts further weight on preclinical

analyses for de-risking regimen development [20].

The best way to identify new quantitative and translational tools for discovery and optimi-

zation of new TB treatment regimens is by investing in and enhancing data collaboration and

translational modeling activities. This would support development of a universal preclinical–

clinical mechanistic PK-PD system for TB drug combinations with high translational and pre-

dictive features to answer questions such as the following: What is the human equivalent dose/

schedule of a candidate drug used in a combination regimen that will maximize its contribu-

tion to reducing treatment duration? What is the likelihood of achieving treatment durations

of 1–3 months with a putative treatment-shortening regimen? And is it possible to shorten

treatment duration in all disease phenotypes and all patients? A translational, data-driven

mechanistic tool would be able to predict comparative efficacy and intended treatment-short-

ening potential of new candidate regimens based on preclinical data and optimized transla-

tional simulations. The major features of such a translational tool would ideally include:

(1) quantification of bacterial growth dynamics in the absence of treatment, (2) quantification

of the immune system response in the absence and presence of treatment and as a function of

bacterial load and infection time, (3) quantification of the contribution of each drug (concen-

tration–response relationship) to the observed total efficacy of drug combinations, (4) quanti-

fication of the interplay between disease pathology and drug response including description of

tissue penetration, (5) a fully estimated set of model parameters with variability and uncer-

tainty, and (6) appropriate scaling functions to human PK and PD to allow for accurate

translational simulations. Because these components span numerous approaches to drug eval-

uation, from in vitro studies to clinical trials, data often need to be obtained from multiple
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sources; once assembled through collaborations, they can permit accurate translational simula-

tions to help address the critical questions and enable decision-making by stage–gate regimen

developers (developers that have divided development into stages with go/no-go decisions at

the end of each stage). Integration of these principles will allow for rational selection of the

best regimens to be moved forward into clinical development, selection of rational dose ranges

to be studied in clinical phases, quantitative predictions of clinical trial outcomes, and

informed choice of clinical trial designs.

Clinical PK and PD

Prior to initiating a phase 3 registration trial of a new regimen, it is also important to under-

stand the PK of experimental drug(s), exposure–response relationships, PK–toxicity relation-

ships, risk and magnitude of drug interactions, drug safety, sources of variability (in PK, safety,

treatment response) in the population, and PK in key populations (Fig 1). Phase I trials provide

basic PK and safety information. It is important from a practical standpoint to assess food

effect early, as this may impact administration requirements and may complicate approaches

to coadministration with companion drugs, as some are taken on an empty stomach (e.g.,

rifampicin), whereas others are absorbed better with food (e.g., rifapentine, delamanid, beda-

quiline) [21–24]. It is also necessary to determine whether weight-based dosing will be

required. The requirement for weight banding adds complexities to field implementation as

well as reduces the opportunity to coformulate companion drugs into fixed-dose combina-

tions. Additionally, caution is noted, as systematic underdosing of lower-weight individuals

can occur when weight banding is used without a reliable clinical PK-PD evidence base [25].

Over the course of phase 1 and 2 testing, assessment of drug PK in geographically and eth-

nically diverse populations is also invaluable, as variability of drug exposures across popula-

tions has been noted [22]. Sparse PK sampling can be employed after identifying optimal

sampling times, and population PK modeling is then used to identify factors associated with

variability in drug exposures (e.g., sex, race, HIV coinfection, malnutrition). For example, in

individuals of black race, bedaquiline exposures are 50% lower than in persons of other racial

backgrounds; rifampicin concentrations are very low in children who are malnourished or

who have HIV infection; and isoniazid clearance is dependent on N-acetyltransferase 2 acety-

lator status [22,26,27]. Drug–drug interaction studies should be pursued in middle drug devel-

opment and not left for late phases of development, particularly for interactions between TB

and HIV drugs. The need for drug–drug interaction studies can be assessed based on knowl-

edge of the putative TB drug(s) and standard-of-care HIV drugs’ metabolic pathways and their

proclivity for inducing or inhibiting metabolizing enzymes or transporters. If interaction stud-

ies of HIV and TB drugs are not conducted early, the impact of the new TB regimens on anti-

retroviral therapies (and vice versa) and the resultant effects on viral load suppression and on

achieving durable cure from TB will not be understood; as a consequence, the inclusion of

