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Abstract

Background: Our aim is to investigate the ability of neural networks to model different two-
locus disease models. We conduct a simulation study to compare neural networks with two
standard methods, namely logistic regression models and multifactor dimensionality reduction.
One hundred data sets are generated for each of six two-locus disease models, which are
considered in a low and in a high risk scenario. Two models represent independence, one is a
multiplicative model, and three models are epistatic. For each data set, six neural networks (with up
to five hidden neurons) and five logistic regression models (the null model, three main effect
models, and the full model) with two different codings for the genotype information are fitted.
Additionally, the multifactor dimensionality reduction approach is applied.

Results: The results show that neural networks are more successful in modeling the structure of
the underlying disease model than logistic regression models in most of the investigated situations.
In our simulation study, neither logistic regression nor multifactor dimensionality reduction are
able to correctly identify biological interaction.

Conclusions: Neural networks are a promising tool to handle complex data situations. However,
further research is necessary concerning the interpretation of their parameters.

Background
The investigation of complex diseases plays an important
role in genetic epidemiology where the identification of
genetic risk factors is of great interest. Besides the study
of main effects, the interplay of two or more genetic risk
factors gains more and more attention. The identification
of such a biological interaction or epistasis, however, is
linked to new challenges for statistical methods. A major
problem is the discrepancy between statistical and
biological interaction. Statistical interaction is com-
monly defined as the deviation from an additive effect
of single risk factors on the outcome, respectively on the

transformed outcome. In logistic regression models, for
example, a multiplicative structural model is applied and
an additive effect on the logit-transformed outcome
implies a multiplicative effect on the untransformed
outcome. Therefore, statistical interaction in a logistic
regression model is understood as deviation from a
multiplicative effect.

On the contrary, biological interaction is present if one
gene is influencing the effect of another one [1]. Both
terms do not coincide as was shown for example by
North et al. [2] or Foraita et al. [3]. Nevertheless, a
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meaningful interpretation of genetic studies requires the
detection of biological interaction with statistical meth-
ods (cf. [4,5]).

A variety of parametric and non-parametric methods has
been proposed for modeling and detecting gene-gene
interaction, e.g. support-vector machines [6], random
forests [7,8], multi-factor dimensionality reduction
(MDR, [9,10]), combinatorial partitioning methods
[11], focused interaction testing framework [12], classi-
fication and regression trees (CART, [13]), logic regres-
sion [14], and lasso regression [15]. A useful
classification is given by Musani et al. [16], who
distinguish between regression-based methods, data
reduction-based methods, and pattern recognition meth-
ods in their overview.

Despite the wealth of these approaches, none of the
proposed methods is optimal for all two-locus disease
models (see e.g. [17-19]). Consequently, there is no
established method for analyzing gene-gene interactions
so far [20]. Since parametric methods have problems to
detect interaction in the absence of main effects and non-
parametric approaches are ineffective when main effects
are present [16,21], it might well be that there is no
single approach appropriate for all types of biological
interaction. Currently, generalized linear models, and
here logistic regression models, as well as MDR are
predominantly applied (see e.g. [22-27]). Another tool
that has been employed in genetic epidemiology during
the last 15 years is the neural network approach (see e.g.
[28-32]). Neural networks are a flexible statistical tool to
model any functional relationship between covariates
and response variables. Therefore, they represent a
promising approach to deal with the difficulties asso-
ciated with modeling biological gene-gene interactions.
They have as well been successfully applied for variable
selection as for example with genetic programming
neural networks (GPNN, [33-36]) or grammatical
evolution neural networks (GENN, [37,38]). Both
approaches were developed to identify an optimal
network topology. Motsinger et al. [39] successfully
applied GENN to simulated genome wide association
data with 500,000 Single Nucleotide Polymorphisms
(SNPs) showing the general ability of neural networks to
handle such large data sets. However, variable selection
is not the focus of this paper.

The aim of this paper is to explore the ability of neural
networks to model different types of biological gene-
gene interactions. For this purpose, a simulation study is
conducted to investigate the behavior of neural networks
in various situations. We assume a case-control study
with equal numbers of cases and controls. Following the
scenarios of Risch [40] and the concept of epistatic

models as classified by Li and Reich [41], different
theoretical types of gene-gene interactions are studied.
There are exactly two loci involved, i.e. variable selection
is not a problem. The results are compared with those of
logistic regression models and those of MDR analyses.
Finally, the advantages and disadvantages of using a
neural network approach are discussed.

Methods
Neural networks
A feed-forward multilayer perceptron (MLP) is chosen as
neural network [42]. The general idea of an MLP is to
approximate arbitrary functional relationships between
covariates and response variables.

The underlying structure of an MLP is a weighted,
directed graph, whose vertices are called neurons and
whose edges are called synapses. The neurons are
organized in layers and each layer is fully connected by
synapses to the next layer. The input layer contains all
considered covariates and the output layer the response
variables. An arbitrary number of so-called hidden layers
can be included between the input and the output layer.
See Figure 1 for an example of a neural network with one
hidden layer.

Data is passing the neural network as signals. These
signals travel the synapses and pass the neurons where
the signals are processed. All incoming signals are added
and the activation function s is applied to the resulting
sum. Additionally, a weight is attached to each of the
synapses. A positive weight indicates an amplifying, a
negative weight a repressing effect on the signal. During
the training process, the weights are modified by a
learning algorithm. The learning algorithm minimizes an
error function that depends on the difference between
the given output and the output estimated by the neural

Figure 1
Neural network. Neural network with one hidden layer
consisting of three hidden neurons.
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network. In general, the strength of the modification
depends on a specified learning rate.

The minimal MLP without hidden layer is equivalent to
the generalized linear model [43] and computes the
function

  ( ) ,x w x 











  w xi i
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T

where w denotes the weight vector including intercept, x
the input vector, and s the activation function. Any
arbitrary function can be chosen as activation function,
although most learning algorithms require a differentiable
activation function. Choosing the inverse of the link
function used for the logistic regression model s (z) = 1/
(1 + exp(-z)), the MLP without hidden layer is algebraically
equivalent to the logistic regression model and computes
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In this case, all weights wi of the MLP correspond to the
regression coefficients bi of the logistic regression model.

Hidden layers can be included to increase the modeling
flexibility. An MLP with one hidden layer computes the
following function
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and is capable to model any piecewise continuous
function [44]. Here, there is a lack of interpretation of
the parameters.

In the present paper, we investigate MLPs with at most
one hidden layer. Resilient backpropagation [45] and
cross entropy are chosen as learning algorithm and error
function, respectively. The latter choice guarantees
equivalence of the trained weights to maximum-like-
lihood estimation (see e.g. [46]). The employment of
resilient backpropagation as learning algorithm does not
require a transformation of continuous data. It solves the
problem of choosing an appropriate learning rate for
each data situation.

Design of the simulation study
We conduct a simulation study, where neural network
models are used to fit different two-locus disease models
in a case-control design. For each of these models, one
low risk and one high risk scenario is simulated.

Unconditional logistic regression models are fitted to the
same data sets to compare the results with an established
method. For judging the ability to model the underlying
disease model, the estimated penetrance matrices are
compared to the theoretical penetrance matrices.

Two-locus disease models
Six different two-locus disease models are considered:
three models introduced by Risch [40] and three
different epistatic models. They can be distinguished by
the structure of their penetrance matrices f = [fij]i, j, where
i, j ∈ {0, 1, 2} represent the genotype at the two loci.

1. The first two-locus disease model is Risch’s additivity
model (ADD). Here, the penetrance matrix is given by
summing the so-called penetrance terms ai and bj

f P Y G i G j a bij A B i j     ( | , ) ,1

where Y denotes the case-control status and GA and GB,
GA, GB ∈ {0, 1, 2}, the genotypes at the two involved
loci. The penetrance terms ai and bj are restricted to 0 ≤ ai,
bj ≤ 1 and ai + bj ≤ 1. This model represents biological
independence of both loci.

2. For Risch’s heterogeneity model (HET), the penetrance
matrix is also determined by the penetrance terms

f a b a bij i j i j    .

Like the additivity model, the heterogeneity model
describes a model of biological independence for 0 ≤
ai, bj ≤ 1. However, in this case no further constraints on
the penetrance terms are necessary.

3. The third setting is Risch’s multiplicative model
(MULT). The penetrance matrix is given by the pene-
trance terms as follows

f a bij i j  .

The multiplicative model represents biological interaction.

4. In the first epistatic model (EPI RR), the penetrance
matrix is given by a matrix of the following type:

f P Y G i G j

c c c

c c c

c c r c

A B i j   
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where the constant term c denotes the baseline risk of
getting the disease and r the risk increase or decrease.
This model assumes that both genes have a recessive
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effect on the disease, since there is only an increased or
decreased risk if both loci carry two mutated alleles.

5. The penetrance matrix of the second epistatic model
(EPI DD) is as follows

f

c c c

c r c r c

c r c r c

  
 

















1 1

1 2

,

i.e. both loci are assumed to be dominant. In this setting,
an increased or decreased risk is only observed if both
loci carry at least one mutated allele.

6. The last considered scenario is a mixed epistatic model
(EPI RD). The penetrance matrix is given by

f

c c c

c c c

r c r c r c


  















1 1 2

.

In this situation, one gene (A) has a recessive and one
gene (B) has a dominant effect on the disease.

All epistatic models represent gene-gene interaction. By
choosing the parameters r, r1, r2 and the ratios a1/a0, a2/
a0, b1/b0, and b2/b0, respectively, different risk scenarios
can be generated.