HIV patients into late-phase trials will be hindered, limiting the assessment of the safety, toler-

ability, and efficacy of the regimen in this key population. Moreover, drug–drug interaction

studies will still be needed, and substudies will need to be designed, adding significant com-

plexity and delays when they are embedded into late-phase, confirmatory clinical trials [28,29].

In early phase 2A trials, in which a drug or drug combination is administered for 7–14

days to small cohorts of patients (n = 15–20), a range of doses and schedules is tested for early

bactericidal activity (EBA). Data on safety, tolerability, and longitudinal quantitative sputum

bacillary loads are collected, and semi-intensive PK sampling is performed to characterize

individual drug exposures and PK-PD relationships, which can narrow the doses to be tested

in subsequent trials. In phase 2B trials, microbiologic responses to treatment are assessed
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through serial sputum cultures up to 8–16 weeks of treatment. In phase 2C trials, the experi-

mental regimens are administered for their intended duration (e.g., 3 or 4 months), and

patients are followed to collect information on longer-term clinical outcomes (failure, relapse,

death) [30]. Such phase 2B and phase 2C studies are typically multinational and can produce

rich PK and microbiologic data from geographically diverse settings. We propose that sparse

PK sampling be embedded in all phase 2B/C trials. If feasible, sparse PK sampling obtained on

more than one occasion—for example, early in treatment (intensive phase) and then later in

treatment (continuation phase)—would allow the quantification of longitudinal drug expo-

sures that, in turn, characterize exposure–response relationships necessary for selecting the

accurate dose(s) to evaluate in phase 3 trials [13,31]. Additionally, population PK-PD model-

ing can define the relative contributions of factors that lead to delayed culture conversion,

assessing within the model the full suite of potential features, from low drug exposures to clini-

cal factors such as disease severity or patient characteristics. Patient and disease severity char-

acteristics are important to incorporate into models, as the hardest-to-treat phenotypes of

disease disproportionately drive the unfavorable outcomes in contemporary phase 3 trials

[10,11,32]. To date, clinical PK-PD analyses have been unable to adequately inform decision-

making on selecting an optimal regimen duration. A PK-PD tool that predicts the optimal

treatment duration based on data from preclinical studies, phase 2 trials, and both successful

and unsuccessful phase 3 trials would be extremely valuable.

In middle development (at the phase 2 stage), PK–toxicity studies are also needed to define

the therapeutic margin and ensure that dose(s) used in phase 3 are likely to be safe and well tol-

erated. PK–safety relationships influence both dose and schedule (duration, dosing frequency),

with some drugs displaying toxicity associated with cumulative exposure (e.g., linezolid, eth-

ambutol) and others causing more adverse effects when given on an intermittent schedule

(e.g., rifamycins administered thrice or once weekly) [33–35]. Overlapping toxicities can also

be explored with PK data in hand to help discern relationships. For example, prolongation of

the QT segment on the electrocardiogram, a cardiac toxicity that can lead to torsades de

pointes, can be related to concentrations of the parent drug or metabolite and is of increased

concern when QT-prolonging drugs are administered concurrently [36].