Data generation
The data generation follows a two-step procedure. As a
first step, basic populations with one million observa-
tions are simulated. For the six two-locus disease models
introduced above we investigate two risk scenarios each
(see Table 1). This results in 12 basic populations with
two biallelic loci, A and B. The genetic information is
drawn randomly with a minor allele frequency for both
loci of 0.3 to ensure sufficient cell frequencies in the final
case-control samples. Both loci are assumed to be in
linkage equilibrium and it is assumed that the Hardy-

Weinberg equilibrium holds. The case-control status is
drawn according to probabilities of a given penetrance
matrix in relation to the respective disease model and the
risk scenario. In all 12 settings, parameters are chosen
such that the overall disease prevalence is equal to 0.01.
The genotype information is described by a codominant
coding, i.e. the genotype at each locus represents the
number of mutated alleles.

As a second step, 100 case-control samples with 1,000
cases and 1,000 controls are drawn randomly from each
basic population, i.e. each combination of two-locus
disease model and risk scenario. Overall, this results in
12 times 100 case-control samples that will be analyzed.

Modeling the data
Model-building with neural networks is done using six
different network topologies from zero neurons in the
hidden layer (i.e. no hidden layer) up to five neurons in
the hidden layer. Each topology is trained five times with
synaptic weights initialized with random numbers
drawn from a standard normal distribution to avoid
local minima. From these fitted models, the best model
for each data set, i.e. the network topology, is chosen
using Akaike’s Information Criterion (AIC, [47]).

The following five logistic regression models are fitted to
each data set: the null model (NM), three main effect
models (only locus A (SiA), only locus B (SiB), both main
effects (ME)), and a full model including both main effects
and an interaction term (FM). The best model for each data
set is chosen based on the AIC. Note that the neural network
with zero neurons in the hidden layer is algebraically
equivalent to the main effect model ME. In a second
approach, logistic regression models are fitted to the data
with two dichotomous design variables representing each
locus. Instead of counting the number of mutated alleles,
these two variables reflect the heterozygous genotype and
the homozygous genotype with two mutated alleles,
respectively. For instance, the main effect model for locus
A only (SiA) is modeled with a codominant coding as

logit( ( ))P Y Gk Ak
   1 0 1 

as opposed to

log ( ( ))

( ) ( ){ } { }

it P Y

G G
k

G A G AAk k Ak k


   

1

0 11 1 12 2  1 1

with design variables. The observation is indexed by k, b
represents the regression coefficients and 1 an indicator
function. Table 2 gives an overview of the fitted
statistical models and the numbers of needed parameters
for all considered models.

Table 1: Risk scenarios

Two-locus disease
model

Low risk scenario High risk scenario

ADD, HET, MULT a1 = 2·a0 a1 = 5·a0
a2 = 4·a0 a2 = 10·a0
b1 = 5·b0 b1 = 5·b0
b2 = 10·b0 b2 = 10·b0

EPI RR r = 5 r = 10

EPI DD, EPI RD r1 = 2 r1 = 5
r2 = 4 r2 = 10

Applied risk scenarios for all two-locus disease models.
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These three applied statistical methods deliver as output
an estimation of the probability to be a case, i.e. the
penetrance for each genotype-genotype combination. We
compare these estimated penetrance matrices to the
theoretical ones to judge the ability of the statistical
methods to model the underlying two-locus disease
model. A penetrance matrix derived from a case-control
sample differs considerably from one derived from the
basic population, since the penetrance matrix depends on
the prevalence of disease in the considered data. There-
fore, we have to compute the theoretical penetrance
matrix for the case-control sample using the penetrance
matrix from the basic population, the allele frequencies
and the prevalence of the population (see appendix for an
example). The comparison of the obtained theoretical
penetrance matrix with the penetrance matrices estimated
by the three different statistical approaches gives results
which are independent from sampling error, since the
theoretical penetrance matrix symbolizes a perfectly
drawn case-control sample. For each of the 12 popula-
tions, the mean absolute difference between theoretical
and estimated penetrance matrix is calculated element by
element for each genotype-genotype combination over
the n = 100 case-control samples:

E E
n

f f
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k

: ( ) :

( )

( )

,

( )

  












 





1

1

1

1

 x
nn

i j














,

,

where i, j ∈ {0, 1, 2}, and fij and ˆ ( )( ) ( )fij
k k  x denote

the entries of the theoretical and estimated penetrance
matrix of the kth sample, respectively. Furthermore, the

sum of the mean absolute differences ∑i, jEij is
considered.

The data generation and the statistical analyses for neural
network and logistic regression are performed using R
[48]. The package for the MLP, neuralnet, was newly
implemented by our group and is published on CRAN
[49].

Additionally, the MDR approach is applied to the data.
The analyses are conducted by the java-based open
source software MDR release 1.2.5 with default config-
urations [50]. In particular, analysis configurations are
specified as follows: the random seed is set to zero, the
attribute count maximum is set to two and the cross-
validation count to ten. The MDR identifies a set of
functional variables that is best for classifying cases and
controls. Due to the number of simulated loci, the
software can only select one of three sets: either locus A
or locus B only or both loci. Additionally, it provides a
dendrogram to distinguish between redundant and
synergistic variables based on information theory [51].

Results
In a first step, we investigate the ability of neural
networks and logistic regression models to model
different two-locus disease models. Table 3 shows the
results for Risch’s additivity model. Here, the sum of the
mean absolute differences between estimated penetrance
and theoretical penetrance matrix is lowest for the neural
networks. This is most pronounced in the high risk
scenario (∑Eij = 0.2059 for neural networks versus ∑Eij =
0.2544 and ∑Eij = 0.2804 for logistic regression models
without and with design variables). Logistic regression
models with design variables have in general higher
deviations than those without design variables. These
results are also reflected in the element-wise comparison
of the estimated matrices. For each of the risk scenarios,
the neural network estimates five out of nine penetrances
with the highest accuracy, i.e. with smallest difference to
the theoretical penetrance, compared to the logistic
regression models. The heterogeneity model yields
virtually the same results as the additivity model (results
not shown).

For Risch’s multiplicative model (see Table 4), the
logistic regression models with design variables have
the best fit to the underlying data as is reflected by the
lowest mean absolute difference of the estimated to the
theoretical penetrance matrix (∑Eij = 0.1637 resp. ∑Eij =
0.1833 for the two risk scenarios). This holds true for the
sum as well as for the single entries in both risk
scenarios. Although neural networks show worse
accuracy for both risk scenarios (∑Eij = 0.2428 resp.

Table 2: Number of parameters

Neural
network

0 hidden neurons 3
1 hidden neuron 5
2 hidden neurons 9
3 hidden neurons 13
4 hidden neurons 17
5 hidden neurons 21

Logistic
regression

Logistic
regression (DV)

Null model (NM) 1 1
One main effect (SiA/SiB) 2 3
Both main effects (ME) 3 5
Full model (FM) 4 9

Number of parameters for neural networks, logistic regression models
and logistic regression models with design variables (DV).
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∑Eij = 0.2178), they mostly need two neurons in the
hidden layer (results not shown), that is nine parameters
as opposed to five parameters that are used most often in
the logistic regression models with design variables. This
implies that the higher degrees of freedom do not lead to
a better fit in the situation of a multiplicative model.
Furthermore, logistic regression models without design
variables are not able to model this disease model (∑Eij =
0.3965 resp. ∑Eij = 0.4887).

The results for the epistatic models are presented in
Tables 5, 6 and 7. In the first epistatic model, the mean
absolute differences between the theoretical penetrance
matrices and the estimated penetrance matrices of the
neural networks are generally lower (sum and single
entries) than those of the logistic regression models (see
Table 5). In particular, the logistic regression model
without design variables performs poorly in the high risk
scenario (∑Eij = 0.6150 for logistic regression models
without design variables versus ∑Eij = 0.1410 for neural
networks).

The results for the epistatic model with two dominant
loci are different for the two risk scenarios (see Table 6).

In the low risk scenario, none of the three statistical
approaches is able to satisfactorily estimate the theore-
tical penetrance matrix of the disease model. The sum of
the mean absolute differences ranges from ∑Eij = 0.3071
to ∑Eij = 0.3132 for the three approaches. In the high risk
scenario, neural networks slightly outperform the logistic
regression models with design variables, whereas the
regression models without design variables completely
fail to detect the characteristic structure of the underlying
penetrance matrix (∑Eij = 0.2524 for neural networks
versus ∑Eij = 0.2648 and ∑Eij = 0.6528 for logistic
regression models with respectively without design
variables). The better fit of neural networks and logistic
regression models with design variables is traded off by a
high number of parameters: both approaches need on
average about 9 parameters (results not shown).

The structure of the theoretical penetrance matrices given
by the mixed epistatic model with one dominant and
one recessive locus is again best modeled by neural
networks (see Table 7). This can be observed for the sum
and for the single entries of the mean absolute
differences between the theoretical and the estimated
penetrance matrices in both risk scenarios. The logistic

Table 3: Additive model (ADD)

Low risk High risk
a1 = 2·a0; a2 = 4·a0 a1 = 5·a0; a2 = 10·a0
b1 = 5·b0; b2 = 10·b0 b1 = 5·b0; b2 = 10·b0

Theoretical penetrance matrix 0 2773 0 5371 0 6823

0 3658 0 5756 0 7013

0 4911 0 6364 0 7333

. . .

. . .

. . .

















0 2215 0 4619 0 6132

0 4619 0 5900 0 6850

0 6132 0 6850 0 7449

. . .

. . .

. . .

