Phase 3 trials provide the first opportunity to assess drug efficacy by comprehensively col-

lecting data on drug exposures, adherence, microbiological response over time, safety, and

long-term clinical outcomes; furthermore, this often is the only setting in which reduced treat-

ment durations are tested. Phase 3 studies also offer larger numbers of patients from key popu-

lations (e.g., people living with HIV and children). Because of these features, we recommend

that phase 3 trials include sparse PK sampling whenever feasible and that samples be collected

on all patients. PK-PD assessments can be performed on a subset of study participants to iden-

tify the reasons for poor treatment outcomes. If the trial was successful, these samples would

allow analyses that inform future use and scale-up of the regimens; if the trial was not success-

ful, these data help ascertain the reason(s) why and are critical for determining next steps.

Microbiology and quantitative pharmacology

Although microbiology (e.g., in vitro minimum inhibitory concentration [MIC]) is widely

accepted as an important determinant of response to treatment, integrated PK and microbiol-

ogy-based PD measures built into late-stage clinical trials to confirm relationships are rarely

undertaken. MICs are assessed in preclinical drug development, and the choice of dose and

schedule is driven by the desire, for example, to maintain plasma drug levels above MIC for a

defined duration. This approach has shortcomings, as PK-PD indices are often derived based

on plasma PK, which is often suboptimal compared with the site-of-action PK; traditional
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assessment of MIC usually lacks precision [37], and by definition, MIC values indicate inhibi-

tion of bacterial growth rather than bacterial killing, which is key for cure. Bacteria with higher

MIC are harder to eradicate, and patients with high-MIC bacteria might need more aggressive

regimens or longer treatment to achieve cure. Similarly, pretreatment bacterial burden in spu-

tum is highly associated with treatment response. The recent TB Reanalysis of Fluoroquino-

lone Clinical Trials (TB ReFLECT) meta-analysis revealed that patients with low bacterial

burden at baseline could be effectively treated with a shortened (4 month)-duration experi-

mental regimen [9]. Similarly, time-to-culture conversion on standard treatment appears to be

shorter in patients with low baseline bacillary load. However, a number of questions remain

unanswered—Is there a correlation between baseline bacterial burden and MIC? Does MIC

change over time with treatment? Under which circumstances can higher bacterial load or

MIC be overcome with higher doses, strong companion drugs, or longer treatment? Should

we index PK parameters (Cmax, area under the concentration–time curve [AUC]) to MIC or

to a data-informed factor of the MIC?

To address these questions, collection of microbiology data is key in all stages of clinical tri-

als, especially late-stage trials followed up with adequate analysis. Collecting sputum specimens

for MIC and bacterial load determinations in clinical drug development so that their value (in

subsequent studies and in clinical practice) can be determined is important. M.tb isolates

should be available for MIC determination from baseline and last positive cultures, and spu-

tum specimens should be assessed over time for changes in bacterial load. Knowledge of strain

lineage (e.g., Haarlem, Latin American/Mediterranean, W/Beijing) may also be helpful, as

there may be strain heterogeneity with regard to virulence and drug response. A standardized

method for providing robust and accurate MIC determinations, such as the 14-drug microtiter

plate (ThermoFisher) employed by the Comprehensive Resistance Prediction for Tuberculosis:

An International Consortium (CRyPTIC) [38], should be used. Techniques for measuring bac-

terial burden including time to positivity in mycobacterial growth indicator tube (MGIT) cul-

ture, cycle threshold in GeneXpert MTB/RIF assay, or potential novel biomarkers (e.g.,

quantification of sputum lipoarabinomannan [LAM] levels) should be routinely included in

clinical trials to enable investigation of predictive bacterial burden biomarkers [39,40]. Assays

such as GeneXpert cycle threshold have the advantage of producing results in real time, though

one disadvantage is that DNA from both live and dead bacilli can be detected. Lastly, it is

important to align new drugs with new diagnostics. Specifically, detection and characterization

of resistance is a key component of TB drug development, and whole-genome sequencing can

identify mutations that are associated with decreased susceptibility of M.tb strains to new

drugs.

Key populations: Optimal design to extend treatment advances to

all

Young children and pregnant women with TB may be at particularly high risk of adverse out-

comes resulting from inadequate TB treatment [41,42]. There are limited data to inform use of

TB drugs in pregnant women because they are routinely excluded from clinical trials, and

there is no requirement to study them from any regulatory authority. This may change with

the report of the Task Force on Research Specific to Pregnant Women (PRGLAC) released in

September 2018 [43]. In Europe, a pediatric investigation plan (PIP) is required for drug regis-

tration, but there is no requirement for data from the pediatric patient population. In the

United States, because TB is considered an orphan disease, the Pediatric Research Equity Act

(PREA) does not apply to drugs developed for TB, relieving companies of the requirement to

study TB drugs in children for registration. As it may be difficult to recruit children and
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pregnant women with TB in any given location, design of clinical trials in these populations

must be optimized for efficiency and yield of safety and PK data that will be needed to support

dosing recommendations. Full efficacy trials are generally not required [44].

Children

Opening doses in different pediatric age cohorts are more likely to be accurate when based on

models that incorporate adult PK data and information about developmental pharmacology

and when evidence-based target PK ranges are defined explicitly, rather than relying on

empiric dose selection (e.g., same mg/kg dose as adults) [45]. Given that drug disposition is

most variable between the ages of 0 and 2 years (and changes especially rapidly in the first 3–6

months of life), we suggest including a larger number of children in the youngest cohort to

ensure full knowledge of drug disposition in that rapidly developing age group; the sample size

of adolescents can be relatively smaller because drug disposition is similar in teens and adults.

Key features of a pediatric PK–safety study include model-informed initial dose selection;

early interim analysis of PK results in each age cohort (with dose adjustment and model updat-

ing); use of optimal sampling theory, a data-driven approach that informs the selection of the

most informative time points for PK sampling while minimizing the number of required sam-

ples; defining the timing and content of safety visits to reflect knowledge of each drug’s pre-

clinical toxicology and adult toxicity information; clear and evidence-based selection of PK

target ranges for parent drug and metabolite(s); and model-based analysis of data by a

pharmacometrician.

Pregnant women

Studies in pregnant women should take into account pregnancy-related physiologic changes,

including changes in renal clearance, drug metabolism, and protein binding [46,47]. Some

metabolizing enzymes have higher activity during pregnancy (cytochrome [CYP] P450 2A6,

3A4, 2D6; uridine 5’-diphospho-glucuronosyltransferase [UGT] 1A4), whereas others have

lower activity (CYP1A2, 2C19); the magnitude of difference in enzyme activities in pregnant

versus nonpregnant women differs by trimester [48]. As selection of doses most likely to

achieve (but not exceed or fall significantly short of) therapeutic targets is especially crucial in

pregnant women with TB, model-based dose selection is best from both scientific and ethical

standpoints. PK assessments should be performed in the second and third trimester and then

postpartum so that timing of dose adjustments can be assessed. Depending on the duration for

which a given drug is administered, each woman may serve as her own control, reducing vari-

ability. Pharmacometric modeling should be used in the analysis so that specific effects of preg-

nancy on drug absorption, distribution, and clearance can be estimated while considering

other cofactors that may affect the drug’s disposition, and recommendations for dose adjust-

ments can be made with maximal knowledge. With regard to safety, whereas a very strong

safety signal may be detected in a study powered to detect PK changes, a much larger cohort of

women is needed to characterize the full safety profile of a drug in pregnancy for the mother

and fetus. Pharmacovigilance via pregnancy registries is one way to achieve this (e.g., http://

www.apregistry.com/ for antiretrovirals).

Site-of-disease PK: Relevance for drug development and

optimization

M.tb bacilli are present in multiple compartments in a patient with pulmonary TB but are

most numerous in large cavitary lesions that contain liquefied, caseous material. To effect

cure, it is currently believed that drugs must penetrate necrotic granulomas and cavitary
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Table 2. Use of PK-PD, microbiology, and biomarkers in TB regimen development: Required elements, recommended but optional components, and research gaps

(adapted from World Health Organization [15]).