Neural network
Mean absolute difference E 0 0219 0 0177 0 0235

0 0133 0 0200 0 0268

0 0404 0 0218 0 0459

. . .

. . .

. . .

















0 0176 0 0180 0 0179

0 0183 0 0183 0 0241

0 0216 0 0267 0 0434

. . .

. . .

. . .

















Sum 0.2313 0.2059

Logistic regression
Mean absolute difference E 0 0182 0 0276 0 0451

0 0153 0 0114 0 0352

0 0342 0 0257 0 0403

. . .

. . .

. . .

















0 0261 0 0228 0 0455

0 0228 0 0133 0 0221

0 0425 0 0236 0 0357

. . .

. . .

. . .

















Sum 0.2530 0.2544

Logistic regression (design variables)
Mean absolute difference E 0 0238 0 0185 0 0311

0 0190 0 0190 0 0268

0 0486 0 0397 0 0632

. . .

. . .

. . .

















0 0201 0 0182 0 0330

0 0208 0 0173 0 0352

0 0383 0 0332 0 0643

. . .

. . .

. . .

















Sum 0.2897 0.2804

Mean absolute differences between theoretical and estimated penetrance matrices from 100 replications in the low and high risk scenario.
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regression models without design variables are again not
able to identify this structure. The mean absolute
differences are much higher as opposed to the differ-
ences of the other approaches (e.g ∑Eij = 0.8658 and ∑Eij
= 0.2329 for logistic regression models without respec-
tively with design variables and ∑Eij = 0.1563 for neural
networks in the high risk scenario).

In a second step, we investigate whether the standard
methods logistic regression and MDR are able to detect
the interaction given by the four two-locus disease
models representing biological interaction. Table 8
summarizes the results of the logistic regression models
with and without design variables regarding the selected
models for each population. The bold numbers mark the
mode of the selected models. In the upper part of the
table, the two-locus disease model (ADD, HET) agrees
with the statistical model when a statistical model of
independence (NM, SiA, SiB, ME) is selected. In the
lower part of the table, the two-locus disease model
representing biological interaction (MULT, EPI RR, EPI
DD, EPI RD) agrees with the statistical model when the
full model (FM) is selected. Both logistic regression
models yield similar results for the additivity and the

heterogeneity model. In most cases, interaction terms are
included into the statistical models despite the fact that
the underlying data follows a disease model representing
independence. This is especially true in the high risk
scenario. In the low risk scenario there is one notable
exception for the heterogeneity model: in more than half
of the replications, the logistic regression models with
design variables contain no interaction term.

Different two-locus disease models representing gene-
gene interaction lead to varying results when logistic
regression models are applied. The logistic regression
models do not include an interaction term in most
replications when the multiplicative model is the
underlying disease model. That means that the logistic
regression models fail to detect the underlying biological
interaction. The recessive and the dominant epistatic
model are correctly represented by the full model in
most situations. Only in the low risk scenario of the
recessive epistatic model, the logistic regression models
without design variables choose a broad variety of
models in a quarter of the replications. For the mixed
epistatic models, the logistic regression models perform
poorly: Since model SiA is mostly selected, the main

Table 4: Multiplicative model (MULT)

Low risk High risk
a1 = 2·a0; a2 = 4·a0 a1 = 5·a0; a2 = 10·a0
b1 = 5·b0; b2 = 10·b0 b1 = 5·b0; b2 = 10·b0

Theoretical penetrance matrix 0 1439 0 4584 0 6306

0 2520 0 6306 0 7765

0 4033 0 7765 0 8781

. . .

. . .

. . .

















0 0752 0 2898 0 4504

0 2898 0 6748 0 8091

0 4504 0 8091 0 8985

. . .

. . .

. . .

















Neural network
Mean absolute difference E 0 0157 0 0203 0 0417

0 0214 0 0151 0 0268

0 0426 0 0265 0 0327

. . .

. . .

. . .

















0 0126 0 0194 0 0399

0 0183 0 0156 0 0193

0 0471 0 0184 0 0272

. . .

. . .

. . .

















Sum 0.2428 0.2178

Logistic regression
Mean absolute difference E 0 0275 0 0478 0 0709

0 0344 0 0410 0 0606

0 0455 0 0297 0 0391

. . .

. . .

. . .

















0 0355 0 0127 0 1122

0 0137 0 0809 0 0338

0 1095 0 0329 0 0575

. . .

. . .

. . .

















Sum 0.3965 0.4887

Logistic regression (design variables)
Mean absolute difference E 0 0111 0 0161 0 0233

0 0153 0 0116 0 0196

0 0281 0 0195 0 0191

. . .

. . .

. . .

















0 0088 0 0168 0 0336

0 0163 0 0149 0 0187

0 0395 0 0173 0 0174

. . .

. . .

. . .

















Sum 0.1637 0.1833

Mean absolute differences between theoretical and estimated penetrance matrices from 100 replications in the low and high risk scenario.
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effect for the (dominant) locus B is not detected in more
than half of the replications and the interaction effect is
included only in about 20% of the replications.