Question Consensus Options Research

What is the importance of

understanding PK-PD relationships by

phase of regimen development?

PK studies should be included

throughout drug/regimen development

phases, in both early and late stages of

development. PK samples should be

collected in all treatment trials with

clear documentation of dosing history.

Other PK studies should be

performed in the spirit of modern

drug development, including the

following:

Optimal timing and frequency of PK

sampling by type of trial (e.g., phase 2A,

2B, 2C) to yield the most information in

the most efficient way.

A guidance that outlines information to

be collected and parameters to be

identified at each phase of drug

development is needed. This guidance

should be organized by sections of

minimum information and optimal

information. This could be undertaken

by a group of individuals with expertise

in PK-PD research, such as the WHO

Task Force on the PK-PD of TB

medicines.

Drug–drug interaction studies,

especially with companion TB drugs

or antiretrovirals.

Translational modeling and quantitative

pharmacology to link preclinical, early-

mid clinical (with microbiology

outcomes). and definitive trial (with

clinical outcomes) results. Role of clinical

trial simulation with phase 2 data to

inform phase 3 design.

Importance of PK in phase 2 trials to

allow understanding of dose–

exposure–response relationships for

dose selection in definitive trials.

Evaluation of PK–toxicity

relationships for key toxicity concerns

(e.g., QTc).

Validation and refinement of translational

tools and modeling activities (mouse

model, HFS, systems pharmacology

model) through data sharing.

Critical importance of PK–safety

assessment in phase 2/3 to inform the

need for dose/schedule adjustments.

Particularly important for narrow

therapeutic index drugs.

Sparse PK collection in phase 3 to

strengthen population PK modeling

and to explore exposure differences in

relevant subgroups including poor

responders.

Biomarker (host, microbiology)

explorations to find better ways to identify

best regimens to carry forward from

middle drug development.

Population PK modeling to understand

sources of variability (e.g., sex, race,

age, HIV status) in drug exposures and

response.

Phase 2B/C studies with arms testing

different doses and duration and

collection of treatment outcomes will

be most informative for identifying

regimens most likely to be successful

for treatment shortening.

How does quantitative modeling and

simulation integrate PK and

microbiology-based PD measures (e.g.,

MIC, bacterial burden as predictive

covariates of treatment response) to

inform drug development decision-

making, especially in later stages of

regimen evaluation?

Importance of gaining a better

understanding of the relevance and

value of MIC measurements as well as

baseline quantitative bacterial burden

in assessments of exposure–response

relationships.

M. tuberculosis isolates should be

stored, including at a minimum the

baseline isolate and that of the last

positive culture.

Key research questions to answer by

quantitative pharmacology by time of

registration:

Collection of specimens for MIC

(genotypic, phenotypic, whole-genome

sequencing, etc.) in clinical drug

development will allow for value

assessment. Isolates should be collected

at baseline and during midterm and

late-stage development.

Bacterial burden should be quantified

longitudinally via collection of serial

sputum samples.

PK-PD underpinnings to support dose

recommendations, including in hard-to-

treat patients and key populations.

Specific guidance from WHO PK-PD

Task Force to provide details on

standardized approaches for collection

of isolates (which isolates, how to

collect, how to store, when to collect,

what type of assay would be needed)

PK–toxicity relationships.

(Continued)
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lesions to inhibit or kill the viable bacilli that are not expelled by coughing. We should ensure

that the drugs achieve adequate bactericidal concentrations in the lesions where bacilli are

present. Preclinical and clinical research focused on drug quantification in these matrices may

help inform regimen selection for treatment-shortening trials, including drugs, doses, dura-

tion, and companion drugs. This is an area in which translational PK-PD research may be par-

ticularly valuable. In rabbit models of pulmonary TB that have human-like pathology, it has

been observed that some drugs have excellent penetration into lesions, as assessed spatially by

matrix assisted laser desorption/ionization (MALDI) mass spectrometry or quantitatively by

laser capture dissection and laser capture microdissection liquid chromatography mass spec-

trometry (LCM-LC/MS), whereas others display poor lesion penetration [49–51]. Of note, all

four current first-line TB drugs reach therapeutic concentrations in TB lung lesions [52].