Table 9 summarizes the results for the MDR analyses. It
shows the selected variables for each population in
combination with their identification as synergistic or
redundant. Bold numbers again mark the mode of
selected sets in each population. Even though both main
effects are present in all populations, the MDR approach
often selects a set consisting of only one locus
independent of whether the underlying two-locus dis-
ease model represents independent effects or biological
interaction. This holds true for the additive and the
heterogeneity model in the low risk scenario, where only
locus B is selected for most of the 100 data sets, and the
mixed epistatic model, where a set consisting of locus A
only is mainly selected. Apart from the mixed epistatic
model, both variables are selected correctly for the
disease models representing biological interaction. As
for the logistic regression model, the sets of selected
variables strongly vary for the recessive epistatic model.

Additionally, the provided dendrogram can be applied
to distinguish between redundancy and synergism. These

concepts are related to independence and interaction in
our context [52]. Both loci are categorized as redundant
for most of the investigated populations. Only the
dominant epistatic model is correctly identified as a
synergistic model for the majority of the data sets.

No similar statement about the agreement of disease and
statistical model can be made for neural networks since
there is no equivalent to the concept of interaction terms.
Neural networks with one or two neurons in the hidden
layer (i.e. models with five or nine parameters) are the
most frequent models selected in the simulation study.

Discussion
In our simulation study, we investigated whether neural
networks are able to model different types of gene-gene
interaction in case-control data. For this purpose, we
analyzed simulated data of six different two-locus disease
models in two different risk scenarios with neural
networks and compared the results to logistic regression
models using two different approaches for coding the
genotype information. Additionally, we investigated
whether logistic regression models or the MDR approach,
which are two widely used methods in applications, are
suitable to identify biological interaction.

Table 5: Epistatic model - recessive (EPI RR)

Low risk High risk
r = 5 r = 10

Theoretical penetrance matrix 0 4919 0 4919 0 4919

0 4919 0 4919 0 4919

0 4919 0 4919 0 8344

. . .

. . .

. . .

















0 4822 0 4822 0 4822

0 4822 0 4822 0 4822

0 4822 0 4822 0 9105

. . .

. . .

. . .

















Neural network
Mean absolute difference E 0 0097 0 0098 0 0163

0 0126 0 0099 0 0430

0 0228 0 0340 0 0490

. . .

. . .

. . .

















0 0066 0 0060 0 0077

0 0063 0 0071 0 0414

0 0101 0 0262 0 0296

. . .

. . .

. . .

















Sum 0.2071 0.1410

Logistic regression
Mean absolute difference E 0 0163 0 0177 0 0416

0 0162 0 0303 0 0705

0 0362 0 0711 0 1850

. . .

. . .

. . .

















0 0145 0 0235 0 0536

0 0213 0 0508 0 1197

0 0490 0 1229 0 1597

. . .

. . .

. . .

















Sum 0.4849 0.6150

Logistic regression (design variables)
Mean absolute difference E 0 0178 0 0225 0 0520

0 0243 0 0249 0 0540

0 0457 0 0532 0 0559

. . .

. . .

. . .

















0 0165 0 0195 0 0407

0 0187 0 0198 0 0485

0 0391 0 0433 0 0294

. . .

. . .

. . .

















Sum 0.3503 0.2755

Mean absolute differences between theoretical and estimated penetrance matrices from 100 replications in the low and high risk scenario.
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For the majority of the investigated situations, the
theoretical penetrance matrix is estimated most accu-
rately by neural networks as opposed to logistic
regression models. The exception is the multiplicative
model in both risk scenarios and the dominant epistatic
model in the low risk scenario. Although, in these
situations, neural networks use two neurons in the
hidden layer, i.e. nine parameters, in most replications,
they are not able to exploit the flexibility to correctly
represent this disease model. For the logistic regression
models, it can be stated that the disease models of
independence are better represented by a logistic
regression model without design variables and the
disease models of interaction are better represented by
a logistic regression model with design variables. In
situations where interaction is present using a logistic
regression model without design variables might lead to
wrong results. Since the underlying disease model is
usually not known beforehand, no recommendation can
be given whether to employ design variables or not. Both
logistic regression models mostly select a main effect
model to represent the multiplicative model. The
inclusion of interaction terms signifies deviations from
the structural model rather than from the disease model

representing independence. Consequently, the under-
lying biological interaction represented by the multi-
plicative and the epistatic models cannot be read off the
fitted logistic regression models. The same holds true for
the MDR approach. It is not possible to correctly identify
biological interaction based on the sets of selected
variables or based on the dendrograms since the additive
and the heterogeneity model as independence models
cannot be distinguished from the four models represent-
ing biological interaction with neither of these two
criteria.

The results confirm previous studies that demonstrate
the excellent modeling capacities of neural networks
[32]. We investigated, whether the weaker performance
of the neural network especially for the multiplicative
model might be due to a wrong model selection
criterion. Alternatively to the AIC, we calculated Bayes
Information Criterion (BIC, see [53]) for all models
(results not shown). However, employing the BIC for
model selection does not improve the performance of
the neural network as opposed to the logistic regression
models. In fact, the stronger performance of the logistic
regression model is supposed to be due to the fact that

Table 6: Epistatic model - dominant (EPI DD)

Low risk High risk
r1 = 2; r2 = 4 r1 = 5; r2 = 10

Theoretical penetrance matrix 0 4388 0 4388 0 4388

0 4388 0 6118 0 6118

0 4388 0 6118 0 7621

. . .

. . .

. . .

















0 3234 0 3234 0 3234

0 3234 0 7091 0 7091

0 3234 0 7091 0 8333

. . .

. . .

. . .

















Neural network
Mean absolute difference E 0 0153 0 0175 0 0477

0 0200 0 0173 0 0320

0 0486 0 0391 0 0720

. . .

. . .

. . .

















0 0156 0 0176 0 0404

0 0205 0 0120 0 0281

0 0451 0 0352 0 0379

. . .

. . .

. . .

















Sum 0.3095 0.2524

Logistic regression
Mean absolute difference E 0 0155 0 0199 0 0352

0 0141 0 0561 0 0482

0 0332 0 0390 0 0520

. . .

. . .

. . .

















0 0139 0 0374 0 0718

0 0406 0 1098 0 0867

0 0793 0 0889 0 1244

. . .

. . .

. . .

















Sum 0.3132 0.6528

Logistic regression (design variables)
Mean absolute difference E 0 0178 0 0181 0 0442

0 0214 0 0170 0 0371

0 0450 0 0408 0 0657

. . .

. . .

. . .

















0 0165 0 0182 0 0459

0 0216 0 0117 0 0277

0 0494 0 0346 0 0392

. . .

. . .

. . .

















Sum 0.3071 0.2648

Mean absolute differences between theoretical and estimated penetrance matrices from 100 replications in the low and high risk scenario.
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the multiplicative model exactly corresponds to the
structural model of the logistic regression model.

It might be disputed whether the applied risk scenarios
feature too large genotype relative risks to be meaningful
for real-data applications. For the recessive epistatic
model as the most extreme situation, alternative
scenarios were investigated employing smaller risks. All
investigated approaches have difficulties detecting these
smaller risks. For the logistic regression models, the null
model is mostly chosen, thus, neglecting the elevated
penetrance when both loci carry two mutated alleles.

Neural networks do not explicitly use interaction terms
for modeling data. Unlike in logistic regression models,
where an interaction term might become significant or
not, there is no easy way to assess whether interaction is
present using a neural network. Moreover, in models
with one or more hidden layers there is no direct
interpretation of the estimated parameters and the MLP
is generally considered as a black-box approach. This can
be seen as the biggest drawback when employing neural
networks for data analyses where interpretation is a
major concern. However, the modeling capacities of a
neural network allow to adjust to practically any given

data structure, including any interaction structure, which
makes it an extremely powerful statistical tool. This
advantage might even be more pronounced when
modeling continuous variables, for example when
modeling gene-environment interactions.

The use of neural networks in applications is currently still
limited because of existing research gaps. Especially, the
interpretability of the estimated weights is not yet given.
Nevertheless, they offer a promising tool for exploratory
analyses in candidate gene studies. For instance, they can
well be applied when one is interested in odds ratios for
single SNPs. The estimated odds ratios are more realistic
than those estimated by logistic regression models in a lot
of situations since the estimated output of neural
networks better represents the underlying population.
As initially stated, we did not explore the ability of neural
networks for variable selection, which is a key problem in
genome-wide association (GWA) studies.

Conclusions
We explored the ability of neural networks to model
different types of biological gene-gene interactions and
compared them to logistic regression models and the

Table 7: Epistatic model - mixed (EPI RD)

Low risk High risk
r1 = 2; r2 = 4 r1 = 5; r2 = 10

Theoretical penetrance matrix 0 4745 0 4745 0 4745

0 4745 0 4745 0 4745

0 6458 0 6458 0 7879

. . .

. . .

. . .

















0 4159 0 4159 0 4159

0 4159 0 4159 0 4159

0 7857 0 7857 0 8839

. . .

. . .

. . .

















Neural network
Mean absolute difference E 0 0096 0 0090 0 0094

0 0097 0 0111 0 0309

0 0353 0 0398 0 0691

. . .

. . .

. . .

















0 0083 0 0084 0 0127

0 0095 0 0097 0 0190

0 0238 0 0276 0 0373

. . .

. . .

. . .

















Sum 0.2239 0.1563

Logistic regression
Mean absolute difference E 0 0256 0 0235 0 0306

0 0417 0 0548 0 0678

0 0643 0 0417 0 1605

. . .