Patients with highly drug resistant TB who must undergo lung resection for cure have partici-

pated in research aimed at measuring drug concentrations in lung compartments following

observed dosing [1]; data from such investigations help bridge preclinical and clinical studies

and provide evidence concerning the contribution of drug PK to acquisition of drug resistance

in lung microenvironments [53]. With rabbit lesion penetration data for a novel drug as well

as data on human plasma PK and treatment outcomes, translational models can be built that

shed light on the differential response to TB treatment that results from differences in lung

pathology [19]. These strategies may help reduce the risk of late-phase failure for drugs with

promising preclinical and early clinical microbiologic efficacy by identifying early those com-

pounds with poor penetration into critical lung lesions. Translational models may also be

important in developing therapies for other manifestations of TB disease, like central nervous

system or extrapulmonary TB.

Table 2. (Continued)

Question Consensus Options Research

Drug–drug interactions with companion

TB and HIV drugs.

Evaluation of value of MIC (static drug

concentration in relevant medium) versus

dynamic susceptibility information in

drug and regimen assessment.

Can dynamic experiment-level in vitro

assessments (e.g., HFS) be integrated

with patient-level microbiology data to

improve quantitative clinical PK-PD

predictions and streamline model

development?

Investment in development of

translational tools and modeling

activities (mouse model, HFS, systems

pharmacology model) that can

inform regimen composition.

What would be the most efficient

framework for microbiology-based

biomarker identification and

characterization in clinical trials to

enable integration in modeling and

simulation-based analyses?

Development and validation of novel

biomarkers should be integrated in all

PK-PD activities to allow for rapid

assessment of the biomarkers and

properties of future potential surrogates

for bacterial load.

Culture-free (and sputum-free) systems as

alternatives to existing culture-based

systems are urgently needed.

Should quantitative PK-PD models

describing relevant microbiology-

based covariates be used to guide dose

finding and dose optimization in key

populations during early

development?

Design of studies in key populations

should be supported by clinical

pharmacology principles (dosing

regimen) and aided by model-based

design.

Abbreviations: HFS, hollow fiber system; MIC, minimum inhibitory concentration; PD, pharmacodynamic; PK, pharmacokinetic; QTc, corrected QT interval on

electrocardiogram; TB, tuberculosis

https://doi.org/10.1371/journal.pmed.1002842.t002

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002842 July 5, 2019 10 / 14

https://doi.org/10.1371/journal.pmed.1002842.t002
https://doi.org/10.1371/journal.pmed.1002842


Conclusions

Modern drug development tools using quantitative and translational pharmacology and

microbiology are proving to be invaluable when applied to TB drug and regimen development

programs. We can further improve on these tools by constructing predictive, fully translational

models that fully integrate data and knowledge from diverse models and sources including in

vitro susceptibility data, drug(s) mechanism-of-action characteristics, hollow-fiber model

PK-PD data, cure results from multidrug studies in different animal models, phase 2 longitudi-

nal microbiologic data, and information on PK-PD, adherence, and well-defined clinical out-

comes from carefully conducted phase 3 trials (Table 2). Comorbidities, sites of disease,

characteristics of the infecting strain, and host immune status are also highly relevant; infor-

mation on these elements can further enhance model performance. For the clinical phases of

development, studies of drug interactions with relevant ART agents should be conducted early

to allow the inclusion of HIV-infected patients in definitive trials. Similarly, children and preg-

nant women with TB should also be included in well-designed safety and PK studies.
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