. . .

. . .

















0 0499 0 0517 0 0560

0 1079 0 1262 0 1443

0 1090 0 0758 0 1450

. . .

. . .

. . .

















Sum 0.5105 0.8658

Logistic regression (design variables)
Mean absolute difference E 0 0127 0 0138 0 0284

0 0148 0 0161 0 0346

0 0289 0 0278 0 1028

. . .

. . .

. . .

















0 0138 0 0147 0 0350

0 0152 0 0148 0 0323

0 0188 0 0181 0 0702

. . .

. . .

. . .

















Sum 0.2799 0.2329

Mean absolute differences between theoretical and estimated penetrance matrices from 100 replications in the low and high risk scenario.
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Table 8: Selected logistic regression models (LRM)

LRM with design variables
Statistical model (# parameters)

Two-locus disease model Risk scenario NM (1) SiA (3) SiB (3) ME (5) FM (9) ∑

ADD low 1 39 60 100
high 7 93 100

HET low 55 45 100
high 10 90 100

MULT low 90 10 100
high 88 12 100

EPI RR low 6 94 100
high 100 100

EPI DD low 3 97 100
high 100 100

EPI RD low 61 19 20 100
high 57 14 29 100

LRM without design variables
Statistical model (# parameters)

NM (1) SiA (2) SiB (2) ME (3) FM (4) ∑

ADD low 1 27 72 100
high 4 96 100

HET low 30 70 100
high 6 94 100

MULT low 72 28 100
high 54 46 100

EPI RD low 7 6 9 3 75 100
high 100 100

EPI DD low 2 98 100
high 100 100

EPI RD low 60 19 21 100
high 38 23 39 100

In the upper part of the table, the two-locus disease model (ADD, HET) agrees with the statistical model when a statistical model of independence
(NM, SiA, SiB, ME) is selected. In the lower part of the table, the two-locus disease model representing biological interaction (MULT, EPI RR, EPI DD,
EPI RD) agrees with the statistical model when the full model (FM) is selected. Bold numbers mark the mode of the selected models in the low and
high risk scenario.

Table 9: MDR analyses: selected variables and identification as redundant or synergistic behavior

MDR analyses

Redundant Synergistic

Two-locus disease model Risk scenario Only A Only B Both Only A Only B Both ∑

ADD low 82 18 100
high 7 93 100

HET low 68 32 100
high 1 6 93 100

MULT low 7 93 100
high 100 100

EPI RR low 10 22 39 2 4 23 100
high 18 17 59 1 2 3 100

EPI DD low 12 1 87 100
high 18 82 100

EPI RD low 63 34 3 100
high 97 3 100

Bold numbers mark the mode of the selected variables in the low and high risk scenario.
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MDR approach. The latter methods do not allow reading
off the underlying two-locus disease models. Neural
networks do not explicitly include an interaction term
but they are able to model any data structure. Even
though the estimated weights are not interpretable, this
makes them a powerful statistical tool. Further research
should be devoted to develop a framework for interpret-
ing the parameters estimated by a neural network to
allow a broader use of these tools.
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Appendix
To illustrate the calculation of the theoretical penetrance
matrix, we consider the epistatic model with two
recessive loci. We assume that the two considered loci
are in linkage equilibrium, i.e. they are marginal
independent, and that the Hardy-Weinberg equilibrium
holds. In the population, the probabilities are denoted as
follows
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This enables us to express the conditional probabilities
of the genotypes given the case-control status as:
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. These conditional prob-
abilities remain the same when drawing a case-control
sample

P G i G j Y

P G i G j Y

A B

s
A B

( , | )

( , | ),

  

   

1

1

where Ps indicates a probability in a case-control sample.
There are only changes in the joint probabilities of the
genotypes Ps(GA = i, GB = j) because of the change of
prevalence: Ps(Y = 1) = Ps(Y = 0) = 0.5.

The joint probabilities can be calculated as

P G i G j

P G i G j Y y

P Y y

P

s
A B

s
A B

y

s

y

s

( , )

( , , )

( )

{ , }

{ , }

 

   

 










0 1

0 1

(( , | ).G i G j Y yA B  

The theoretical penetrance matrix of the sample can now
be calculated as:
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For example, for the low risk scenario (r = 5) and an
overall prevalence in the population of K = 0.01, the
constant c can be calculated as c = 0.009686 and the
theoretical penetrance matrix of the sample results in

P Y G i G js
A B( | , )

. . .

. . .

.

  



1

0 4919 0 4919 0 4919

0 4919 0 4919 0 4919

0 49119 0 4919 0 8344. .

.

















This theoretical penetrance matrix of the sample is
compared to the predicted penetrance matrices generated
by the different models to judge the ability of neural
networks and logistic regression models to model
different two-locus disease models.
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